Abstract

An integrated variable wave plate device based on a thermo-optic (TO) effect was fabricated by patterning a waveguide channel through direct UV laser writing on the surface of sol-gel derived organic-inorganic hybrid (di-ureasil) films. The di-ureasil layer is stable up to 250 °C and has a high TO coefficient calculated as −(4.9 ± 0.5) × 104 °C1 at 1550 nm. The waveguide temperature was tuned, inducing optical phase retardation between the transverse electric and transverse magnetic modes, resulting in a controllable wave plate. A maximum phase retardation of 77 ° was achieved for a waveguide induced temperature increase of 5 °C above room temperature, with a power consumption of 0.4 W. The thermal linear retardation coefficient was calculated to be 19 ± 1 °/ °C.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Athermal silicon optical add-drop multiplexers based on thermo-optic coefficient tuning of sol-gel material

Soha Namnabat, Kyung-Jo Kim, Adam Jones, Roland Himmelhuber, Christopher T. DeRose, Douglas C. Trotter, Andrew L. Starbuck, Andrew Pomerene, Anthony L. Lentine, and Robert A. Norwood
Opt. Express 25(18) 21471-21482 (2017)

Thermo-optic waveguide gate switch arrays based on direct UV-written highly fluorinated low-loss photopolymer

Xiaoyan Niu, Yang Zheng, Yunlong Gu, Changming Chen, Zhenzhen Cai, Zuosen Shi, Fei Wang, Xiaoqiang Sun, Zhanchen Cui, and Daming Zhang
Appl. Opt. 53(29) 6698-6705 (2014)

Multi-objective genetic algorithm applied to spectroscopic ellipsometry of organic-inorganic hybrid planar waveguides

Vasco R. Fernandes, Carlos M. S. Vicente, Naoya Wada, Paulo S. André, and Rute A. S. Ferreira
Opt. Express 18(16) 16580-16586 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
    [Crossref]
  2. E. Lach and W. Idler, “Modulation formats for 100G and beyond,” Opt. Fiber Technol. 17(5), 377–386 (2011).
    [Crossref]
  3. M. Bass, “Handbook of optics, devices measurements and properties,” in (Mcgraw-Hill, 1995), p. 12, Chap. 22.
  4. Z. Zhuang, S. W. Suh, and J. S. Patel, “Polarization controller using nematic liquid crystals,” Opt. Lett. 24(10), 694–696 (1999).
    [Crossref] [PubMed]
  5. K. Liu, J. Shi, and X. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106 (2009).
    [Crossref]
  6. D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12(19), 3598–3610 (2012).
    [Crossref] [PubMed]
  7. D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
    [Crossref]
  8. B. Lebeau and P. Innocenzi, “Hybrid materials for optics and photonics,” Chem. Soc. Rev. 40(2), 886–906 (2011).
    [Crossref] [PubMed]
  9. C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
    [Crossref]
  10. M. H. Ibrahim, A. S. Abdullah, A. Nawabjan, N. M. Kassim, A. B. Mohammad, and A. S. M. Supaat, “A thermo-optic multimode interference switch structure based on vinyltriethoxysilane (VTES) hybrid organic–inorganic sol–gel,” Opt. Int. J. Light Electron Opt. 124(13), 1532–1535 (2013).
    [Crossref]
  11. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
    [Crossref]
  12. M. Popall, A. Dabek, M. E. Robertsson, S. Valizadeh, O. J. Hagel, R. Buestrich, R. Nagel, L. Cergel, D. Lambert, and M. Schaub, “ORMOCER®S – Inorganic-organic hybrid materials for e/o-interconnection-technology,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 354(1), 123–142 (2000).
    [Crossref]
  13. R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic–organic hybrid materials for application in optical devices,” Thin Solid Films 442(1-2), 194–200 (2003).
    [Crossref]
  14. T. S. El-Bawab, ed., “Optical Switching,” in (Springer US, 2006).
  15. B. A. Rose, A. J. Maker, and A. M. Armani, “Characterization of thermo-optic coefficient and material loss of high refractive index silica sol-gel films in the visible and near-IR,” Opt. Mater. Express 2, 671 (2012).
  16. G. Coppola, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
    [Crossref]
  17. R. A. S. Ferreira, P. S. André, and L. D. Carlos, “Organic–inorganic hybrid materials towards passive and active architectures for the next generation of optical networks,” Opt. Mater. (Amst) 32(11), 1397–1409 (2010).
    [Crossref]
  18. R. A. S. Ferreira, C. D. S. Brites, C. M. S. Vicente, P. P. Lima, A. R. N. Bastos, P. G. Marques, M. Hiltunen, L. D. Carlos, and P. S. André, “Photonic-on-a-chip: a thermal actuated Mach-Zehnder interferometer and a molecular thermometer based on a single di-ureasil organic-inorganic hybrid,” Laser Photon. Rev. 7(6), 1027–1035 (2013).
    [Crossref]
  19. D. C. Oliveira, A. G. Macedo, N. J. O. Silva, C. Molina, R. A. S. Ferreira, P. S. André, K. Dahmouche, V. D. Z. Bermudez, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Photopatternable di-ureasil−zirconium oxocluster organic−inorganic hybrids as cost effective integrated optical substrates,” Chem. Mater. 20(11), 3696–3705 (2008).
    [Crossref]
  20. C. Molina, P. J. Moreira, R. R. Gonçalves, R. A. Sá Ferreira, Y. Messaddeq, S. J. L. Ribeiro, O. Soppera, A. P. Leite, P. V. S. Marques, V. de Zea Bermudez, and L. D. Carlos, “Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties,” J. Mater. Chem. 15(35-36), 3937 (2005).
    [Crossref]
  21. M. F. Hossain, H. P. Chan, and M. A. Uddin, “Study of optical anisotropies in benzocyclobutene thin films for the efficient design of optical waveguide devices,” Opt. Express 18(9), 8896–8905 (2010).
    [Crossref] [PubMed]
  22. G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, and W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008).
    [Crossref]
  23. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12(12), 2901–2908 (1973).
    [Crossref] [PubMed]
  24. S. M. Gomes Correia, V. de Zea Bermudez, M. M. Silva, S. Barros, R. A. Sá Ferreira, L. D. Carlos, A. P. Passos de Almeida, and M. J. Smith, “Morphological and conductivity studies of di-ureasil xerogels containing lithium triflate,” Electrochim. Acta 47(15), 2421–2428 (2002).
    [Crossref]
  25. P. C. R. Varma, J. Colreavy, J. Cassidy, M. Oubaha, B. Duffy, and C. McDonagh, “Effect of organic chelates on the performance of hybrid sol–gel coated AA 2024-T3 aluminium alloys,” Prog. Org. Coat. 66(4), 406–411 (2009).
    [Crossref]
  26. A. Moujoud, W. S. Kim, B. S. Bae, and S. Y. Shin, “Thermally stable optical characteristics of sol-gel hybrid material films,” Appl. Phys. Lett. 88(10), 101916 (2006).
    [Crossref]
  27. F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96(12), 7147 (2004).
    [Crossref]
  28. Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
    [Crossref]
  29. J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express 20(15), 16300 (2012).
    [Crossref]
  30. J. Chen, T. Zhang, J. Zhu, X. Zhang, J. Zhou, J. Fan, and G. Hu, “Low-loss planar optical waveguides fabricated from polycarbonate,” Polym. Eng. Sci. 49(10), 2015–2019 (2009).
    [Crossref]
  31. T. Watanabe, N. Ooba, S. Hayashida, T. Kurihara, and S. Imamura, “Polymeric optical waveguide circuits formed using silicone resin,” J. Lightwave Technol. 16(6), 1049–1055 (1998).
    [Crossref]
  32. K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys., A Mater. Sci. Process. 80(3), 621–626 (2005).
    [Crossref]
  33. T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low loss high index contrast nanoimprinted polysiloxane waveguides,” Opt. Express 17(4), 2623–2630 (2009).
    [Crossref] [PubMed]
  34. X. Wang, L. Xu, D. Li, L. Liu, and W. Wang, “Thermo-optic properties of sol-gel-fabricated organic–inorganic hybrid waveguides,” J. Appl. Phys. 94(6), 4228 (2003).
    [Crossref]
  35. H. Zhang, J. Wang, L. Li, Y. Song, M. Zhao, and X. Jian, “Synthesis of liquid polysilisiquioxane resins and properties of cured films,” Thin Solid Films 517(2), 857–862 (2008).
    [Crossref]
  36. V. R. Fernandes, C. M. S. Vicente, E. Pecoraro, D. Karpinsky, A. L. Kholkin, N. Wada, P. S. Andre, and R. A. S. Ferreira, “Determination of refractive index contrast and surface contraction in waveguide channels using multiobjective genetic algorithm applied to spectroscopic ellipsometry,” J. Lightwave Technol. 29(19), 2971–2978 (2011).
    [Crossref]
  37. J. C. Pincenti, S. Goel, and D. L. Naylor, “Thermally induced birefringence and stress in poly(methyl methacrylate) waveguides on oxidized silicon substrates,” Appl. Opt. 32(3), 322–326 (1993).
    [Crossref] [PubMed]
  38. L. Shi, L. Tian, and X. Chen, “Electro-optic chirality control in MgO:PPLN,” J. Appl. Phys. 112(7), 073103 (2012).
    [Crossref]
  39. M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Lightwave Technol. 12(4), 625–633 (1994).
    [Crossref]
  40. B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81(27), 5243 (2002).
    [Crossref]
  41. J. W. Kim, S. H. Park, W. S. Chu, and M. C. Oh, “Integrated-optic polarization controllers incorporating polymer waveguide birefringence modulators,” Opt. Express 20(11), 12443–12448 (2012).
    [Crossref] [PubMed]

2013 (3)

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

M. H. Ibrahim, A. S. Abdullah, A. Nawabjan, N. M. Kassim, A. B. Mohammad, and A. S. M. Supaat, “A thermo-optic multimode interference switch structure based on vinyltriethoxysilane (VTES) hybrid organic–inorganic sol–gel,” Opt. Int. J. Light Electron Opt. 124(13), 1532–1535 (2013).
[Crossref]

R. A. S. Ferreira, C. D. S. Brites, C. M. S. Vicente, P. P. Lima, A. R. N. Bastos, P. G. Marques, M. Hiltunen, L. D. Carlos, and P. S. André, “Photonic-on-a-chip: a thermal actuated Mach-Zehnder interferometer and a molecular thermometer based on a single di-ureasil organic-inorganic hybrid,” Laser Photon. Rev. 7(6), 1027–1035 (2013).
[Crossref]

2012 (7)

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12(19), 3598–3610 (2012).
[Crossref] [PubMed]

L. Shi, L. Tian, and X. Chen, “Electro-optic chirality control in MgO:PPLN,” J. Appl. Phys. 112(7), 073103 (2012).
[Crossref]

B. A. Rose, A. J. Maker, and A. M. Armani, “Characterization of thermo-optic coefficient and material loss of high refractive index silica sol-gel films in the visible and near-IR,” Opt. Mater. Express 2, 671 (2012).

J. W. Kim, S. H. Park, W. S. Chu, and M. C. Oh, “Integrated-optic polarization controllers incorporating polymer waveguide birefringence modulators,” Opt. Express 20(11), 12443–12448 (2012).
[Crossref] [PubMed]

J. Gosciniak, L. Markey, A. Dereux, and S. I. Bozhevolnyi, “Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides,” Opt. Express 20(15), 16300 (2012).
[Crossref]

2011 (4)

V. R. Fernandes, C. M. S. Vicente, E. Pecoraro, D. Karpinsky, A. L. Kholkin, N. Wada, P. S. Andre, and R. A. S. Ferreira, “Determination of refractive index contrast and surface contraction in waveguide channels using multiobjective genetic algorithm applied to spectroscopic ellipsometry,” J. Lightwave Technol. 29(19), 2971–2978 (2011).
[Crossref]

B. Lebeau and P. Innocenzi, “Hybrid materials for optics and photonics,” Chem. Soc. Rev. 40(2), 886–906 (2011).
[Crossref] [PubMed]

E. Lach and W. Idler, “Modulation formats for 100G and beyond,” Opt. Fiber Technol. 17(5), 377–386 (2011).
[Crossref]

G. Coppola, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[Crossref]

2010 (2)

R. A. S. Ferreira, P. S. André, and L. D. Carlos, “Organic–inorganic hybrid materials towards passive and active architectures for the next generation of optical networks,” Opt. Mater. (Amst) 32(11), 1397–1409 (2010).
[Crossref]

M. F. Hossain, H. P. Chan, and M. A. Uddin, “Study of optical anisotropies in benzocyclobutene thin films for the efficient design of optical waveguide devices,” Opt. Express 18(9), 8896–8905 (2010).
[Crossref] [PubMed]

2009 (4)

T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low loss high index contrast nanoimprinted polysiloxane waveguides,” Opt. Express 17(4), 2623–2630 (2009).
[Crossref] [PubMed]

P. C. R. Varma, J. Colreavy, J. Cassidy, M. Oubaha, B. Duffy, and C. McDonagh, “Effect of organic chelates on the performance of hybrid sol–gel coated AA 2024-T3 aluminium alloys,” Prog. Org. Coat. 66(4), 406–411 (2009).
[Crossref]

J. Chen, T. Zhang, J. Zhu, X. Zhang, J. Zhou, J. Fan, and G. Hu, “Low-loss planar optical waveguides fabricated from polycarbonate,” Polym. Eng. Sci. 49(10), 2015–2019 (2009).
[Crossref]

K. Liu, J. Shi, and X. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106 (2009).
[Crossref]

2008 (3)

D. C. Oliveira, A. G. Macedo, N. J. O. Silva, C. Molina, R. A. S. Ferreira, P. S. André, K. Dahmouche, V. D. Z. Bermudez, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Photopatternable di-ureasil−zirconium oxocluster organic−inorganic hybrids as cost effective integrated optical substrates,” Chem. Mater. 20(11), 3696–3705 (2008).
[Crossref]

G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, and W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008).
[Crossref]

H. Zhang, J. Wang, L. Li, Y. Song, M. Zhao, and X. Jian, “Synthesis of liquid polysilisiquioxane resins and properties of cured films,” Thin Solid Films 517(2), 857–862 (2008).
[Crossref]

2006 (2)

A. Moujoud, W. S. Kim, B. S. Bae, and S. Y. Shin, “Thermally stable optical characteristics of sol-gel hybrid material films,” Appl. Phys. Lett. 88(10), 101916 (2006).
[Crossref]

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[Crossref]

2005 (2)

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys., A Mater. Sci. Process. 80(3), 621–626 (2005).
[Crossref]

C. Molina, P. J. Moreira, R. R. Gonçalves, R. A. Sá Ferreira, Y. Messaddeq, S. J. L. Ribeiro, O. Soppera, A. P. Leite, P. V. S. Marques, V. de Zea Bermudez, and L. D. Carlos, “Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties,” J. Mater. Chem. 15(35-36), 3937 (2005).
[Crossref]

2004 (1)

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96(12), 7147 (2004).
[Crossref]

2003 (2)

X. Wang, L. Xu, D. Li, L. Liu, and W. Wang, “Thermo-optic properties of sol-gel-fabricated organic–inorganic hybrid waveguides,” J. Appl. Phys. 94(6), 4228 (2003).
[Crossref]

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic–organic hybrid materials for application in optical devices,” Thin Solid Films 442(1-2), 194–200 (2003).
[Crossref]

2002 (3)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

S. M. Gomes Correia, V. de Zea Bermudez, M. M. Silva, S. Barros, R. A. Sá Ferreira, L. D. Carlos, A. P. Passos de Almeida, and M. J. Smith, “Morphological and conductivity studies of di-ureasil xerogels containing lithium triflate,” Electrochim. Acta 47(15), 2421–2428 (2002).
[Crossref]

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81(27), 5243 (2002).
[Crossref]

2000 (1)

M. Popall, A. Dabek, M. E. Robertsson, S. Valizadeh, O. J. Hagel, R. Buestrich, R. Nagel, L. Cergel, D. Lambert, and M. Schaub, “ORMOCER®S – Inorganic-organic hybrid materials for e/o-interconnection-technology,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 354(1), 123–142 (2000).
[Crossref]

1999 (1)

1998 (1)

1994 (1)

M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Lightwave Technol. 12(4), 625–633 (1994).
[Crossref]

1993 (1)

1973 (1)

Abdullah, A. S.

M. H. Ibrahim, A. S. Abdullah, A. Nawabjan, N. M. Kassim, A. B. Mohammad, and A. S. M. Supaat, “A thermo-optic multimode interference switch structure based on vinyltriethoxysilane (VTES) hybrid organic–inorganic sol–gel,” Opt. Int. J. Light Electron Opt. 124(13), 1532–1535 (2013).
[Crossref]

Acharya, B. R.

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81(27), 5243 (2002).
[Crossref]

Agan, S.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96(12), 7147 (2004).
[Crossref]

Andre, P. S.

André, P. S.

R. A. S. Ferreira, C. D. S. Brites, C. M. S. Vicente, P. P. Lima, A. R. N. Bastos, P. G. Marques, M. Hiltunen, L. D. Carlos, and P. S. André, “Photonic-on-a-chip: a thermal actuated Mach-Zehnder interferometer and a molecular thermometer based on a single di-ureasil organic-inorganic hybrid,” Laser Photon. Rev. 7(6), 1027–1035 (2013).
[Crossref]

R. A. S. Ferreira, P. S. André, and L. D. Carlos, “Organic–inorganic hybrid materials towards passive and active architectures for the next generation of optical networks,” Opt. Mater. (Amst) 32(11), 1397–1409 (2010).
[Crossref]

D. C. Oliveira, A. G. Macedo, N. J. O. Silva, C. Molina, R. A. S. Ferreira, P. S. André, K. Dahmouche, V. D. Z. Bermudez, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Photopatternable di-ureasil−zirconium oxocluster organic−inorganic hybrids as cost effective integrated optical substrates,” Chem. Mater. 20(11), 3696–3705 (2008).
[Crossref]

Armani, A. M.

Asquini, R.

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12(19), 3598–3610 (2012).
[Crossref] [PubMed]

Ay, F.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96(12), 7147 (2004).
[Crossref]

Aydinli, A.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96(12), 7147 (2004).
[Crossref]

Bae, B. S.

A. Moujoud, W. S. Kim, B. S. Bae, and S. Y. Shin, “Thermally stable optical characteristics of sol-gel hybrid material films,” Appl. Phys. Lett. 88(10), 101916 (2006).
[Crossref]

Baldwin, K. W.

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81(27), 5243 (2002).
[Crossref]

Barros, S.

S. M. Gomes Correia, V. de Zea Bermudez, M. M. Silva, S. Barros, R. A. Sá Ferreira, L. D. Carlos, A. P. Passos de Almeida, and M. J. Smith, “Morphological and conductivity studies of di-ureasil xerogels containing lithium triflate,” Electrochim. Acta 47(15), 2421–2428 (2002).
[Crossref]

Bastos, A. R. N.

R. A. S. Ferreira, C. D. S. Brites, C. M. S. Vicente, P. P. Lima, A. R. N. Bastos, P. G. Marques, M. Hiltunen, L. D. Carlos, and P. S. André, “Photonic-on-a-chip: a thermal actuated Mach-Zehnder interferometer and a molecular thermometer based on a single di-ureasil organic-inorganic hybrid,” Laser Photon. Rev. 7(6), 1027–1035 (2013).
[Crossref]

Beccherelli, R.

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12(19), 3598–3610 (2012).
[Crossref] [PubMed]

Bermudez, V. D. Z.

D. C. Oliveira, A. G. Macedo, N. J. O. Silva, C. Molina, R. A. S. Ferreira, P. S. André, K. Dahmouche, V. D. Z. Bermudez, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Photopatternable di-ureasil−zirconium oxocluster organic−inorganic hybrids as cost effective integrated optical substrates,” Chem. Mater. 20(11), 3696–3705 (2008).
[Crossref]

Bozhevolnyi, S. I.

Bräuer, A.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic–organic hybrid materials for application in optical devices,” Thin Solid Films 442(1-2), 194–200 (2003).
[Crossref]

Brites, C. D. S.

R. A. S. Ferreira, C. D. S. Brites, C. M. S. Vicente, P. P. Lima, A. R. N. Bastos, P. G. Marques, M. Hiltunen, L. D. Carlos, and P. S. André, “Photonic-on-a-chip: a thermal actuated Mach-Zehnder interferometer and a molecular thermometer based on a single di-ureasil organic-inorganic hybrid,” Laser Photon. Rev. 7(6), 1027–1035 (2013).
[Crossref]

Buestrich, R.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic–organic hybrid materials for application in optical devices,” Thin Solid Films 442(1-2), 194–200 (2003).
[Crossref]

M. Popall, A. Dabek, M. E. Robertsson, S. Valizadeh, O. J. Hagel, R. Buestrich, R. Nagel, L. Cergel, D. Lambert, and M. Schaub, “ORMOCER®S – Inorganic-organic hybrid materials for e/o-interconnection-technology,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 354(1), 123–142 (2000).
[Crossref]

Carlos, L. D.

R. A. S. Ferreira, C. D. S. Brites, C. M. S. Vicente, P. P. Lima, A. R. N. Bastos, P. G. Marques, M. Hiltunen, L. D. Carlos, and P. S. André, “Photonic-on-a-chip: a thermal actuated Mach-Zehnder interferometer and a molecular thermometer based on a single di-ureasil organic-inorganic hybrid,” Laser Photon. Rev. 7(6), 1027–1035 (2013).
[Crossref]

R. A. S. Ferreira, P. S. André, and L. D. Carlos, “Organic–inorganic hybrid materials towards passive and active architectures for the next generation of optical networks,” Opt. Mater. (Amst) 32(11), 1397–1409 (2010).
[Crossref]

D. C. Oliveira, A. G. Macedo, N. J. O. Silva, C. Molina, R. A. S. Ferreira, P. S. André, K. Dahmouche, V. D. Z. Bermudez, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Photopatternable di-ureasil−zirconium oxocluster organic−inorganic hybrids as cost effective integrated optical substrates,” Chem. Mater. 20(11), 3696–3705 (2008).
[Crossref]

C. Molina, P. J. Moreira, R. R. Gonçalves, R. A. Sá Ferreira, Y. Messaddeq, S. J. L. Ribeiro, O. Soppera, A. P. Leite, P. V. S. Marques, V. de Zea Bermudez, and L. D. Carlos, “Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties,” J. Mater. Chem. 15(35-36), 3937 (2005).
[Crossref]

S. M. Gomes Correia, V. de Zea Bermudez, M. M. Silva, S. Barros, R. A. Sá Ferreira, L. D. Carlos, A. P. Passos de Almeida, and M. J. Smith, “Morphological and conductivity studies of di-ureasil xerogels containing lithium triflate,” Electrochim. Acta 47(15), 2421–2428 (2002).
[Crossref]

Cassidy, J.

P. C. R. Varma, J. Colreavy, J. Cassidy, M. Oubaha, B. Duffy, and C. McDonagh, “Effect of organic chelates on the performance of hybrid sol–gel coated AA 2024-T3 aluminium alloys,” Prog. Org. Coat. 66(4), 406–411 (2009).
[Crossref]

Cergel, L.

M. Popall, A. Dabek, M. E. Robertsson, S. Valizadeh, O. J. Hagel, R. Buestrich, R. Nagel, L. Cergel, D. Lambert, and M. Schaub, “ORMOCER®S – Inorganic-organic hybrid materials for e/o-interconnection-technology,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 354(1), 123–142 (2000).
[Crossref]

Chan, H. P.

Charters, R.

Chen, C.

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

Chen, J.

J. Chen, T. Zhang, J. Zhu, X. Zhang, J. Zhou, J. Fan, and G. Hu, “Low-loss planar optical waveguides fabricated from polycarbonate,” Polym. Eng. Sci. 49(10), 2015–2019 (2009).
[Crossref]

Chen, X.

L. Shi, L. Tian, and X. Chen, “Electro-optic chirality control in MgO:PPLN,” J. Appl. Phys. 112(7), 073103 (2012).
[Crossref]

K. Liu, J. Shi, and X. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106 (2009).
[Crossref]

Chu, W. S.

Colreavy, J.

P. C. R. Varma, J. Colreavy, J. Cassidy, M. Oubaha, B. Duffy, and C. McDonagh, “Effect of organic chelates on the performance of hybrid sol–gel coated AA 2024-T3 aluminium alloys,” Prog. Org. Coat. 66(4), 406–411 (2009).
[Crossref]

Coppola, G.

G. Coppola, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[Crossref]

Cronauer, C.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic–organic hybrid materials for application in optical devices,” Thin Solid Films 442(1-2), 194–200 (2003).
[Crossref]

Cui, Z.

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

d’Alessandro, A.

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12(19), 3598–3610 (2012).
[Crossref] [PubMed]

Dabek, A.

M. Popall, A. Dabek, M. E. Robertsson, S. Valizadeh, O. J. Hagel, R. Buestrich, R. Nagel, L. Cergel, D. Lambert, and M. Schaub, “ORMOCER®S – Inorganic-organic hybrid materials for e/o-interconnection-technology,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 354(1), 123–142 (2000).
[Crossref]

Dahmouche, K.

D. C. Oliveira, A. G. Macedo, N. J. O. Silva, C. Molina, R. A. S. Ferreira, P. S. André, K. Dahmouche, V. D. Z. Bermudez, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Photopatternable di-ureasil−zirconium oxocluster organic−inorganic hybrids as cost effective integrated optical substrates,” Chem. Mater. 20(11), 3696–3705 (2008).
[Crossref]

Dai, D.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Dannberg, P.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic–organic hybrid materials for application in optical devices,” Thin Solid Films 442(1-2), 194–200 (2003).
[Crossref]

de Zea Bermudez, V.

C. Molina, P. J. Moreira, R. R. Gonçalves, R. A. Sá Ferreira, Y. Messaddeq, S. J. L. Ribeiro, O. Soppera, A. P. Leite, P. V. S. Marques, V. de Zea Bermudez, and L. D. Carlos, “Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties,” J. Mater. Chem. 15(35-36), 3937 (2005).
[Crossref]

S. M. Gomes Correia, V. de Zea Bermudez, M. M. Silva, S. Barros, R. A. Sá Ferreira, L. D. Carlos, A. P. Passos de Almeida, and M. J. Smith, “Morphological and conductivity studies of di-ureasil xerogels containing lithium triflate,” Electrochim. Acta 47(15), 2421–2428 (2002).
[Crossref]

Dereux, A.

Domann, G.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic–organic hybrid materials for application in optical devices,” Thin Solid Films 442(1-2), 194–200 (2003).
[Crossref]

Duffy, B.

P. C. R. Varma, J. Colreavy, J. Cassidy, M. Oubaha, B. Duffy, and C. McDonagh, “Effect of organic chelates on the performance of hybrid sol–gel coated AA 2024-T3 aluminium alloys,” Prog. Org. Coat. 66(4), 406–411 (2009).
[Crossref]

Essiambre, R. J.

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

Fan, J.

J. Chen, T. Zhang, J. Zhu, X. Zhang, J. Zhou, J. Fan, and G. Hu, “Low-loss planar optical waveguides fabricated from polycarbonate,” Polym. Eng. Sci. 49(10), 2015–2019 (2009).
[Crossref]

Fernandes, V. R.

Ferreira, R. A. S.

R. A. S. Ferreira, C. D. S. Brites, C. M. S. Vicente, P. P. Lima, A. R. N. Bastos, P. G. Marques, M. Hiltunen, L. D. Carlos, and P. S. André, “Photonic-on-a-chip: a thermal actuated Mach-Zehnder interferometer and a molecular thermometer based on a single di-ureasil organic-inorganic hybrid,” Laser Photon. Rev. 7(6), 1027–1035 (2013).
[Crossref]

V. R. Fernandes, C. M. S. Vicente, E. Pecoraro, D. Karpinsky, A. L. Kholkin, N. Wada, P. S. Andre, and R. A. S. Ferreira, “Determination of refractive index contrast and surface contraction in waveguide channels using multiobjective genetic algorithm applied to spectroscopic ellipsometry,” J. Lightwave Technol. 29(19), 2971–2978 (2011).
[Crossref]

R. A. S. Ferreira, P. S. André, and L. D. Carlos, “Organic–inorganic hybrid materials towards passive and active architectures for the next generation of optical networks,” Opt. Mater. (Amst) 32(11), 1397–1409 (2010).
[Crossref]

D. C. Oliveira, A. G. Macedo, N. J. O. Silva, C. Molina, R. A. S. Ferreira, P. S. André, K. Dahmouche, V. D. Z. Bermudez, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Photopatternable di-ureasil−zirconium oxocluster organic−inorganic hybrids as cost effective integrated optical substrates,” Chem. Mater. 20(11), 3696–3705 (2008).
[Crossref]

Fröhlich, L.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic–organic hybrid materials for application in optical devices,” Thin Solid Films 442(1-2), 194–200 (2003).
[Crossref]

Gao, S.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

Goel, S.

Golojuch, G.

G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, and W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008).
[Crossref]

Gomes Correia, S. M.

S. M. Gomes Correia, V. de Zea Bermudez, M. M. Silva, S. Barros, R. A. Sá Ferreira, L. D. Carlos, A. P. Passos de Almeida, and M. J. Smith, “Morphological and conductivity studies of di-ureasil xerogels containing lithium triflate,” Electrochim. Acta 47(15), 2421–2428 (2002).
[Crossref]

Gonçalves, R. R.

C. Molina, P. J. Moreira, R. R. Gonçalves, R. A. Sá Ferreira, Y. Messaddeq, S. J. L. Ribeiro, O. Soppera, A. P. Leite, P. V. S. Marques, V. de Zea Bermudez, and L. D. Carlos, “Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties,” J. Mater. Chem. 15(35-36), 3937 (2005).
[Crossref]

Gosciniak, J.

Hagel, O. J.

M. Popall, A. Dabek, M. E. Robertsson, S. Valizadeh, O. J. Hagel, R. Buestrich, R. Nagel, L. Cergel, D. Lambert, and M. Schaub, “ORMOCER®S – Inorganic-organic hybrid materials for e/o-interconnection-technology,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 354(1), 123–142 (2000).
[Crossref]

Han, T.

Hayashida, S.

He, S.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

Hiltunen, M.

R. A. S. Ferreira, C. D. S. Brites, C. M. S. Vicente, P. P. Lima, A. R. N. Bastos, P. G. Marques, M. Hiltunen, L. D. Carlos, and P. S. André, “Photonic-on-a-chip: a thermal actuated Mach-Zehnder interferometer and a molecular thermometer based on a single di-ureasil organic-inorganic hybrid,” Laser Photon. Rev. 7(6), 1027–1035 (2013).
[Crossref]

Hollenbach, U.

G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, and W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008).
[Crossref]

Hossain, M. F.

Houbertz, R.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic–organic hybrid materials for application in optical devices,” Thin Solid Films 442(1-2), 194–200 (2003).
[Crossref]

Hu, G.

J. Chen, T. Zhang, J. Zhu, X. Zhang, J. Zhou, J. Fan, and G. Hu, “Low-loss planar optical waveguides fabricated from polycarbonate,” Polym. Eng. Sci. 49(10), 2015–2019 (2009).
[Crossref]

Huang, C. C.

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81(27), 5243 (2002).
[Crossref]

Ibrahim, M. H.

M. H. Ibrahim, A. S. Abdullah, A. Nawabjan, N. M. Kassim, A. B. Mohammad, and A. S. M. Supaat, “A thermo-optic multimode interference switch structure based on vinyltriethoxysilane (VTES) hybrid organic–inorganic sol–gel,” Opt. Int. J. Light Electron Opt. 124(13), 1532–1535 (2013).
[Crossref]

Idler, W.

E. Lach and W. Idler, “Modulation formats for 100G and beyond,” Opt. Fiber Technol. 17(5), 377–386 (2011).
[Crossref]

Imamura, S.

Innocenzi, P.

B. Lebeau and P. Innocenzi, “Hybrid materials for optics and photonics,” Chem. Soc. Rev. 40(2), 886–906 (2011).
[Crossref] [PubMed]

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Jian, X.

H. Zhang, J. Wang, L. Li, Y. Song, M. Zhao, and X. Jian, “Synthesis of liquid polysilisiquioxane resins and properties of cured films,” Thin Solid Films 517(2), 857–862 (2008).
[Crossref]

Jinguji, K.

M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Lightwave Technol. 12(4), 625–633 (1994).
[Crossref]

Karpinsky, D.

Kassim, N. M.

M. H. Ibrahim, A. S. Abdullah, A. Nawabjan, N. M. Kassim, A. B. Mohammad, and A. S. M. Supaat, “A thermo-optic multimode interference switch structure based on vinyltriethoxysilane (VTES) hybrid organic–inorganic sol–gel,” Opt. Int. J. Light Electron Opt. 124(13), 1532–1535 (2013).
[Crossref]

Kawachi, M.

M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Lightwave Technol. 12(4), 625–633 (1994).
[Crossref]

Kholkin, A. L.

Kim, J. W.

Kim, W. S.

A. Moujoud, W. S. Kim, B. S. Bae, and S. Y. Shin, “Thermally stable optical characteristics of sol-gel hybrid material films,” Appl. Phys. Lett. 88(10), 101916 (2006).
[Crossref]

Kocabas, A.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96(12), 7147 (2004).
[Crossref]

Kocabas, C.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96(12), 7147 (2004).
[Crossref]

Kriezis, E. E.

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12(19), 3598–3610 (2012).
[Crossref] [PubMed]

Kurihara, T.

Lach, E.

E. Lach and W. Idler, “Modulation formats for 100G and beyond,” Opt. Fiber Technol. 17(5), 377–386 (2011).
[Crossref]

Lambert, D.

M. Popall, A. Dabek, M. E. Robertsson, S. Valizadeh, O. J. Hagel, R. Buestrich, R. Nagel, L. Cergel, D. Lambert, and M. Schaub, “ORMOCER®S – Inorganic-organic hybrid materials for e/o-interconnection-technology,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 354(1), 123–142 (2000).
[Crossref]

Lebeau, B.

B. Lebeau and P. Innocenzi, “Hybrid materials for optics and photonics,” Chem. Soc. Rev. 40(2), 886–906 (2011).
[Crossref] [PubMed]

Leite, A. P.

C. Molina, P. J. Moreira, R. R. Gonçalves, R. A. Sá Ferreira, Y. Messaddeq, S. J. L. Ribeiro, O. Soppera, A. P. Leite, P. V. S. Marques, V. de Zea Bermudez, and L. D. Carlos, “Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties,” J. Mater. Chem. 15(35-36), 3937 (2005).
[Crossref]

Li, D.

X. Wang, L. Xu, D. Li, L. Liu, and W. Wang, “Thermo-optic properties of sol-gel-fabricated organic–inorganic hybrid waveguides,” J. Appl. Phys. 94(6), 4228 (2003).
[Crossref]

Li, L.

H. Zhang, J. Wang, L. Li, Y. Song, M. Zhao, and X. Jian, “Synthesis of liquid polysilisiquioxane resins and properties of cured films,” Thin Solid Films 517(2), 857–862 (2008).
[Crossref]

Lima, P. P.

R. A. S. Ferreira, C. D. S. Brites, C. M. S. Vicente, P. P. Lima, A. R. N. Bastos, P. G. Marques, M. Hiltunen, L. D. Carlos, and P. S. André, “Photonic-on-a-chip: a thermal actuated Mach-Zehnder interferometer and a molecular thermometer based on a single di-ureasil organic-inorganic hybrid,” Laser Photon. Rev. 7(6), 1027–1035 (2013).
[Crossref]

Lin, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[Crossref]

Liu, K.

K. Liu, J. Shi, and X. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106 (2009).
[Crossref]

Liu, L.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

X. Wang, L. Xu, D. Li, L. Liu, and W. Wang, “Thermo-optic properties of sol-gel-fabricated organic–inorganic hybrid waveguides,” J. Appl. Phys. 94(6), 4228 (2003).
[Crossref]

Luther-Davies, B.

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Macedo, A. G.

D. C. Oliveira, A. G. Macedo, N. J. O. Silva, C. Molina, R. A. S. Ferreira, P. S. André, K. Dahmouche, V. D. Z. Bermudez, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Photopatternable di-ureasil−zirconium oxocluster organic−inorganic hybrids as cost effective integrated optical substrates,” Chem. Mater. 20(11), 3696–3705 (2008).
[Crossref]

MacHarrie, R. A.

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81(27), 5243 (2002).
[Crossref]

Madden, S.

Maker, A. J.

Mappes, T.

G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, and W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008).
[Crossref]

Markey, L.

Marques, P. G.

R. A. S. Ferreira, C. D. S. Brites, C. M. S. Vicente, P. P. Lima, A. R. N. Bastos, P. G. Marques, M. Hiltunen, L. D. Carlos, and P. S. André, “Photonic-on-a-chip: a thermal actuated Mach-Zehnder interferometer and a molecular thermometer based on a single di-ureasil organic-inorganic hybrid,” Laser Photon. Rev. 7(6), 1027–1035 (2013).
[Crossref]

Marques, P. V. S.

C. Molina, P. J. Moreira, R. R. Gonçalves, R. A. Sá Ferreira, Y. Messaddeq, S. J. L. Ribeiro, O. Soppera, A. P. Leite, P. V. S. Marques, V. de Zea Bermudez, and L. D. Carlos, “Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties,” J. Mater. Chem. 15(35-36), 3937 (2005).
[Crossref]

Martin, H.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic–organic hybrid materials for application in optical devices,” Thin Solid Films 442(1-2), 194–200 (2003).
[Crossref]

McDonagh, C.

P. C. R. Varma, J. Colreavy, J. Cassidy, M. Oubaha, B. Duffy, and C. McDonagh, “Effect of organic chelates on the performance of hybrid sol–gel coated AA 2024-T3 aluminium alloys,” Prog. Org. Coat. 66(4), 406–411 (2009).
[Crossref]

Messaddeq, Y.

D. C. Oliveira, A. G. Macedo, N. J. O. Silva, C. Molina, R. A. S. Ferreira, P. S. André, K. Dahmouche, V. D. Z. Bermudez, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Photopatternable di-ureasil−zirconium oxocluster organic−inorganic hybrids as cost effective integrated optical substrates,” Chem. Mater. 20(11), 3696–3705 (2008).
[Crossref]

C. Molina, P. J. Moreira, R. R. Gonçalves, R. A. Sá Ferreira, Y. Messaddeq, S. J. L. Ribeiro, O. Soppera, A. P. Leite, P. V. S. Marques, V. de Zea Bermudez, and L. D. Carlos, “Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties,” J. Mater. Chem. 15(35-36), 3937 (2005).
[Crossref]

Mohammad, A. B.

M. H. Ibrahim, A. S. Abdullah, A. Nawabjan, N. M. Kassim, A. B. Mohammad, and A. S. M. Supaat, “A thermo-optic multimode interference switch structure based on vinyltriethoxysilane (VTES) hybrid organic–inorganic sol–gel,” Opt. Int. J. Light Electron Opt. 124(13), 1532–1535 (2013).
[Crossref]

Mohr, J.

G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, and W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008).
[Crossref]

Molina, C.

D. C. Oliveira, A. G. Macedo, N. J. O. Silva, C. Molina, R. A. S. Ferreira, P. S. André, K. Dahmouche, V. D. Z. Bermudez, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Photopatternable di-ureasil−zirconium oxocluster organic−inorganic hybrids as cost effective integrated optical substrates,” Chem. Mater. 20(11), 3696–3705 (2008).
[Crossref]

C. Molina, P. J. Moreira, R. R. Gonçalves, R. A. Sá Ferreira, Y. Messaddeq, S. J. L. Ribeiro, O. Soppera, A. P. Leite, P. V. S. Marques, V. de Zea Bermudez, and L. D. Carlos, “Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties,” J. Mater. Chem. 15(35-36), 3937 (2005).
[Crossref]

Moreira, P. J.

C. Molina, P. J. Moreira, R. R. Gonçalves, R. A. Sá Ferreira, Y. Messaddeq, S. J. L. Ribeiro, O. Soppera, A. P. Leite, P. V. S. Marques, V. de Zea Bermudez, and L. D. Carlos, “Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties,” J. Mater. Chem. 15(35-36), 3937 (2005).
[Crossref]

Moujoud, A.

A. Moujoud, W. S. Kim, B. S. Bae, and S. Y. Shin, “Thermally stable optical characteristics of sol-gel hybrid material films,” Appl. Phys. Lett. 88(10), 101916 (2006).
[Crossref]

Nagel, R.

M. Popall, A. Dabek, M. E. Robertsson, S. Valizadeh, O. J. Hagel, R. Buestrich, R. Nagel, L. Cergel, D. Lambert, and M. Schaub, “ORMOCER®S – Inorganic-organic hybrid materials for e/o-interconnection-technology,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 354(1), 123–142 (2000).
[Crossref]

Nawabjan, A.

M. H. Ibrahim, A. S. Abdullah, A. Nawabjan, N. M. Kassim, A. B. Mohammad, and A. S. M. Supaat, “A thermo-optic multimode interference switch structure based on vinyltriethoxysilane (VTES) hybrid organic–inorganic sol–gel,” Opt. Int. J. Light Electron Opt. 124(13), 1532–1535 (2013).
[Crossref]

Naylor, D. L.

Oh, M. C.

Okuno, M.

M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Lightwave Technol. 12(4), 625–633 (1994).
[Crossref]

Oliveira, D. C.

D. C. Oliveira, A. G. Macedo, N. J. O. Silva, C. Molina, R. A. S. Ferreira, P. S. André, K. Dahmouche, V. D. Z. Bermudez, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Photopatternable di-ureasil−zirconium oxocluster organic−inorganic hybrids as cost effective integrated optical substrates,” Chem. Mater. 20(11), 3696–3705 (2008).
[Crossref]

Ooba, N.

Oubaha, M.

P. C. R. Varma, J. Colreavy, J. Cassidy, M. Oubaha, B. Duffy, and C. McDonagh, “Effect of organic chelates on the performance of hybrid sol–gel coated AA 2024-T3 aluminium alloys,” Prog. Org. Coat. 66(4), 406–411 (2009).
[Crossref]

Park, J.-U.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic–organic hybrid materials for application in optical devices,” Thin Solid Films 442(1-2), 194–200 (2003).
[Crossref]

Park, S. H.

Passos de Almeida, A. P.

S. M. Gomes Correia, V. de Zea Bermudez, M. M. Silva, S. Barros, R. A. Sá Ferreira, L. D. Carlos, A. P. Passos de Almeida, and M. J. Smith, “Morphological and conductivity studies of di-ureasil xerogels containing lithium triflate,” Electrochim. Acta 47(15), 2421–2428 (2002).
[Crossref]

Patel, J. S.

Pecoraro, E.

Pincenti, J. C.

Pindak, R.

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81(27), 5243 (2002).
[Crossref]

Popall, M.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic–organic hybrid materials for application in optical devices,” Thin Solid Films 442(1-2), 194–200 (2003).
[Crossref]

M. Popall, A. Dabek, M. E. Robertsson, S. Valizadeh, O. J. Hagel, R. Buestrich, R. Nagel, L. Cergel, D. Lambert, and M. Schaub, “ORMOCER®S – Inorganic-organic hybrid materials for e/o-interconnection-technology,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 354(1), 123–142 (2000).
[Crossref]

Pun, E. Y. B.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys., A Mater. Sci. Process. 80(3), 621–626 (2005).
[Crossref]

Ribeiro, S. J. L.

D. C. Oliveira, A. G. Macedo, N. J. O. Silva, C. Molina, R. A. S. Ferreira, P. S. André, K. Dahmouche, V. D. Z. Bermudez, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Photopatternable di-ureasil−zirconium oxocluster organic−inorganic hybrids as cost effective integrated optical substrates,” Chem. Mater. 20(11), 3696–3705 (2008).
[Crossref]

C. Molina, P. J. Moreira, R. R. Gonçalves, R. A. Sá Ferreira, Y. Messaddeq, S. J. L. Ribeiro, O. Soppera, A. P. Leite, P. V. S. Marques, V. de Zea Bermudez, and L. D. Carlos, “Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties,” J. Mater. Chem. 15(35-36), 3937 (2005).
[Crossref]

Robertsson, M. E.

M. Popall, A. Dabek, M. E. Robertsson, S. Valizadeh, O. J. Hagel, R. Buestrich, R. Nagel, L. Cergel, D. Lambert, and M. Schaub, “ORMOCER®S – Inorganic-organic hybrid materials for e/o-interconnection-technology,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 354(1), 123–142 (2000).
[Crossref]

Rogers, J. A.

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81(27), 5243 (2002).
[Crossref]

Rose, B. A.

Sá Ferreira, R. A.

C. Molina, P. J. Moreira, R. R. Gonçalves, R. A. Sá Ferreira, Y. Messaddeq, S. J. L. Ribeiro, O. Soppera, A. P. Leite, P. V. S. Marques, V. de Zea Bermudez, and L. D. Carlos, “Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties,” J. Mater. Chem. 15(35-36), 3937 (2005).
[Crossref]

S. M. Gomes Correia, V. de Zea Bermudez, M. M. Silva, S. Barros, R. A. Sá Ferreira, L. D. Carlos, A. P. Passos de Almeida, and M. J. Smith, “Morphological and conductivity studies of di-ureasil xerogels containing lithium triflate,” Electrochim. Acta 47(15), 2421–2428 (2002).
[Crossref]

Schaub, M.

M. Popall, A. Dabek, M. E. Robertsson, S. Valizadeh, O. J. Hagel, R. Buestrich, R. Nagel, L. Cergel, D. Lambert, and M. Schaub, “ORMOCER®S – Inorganic-organic hybrid materials for e/o-interconnection-technology,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 354(1), 123–142 (2000).
[Crossref]

Schmitt, A.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic–organic hybrid materials for application in optical devices,” Thin Solid Films 442(1-2), 194–200 (2003).
[Crossref]

Shi, J.

K. Liu, J. Shi, and X. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106 (2009).
[Crossref]

Shi, L.

L. Shi, L. Tian, and X. Chen, “Electro-optic chirality control in MgO:PPLN,” J. Appl. Phys. 112(7), 073103 (2012).
[Crossref]

Shi, Z.

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

Shin, S. Y.

A. Moujoud, W. S. Kim, B. S. Bae, and S. Y. Shin, “Thermally stable optical characteristics of sol-gel hybrid material films,” Appl. Phys. Lett. 88(10), 101916 (2006).
[Crossref]

Silva, M. M.

S. M. Gomes Correia, V. de Zea Bermudez, M. M. Silva, S. Barros, R. A. Sá Ferreira, L. D. Carlos, A. P. Passos de Almeida, and M. J. Smith, “Morphological and conductivity studies of di-ureasil xerogels containing lithium triflate,” Electrochim. Acta 47(15), 2421–2428 (2002).
[Crossref]

Silva, N. J. O.

D. C. Oliveira, A. G. Macedo, N. J. O. Silva, C. Molina, R. A. S. Ferreira, P. S. André, K. Dahmouche, V. D. Z. Bermudez, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Photopatternable di-ureasil−zirconium oxocluster organic−inorganic hybrids as cost effective integrated optical substrates,” Chem. Mater. 20(11), 3696–3705 (2008).
[Crossref]

Smith, M. J.

S. M. Gomes Correia, V. de Zea Bermudez, M. M. Silva, S. Barros, R. A. Sá Ferreira, L. D. Carlos, A. P. Passos de Almeida, and M. J. Smith, “Morphological and conductivity studies of di-ureasil xerogels containing lithium triflate,” Electrochim. Acta 47(15), 2421–2428 (2002).
[Crossref]

Song, Y.

H. Zhang, J. Wang, L. Li, Y. Song, M. Zhao, and X. Jian, “Synthesis of liquid polysilisiquioxane resins and properties of cured films,” Thin Solid Films 517(2), 857–862 (2008).
[Crossref]

Soppera, O.

C. Molina, P. J. Moreira, R. R. Gonçalves, R. A. Sá Ferreira, Y. Messaddeq, S. J. L. Ribeiro, O. Soppera, A. P. Leite, P. V. S. Marques, V. de Zea Bermudez, and L. D. Carlos, “Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties,” J. Mater. Chem. 15(35-36), 3937 (2005).
[Crossref]

Streppel, U.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic–organic hybrid materials for application in optical devices,” Thin Solid Films 442(1-2), 194–200 (2003).
[Crossref]

Sugita, A.

M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Lightwave Technol. 12(4), 625–633 (1994).
[Crossref]

Suh, S. W.

Sun, F.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[Crossref]

Sun, X.

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

Supaat, A. S. M.

M. H. Ibrahim, A. S. Abdullah, A. Nawabjan, N. M. Kassim, A. B. Mohammad, and A. S. M. Supaat, “A thermo-optic multimode interference switch structure based on vinyltriethoxysilane (VTES) hybrid organic–inorganic sol–gel,” Opt. Int. J. Light Electron Opt. 124(13), 1532–1535 (2013).
[Crossref]

Tian, L.

L. Shi, L. Tian, and X. Chen, “Electro-optic chirality control in MgO:PPLN,” J. Appl. Phys. 112(7), 073103 (2012).
[Crossref]

Tkach, R. W.

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

Torge, R.

Tung, K. K.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys., A Mater. Sci. Process. 80(3), 621–626 (2005).
[Crossref]

Uddin, M. A.

Ulrich, R.

Urbanczyk, A.

G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, and W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008).
[Crossref]

Urbanczyk, W.

G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, and W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008).
[Crossref]

Valizadeh, S.

M. Popall, A. Dabek, M. E. Robertsson, S. Valizadeh, O. J. Hagel, R. Buestrich, R. Nagel, L. Cergel, D. Lambert, and M. Schaub, “ORMOCER®S – Inorganic-organic hybrid materials for e/o-interconnection-technology,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 354(1), 123–142 (2000).
[Crossref]

Varma, P. C. R.

P. C. R. Varma, J. Colreavy, J. Cassidy, M. Oubaha, B. Duffy, and C. McDonagh, “Effect of organic chelates on the performance of hybrid sol–gel coated AA 2024-T3 aluminium alloys,” Prog. Org. Coat. 66(4), 406–411 (2009).
[Crossref]

Vicente, C. M. S.

R. A. S. Ferreira, C. D. S. Brites, C. M. S. Vicente, P. P. Lima, A. R. N. Bastos, P. G. Marques, M. Hiltunen, L. D. Carlos, and P. S. André, “Photonic-on-a-chip: a thermal actuated Mach-Zehnder interferometer and a molecular thermometer based on a single di-ureasil organic-inorganic hybrid,” Laser Photon. Rev. 7(6), 1027–1035 (2013).
[Crossref]

V. R. Fernandes, C. M. S. Vicente, E. Pecoraro, D. Karpinsky, A. L. Kholkin, N. Wada, P. S. Andre, and R. A. S. Ferreira, “Determination of refractive index contrast and surface contraction in waveguide channels using multiobjective genetic algorithm applied to spectroscopic ellipsometry,” J. Lightwave Technol. 29(19), 2971–2978 (2011).
[Crossref]

Wächter, C.

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic–organic hybrid materials for application in optical devices,” Thin Solid Films 442(1-2), 194–200 (2003).
[Crossref]

Wada, N.

Wang, F.

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

Wang, H.

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

Wang, J.

H. Zhang, J. Wang, L. Li, Y. Song, M. Zhao, and X. Jian, “Synthesis of liquid polysilisiquioxane resins and properties of cured films,” Thin Solid Films 517(2), 857–862 (2008).
[Crossref]

Wang, W.

X. Wang, L. Xu, D. Li, L. Liu, and W. Wang, “Thermo-optic properties of sol-gel-fabricated organic–inorganic hybrid waveguides,” J. Appl. Phys. 94(6), 4228 (2003).
[Crossref]

Wang, X.

X. Wang, L. Xu, D. Li, L. Liu, and W. Wang, “Thermo-optic properties of sol-gel-fabricated organic–inorganic hybrid waveguides,” J. Appl. Phys. 94(6), 4228 (2003).
[Crossref]

Watanabe, T.

Wong, W. H.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys., A Mater. Sci. Process. 80(3), 621–626 (2005).
[Crossref]

Xu, D. X.

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

Xu, L.

X. Wang, L. Xu, D. Li, L. Liu, and W. Wang, “Thermo-optic properties of sol-gel-fabricated organic–inorganic hybrid waveguides,” J. Appl. Phys. 94(6), 4228 (2003).
[Crossref]

Zhang, D.

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

Zhang, F.

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

Zhang, H.

H. Zhang, J. Wang, L. Li, Y. Song, M. Zhao, and X. Jian, “Synthesis of liquid polysilisiquioxane resins and properties of cured films,” Thin Solid Films 517(2), 857–862 (2008).
[Crossref]

Zhang, M.

Zhang, T.

J. Chen, T. Zhang, J. Zhu, X. Zhang, J. Zhou, J. Fan, and G. Hu, “Low-loss planar optical waveguides fabricated from polycarbonate,” Polym. Eng. Sci. 49(10), 2015–2019 (2009).
[Crossref]

Zhang, X.

J. Chen, T. Zhang, J. Zhu, X. Zhang, J. Zhou, J. Fan, and G. Hu, “Low-loss planar optical waveguides fabricated from polycarbonate,” Polym. Eng. Sci. 49(10), 2015–2019 (2009).
[Crossref]

Zhang, Z.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[Crossref]

Zhao, M.

H. Zhang, J. Wang, L. Li, Y. Song, M. Zhao, and X. Jian, “Synthesis of liquid polysilisiquioxane resins and properties of cured films,” Thin Solid Films 517(2), 857–862 (2008).
[Crossref]

Zhao, P.

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[Crossref]

Zhou, J.

J. Chen, T. Zhang, J. Zhu, X. Zhang, J. Zhou, J. Fan, and G. Hu, “Low-loss planar optical waveguides fabricated from polycarbonate,” Polym. Eng. Sci. 49(10), 2015–2019 (2009).
[Crossref]

Zhu, J.

J. Chen, T. Zhang, J. Zhu, X. Zhang, J. Zhou, J. Fan, and G. Hu, “Low-loss planar optical waveguides fabricated from polycarbonate,” Polym. Eng. Sci. 49(10), 2015–2019 (2009).
[Crossref]

Zhuang, Z.

Zografopoulos, D. C.

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12(19), 3598–3610 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

A. Moujoud, W. S. Kim, B. S. Bae, and S. Y. Shin, “Thermally stable optical characteristics of sol-gel hybrid material films,” Appl. Phys. Lett. 88(10), 101916 (2006).
[Crossref]

K. Liu, J. Shi, and X. Chen, “Linear polarization-state generator with high precision in periodically poled lithium niobate,” Appl. Phys. Lett. 94(10), 101106 (2009).
[Crossref]

B. R. Acharya, K. W. Baldwin, R. A. MacHarrie, J. A. Rogers, C. C. Huang, and R. Pindak, “In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time,” Appl. Phys. Lett. 81(27), 5243 (2002).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys., A Mater. Sci. Process. 80(3), 621–626 (2005).
[Crossref]

Chem. Mater. (1)

D. C. Oliveira, A. G. Macedo, N. J. O. Silva, C. Molina, R. A. S. Ferreira, P. S. André, K. Dahmouche, V. D. Z. Bermudez, Y. Messaddeq, S. J. L. Ribeiro, and L. D. Carlos, “Photopatternable di-ureasil−zirconium oxocluster organic−inorganic hybrids as cost effective integrated optical substrates,” Chem. Mater. 20(11), 3696–3705 (2008).
[Crossref]

Chem. Soc. Rev. (1)

B. Lebeau and P. Innocenzi, “Hybrid materials for optics and photonics,” Chem. Soc. Rev. 40(2), 886–906 (2011).
[Crossref] [PubMed]

Electrochim. Acta (1)

S. M. Gomes Correia, V. de Zea Bermudez, M. M. Silva, S. Barros, R. A. Sá Ferreira, L. D. Carlos, A. P. Passos de Almeida, and M. J. Smith, “Morphological and conductivity studies of di-ureasil xerogels containing lithium triflate,” Electrochim. Acta 47(15), 2421–2428 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Chen, X. Sun, F. Wang, F. Zhang, H. Wang, Z. Shi, Z. Cui, and D. Zhang, “Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials,” IEEE J. Quantum Electron. 48(1), 61–66 (2012).
[Crossref]

J. Appl. Phys. (3)

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96(12), 7147 (2004).
[Crossref]

X. Wang, L. Xu, D. Li, L. Liu, and W. Wang, “Thermo-optic properties of sol-gel-fabricated organic–inorganic hybrid waveguides,” J. Appl. Phys. 94(6), 4228 (2003).
[Crossref]

L. Shi, L. Tian, and X. Chen, “Electro-optic chirality control in MgO:PPLN,” J. Appl. Phys. 112(7), 073103 (2012).
[Crossref]

J. Lightwave Technol. (3)

J. Mater. Chem. (1)

C. Molina, P. J. Moreira, R. R. Gonçalves, R. A. Sá Ferreira, Y. Messaddeq, S. J. L. Ribeiro, O. Soppera, A. P. Leite, P. V. S. Marques, V. de Zea Bermudez, and L. D. Carlos, “Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties,” J. Mater. Chem. 15(35-36), 3937 (2005).
[Crossref]

Lab Chip (1)

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12(19), 3598–3610 (2012).
[Crossref] [PubMed]

Laser Photon. Rev. (2)

D. Dai, L. Liu, S. Gao, D. X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7(3), 303–328 (2013).
[Crossref]

R. A. S. Ferreira, C. D. S. Brites, C. M. S. Vicente, P. P. Lima, A. R. N. Bastos, P. G. Marques, M. Hiltunen, L. D. Carlos, and P. S. André, “Photonic-on-a-chip: a thermal actuated Mach-Zehnder interferometer and a molecular thermometer based on a single di-ureasil organic-inorganic hybrid,” Laser Photon. Rev. 7(6), 1027–1035 (2013).
[Crossref]

Meas. Sci. Technol. (1)

G. Golojuch, U. Hollenbach, T. Mappes, J. Mohr, A. Urbanczyk, and W. Urbanczyk, “Investigation of birefringence in PMMA channel waveguides inscribed with DUV radiation,” Meas. Sci. Technol. 19(2), 025304 (2008).
[Crossref]

Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. (1)

M. Popall, A. Dabek, M. E. Robertsson, S. Valizadeh, O. J. Hagel, R. Buestrich, R. Nagel, L. Cergel, D. Lambert, and M. Schaub, “ORMOCER®S – Inorganic-organic hybrid materials for e/o-interconnection-technology,” Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 354(1), 123–142 (2000).
[Crossref]

Opt. Eng. (1)

G. Coppola, “Advance in thermo-optical switches: principles, materials, design, and device structure,” Opt. Eng. 50(7), 071112 (2011).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

E. Lach and W. Idler, “Modulation formats for 100G and beyond,” Opt. Fiber Technol. 17(5), 377–386 (2011).
[Crossref]

Opt. Int. J. Light Electron Opt. (1)

M. H. Ibrahim, A. S. Abdullah, A. Nawabjan, N. M. Kassim, A. B. Mohammad, and A. S. M. Supaat, “A thermo-optic multimode interference switch structure based on vinyltriethoxysilane (VTES) hybrid organic–inorganic sol–gel,” Opt. Int. J. Light Electron Opt. 124(13), 1532–1535 (2013).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (Amst) (1)

R. A. S. Ferreira, P. S. André, and L. D. Carlos, “Organic–inorganic hybrid materials towards passive and active architectures for the next generation of optical networks,” Opt. Mater. (Amst) 32(11), 1397–1409 (2010).
[Crossref]

Opt. Mater. Express (1)

Polym. Eng. Sci. (1)

J. Chen, T. Zhang, J. Zhu, X. Zhang, J. Zhou, J. Fan, and G. Hu, “Low-loss planar optical waveguides fabricated from polycarbonate,” Polym. Eng. Sci. 49(10), 2015–2019 (2009).
[Crossref]

Polymer (Guildf.) (1)

Z. Zhang, P. Zhao, P. Lin, and F. Sun, “Thermo-optic coefficients of polymers for optical waveguide applications,” Polymer (Guildf.) 47(14), 4893–4896 (2006).
[Crossref]

Proc. IEEE (1)

R. J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

Prog. Org. Coat. (1)

P. C. R. Varma, J. Colreavy, J. Cassidy, M. Oubaha, B. Duffy, and C. McDonagh, “Effect of organic chelates on the performance of hybrid sol–gel coated AA 2024-T3 aluminium alloys,” Prog. Org. Coat. 66(4), 406–411 (2009).
[Crossref]

Thin Solid Films (2)

H. Zhang, J. Wang, L. Li, Y. Song, M. Zhao, and X. Jian, “Synthesis of liquid polysilisiquioxane resins and properties of cured films,” Thin Solid Films 517(2), 857–862 (2008).
[Crossref]

R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, J.-U. Park, L. Fröhlich, R. Buestrich, M. Popall, U. Streppel, P. Dannberg, C. Wächter, and A. Bräuer, “Inorganic–organic hybrid materials for application in optical devices,” Thin Solid Films 442(1-2), 194–200 (2003).
[Crossref]

Other (2)

T. S. El-Bawab, ed., “Optical Switching,” in (Springer US, 2006).

M. Bass, “Handbook of optics, devices measurements and properties,” in (Mcgraw-Hill, 1995), p. 12, Chap. 22.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A) AFM 2-D image from the surface of the patterned waveguide and B) average cross-sectional profile.

Fig. 2
Fig. 2

Scheme of the experimental set-up used for the measurement of A) the temperature on the waveguide and B) thermally induced variations of the state of polarization on the waveguide.

Fig. 3
Fig. 3

A) TGA curves (left axis) and corresponding derivative curves (right axis) of the dU600, dUZ20, dUZ40 and dUZ60 di-ureasils in the 25-800 °C (A) and 25-200 °C (B) temperature ranges.

Fig. 4
Fig. 4

Refractive index as function of temperature for TE (□) and TM (○) polarizations. The dashed lines correspond to the best linear fit (r2> 0.98).

Fig. 5
Fig. 5

A) Structure model used in the optical mode-simulation. Mode field profiles for B, D) TE and C, E) TM polarizations from B, C) simulation and D, E) experimental results.

Fig. 6
Fig. 6

Poincaré sphere representation of the evolution of the optical signal Stokes parameters S1 S2 and S3 for a temperature variation in the range 0-5 °C. 1) right circular and 2) linear horizontal represent the initial state of polarization.

Tables (1)

Tables Icon

Table 1 Thermo-optic Coefficients of Selected Polymers and Organic-inorganic Hybrids at 1550 nm. The Methodology Used to Estimate the Coefficients is Also Indicated.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M R =[ 1 0 0 0 0 cos 2 (2α)+ sin 2 (2α)cos(φ) cos( 2α )sin( 2α )(1cos(φ)) sin(2α)sin(φ) 0 cos(2α)sin(2α)(1cosφ) sin 2 (2α)+ cos 2 (2α)cos(φ) cos(2α)sin(φ) 0 sin(2α)sin(φ) cos(2α)sin(φ) cos(φ) ]
Δφ= 2π λ LΔ β 0

Metrics