Abstract

A new, hybrid time-domain and correlation-domain Brillouin analysis technique is proposed and demonstrated, providing a large number of high-resolution acquisition points. The method is based on dual-layer hierarchal encoding of both amplitude and phase. The pump and signal waves are co-modulated by a relatively short, high-rate binary phase sequence. The phase modulation introduces Brillouin interactions in a large number of discrete and localized correlation peaks along the fiber under test. In addition, the pump wave is also amplitude-modulated by a slower, carefully synthesized, long on-off-keying sequence. Brillouin interactions at the correlation peaks imprint weak replicas of the pump amplitude sequence on the intensity of the output signal wave. The Brillouin amplifications at individual correlation peaks are resolved by radar-like, matched-filter processing of the output signal, following a recently-proposed incoherent compression protocol. The method provides two significant advantages with respect to previous, pulse-gated correlation-domain analysis schemes, which involved a single pump pulse. First, compression of the extended pulse sequence enhances the measurement signal-to-noise ratio, which is equivalent to that of a large number of averages over repeating single-pulse acquisitions. The acquisition times are potentially much reduced, and the number of resolution points that may be practically interrogated increases accordingly. Second, the peak power level of the pump pulses may be lowered. Hence, the onset of phase pattern distortion due to self-phase modulation is deferred, and the measurement range can be increased. Using the proposed method, the acquisition of Brillouin gain spectra over a 2.2 km-long fiber with a spatial resolution of 2 cm is demonstrated experimentally. The entire set of 110,000 resolution points is interrogated using only 499 position scans per choice of frequency offset between pump and signal. A 5 cm-long hot-spot, located towards the output end of the pump wave, is properly recognized in the measurements.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis

David Elooz, Yair Antman, Nadav Levanon, and Avi Zadok
Opt. Express 22(6) 6453-6463 (2014)

High-resolution Brillouin optical correlation domain analysis with no spectral scanning

Eyal Preter, Dexin Ba, Yosef London, Orel Shlomi, Yair Antman, and Avi Zadok
Opt. Express 24(24) 27253-27267 (2016)

Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission

Raphael Cohen, Yosef London, Yair Antman, and Avi Zadok
Opt. Express 22(10) 12070-12078 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  2. A. Zadok, A. Eyal, and M. Tur, “Stimulated Brillouin scattering slow light in optical fibers [Invited],” Appl. Opt. 50(25), E38–E49 (2011).
    [Crossref]
  3. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
    [Crossref] [PubMed]
  4. T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonic Tech. L. 2(5), 352–354 (1990).
    [Crossref]
  5. M. Niklès, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21(10), 758–760 (1996).
    [Crossref] [PubMed]
  6. X. Bao and L. A. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
    [Crossref] [PubMed]
  7. F. Gyger, E. Rochat, S. Chin, M. Niklès, and L. Thévenaz, “Extending the sensing range of Brillouin optical time-domain analysis up to 325 km combining four optical repeaters,” Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 91576Q (2014).
  8. Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
    [Crossref] [PubMed]
  9. A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in 12th International Conference on Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3.
  10. Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
    [Crossref] [PubMed]
  11. S. M. Foaleng, M. Tur, J. C. Beugnot, and L. Thévenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol. 28(20), 2993–3003 (2010).
    [Crossref]
  12. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).
  13. Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
    [Crossref] [PubMed]
  14. Y. Antman, L. Yaron, T. Langer, M. Tur, N. Levanon, and A. Zadok, “Experimental demonstration of localized Brillouin gratings with low off-peak reflectivity established by perfect Golomb codes,” Opt. Lett. 38(22), 4701–4704 (2013).
    [Crossref] [PubMed]
  15. A. Zadok, Y. Antman, N. Primrov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
  16. D. Elooz, Y. Antman, N. Levanon, and A. Zadok, “High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis,” Opt. Express 22(6), 6453–6463 (2014).
    [Crossref] [PubMed]
  17. D. Elooz, Y. Antman, and A. Zadok, “Combined time-domain and correlation-domain Brillouin analysis with 1600 meters range and 2 centimeters resolution,” Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 91576O (2014).
  18. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
    [Crossref] [PubMed]
  19. R. Cohen, Y. London, Y. Antman, and A. Zadok, “Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission,” Opt. Express 22(10), 12070–12078 (2014).
    [Crossref] [PubMed]
  20. R. Cohen, Y. London, Y. Antman, and A. Zadok, “Few millimeter-resolution Brillouin optical correlation domain analysis using amplified-spontaneous-emission pump and signal waves,” Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 91576B (2014).
  21. O. Matsuoka, M. Kishi, and K. Hotate, “Brillouin optical correlation domain reflectometry with double frequency modulation and phase modulation,” Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 91576G (2014).
  22. W. Zou, Z. He, and K. Hotate, “Range elongation of distributed discrimination of strain and temperature in Brillouin optical correlation-domain analysis based on dual frequency modulations,” IEEE Sens. J. 14(1), 244–248 (2014).
    [Crossref]
  23. K. Hotate, H. Arai, and K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J Control, Measurement, and System Integration 1(4), 271–274 (2008).
    [Crossref]
  24. A. Denisov, M. A. Soto, and L. Thévenaz, “Time gated phase-correlation distributed Brillouin fiber sensor,” Proc. SPIE 8794, Fifth European Workshop on Optical Fibre Sensors, 87943I (2013).
  25. A. Denisov, M. Soto, and L. Thévenaz, 1’000’000 resolved points along a Brillouin distributed fibre sensor,” Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 9157D2 (2014).
  26. N. Levenon and E. Mozeson, Radar Signals (Wiley, 2004).
  27. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
    [Crossref] [PubMed]
  28. M. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, S. Chin, J. D. Ania-Castanon, P. Corredera, E. Rochat, M. Gonzalez-Herraez, and L. Thevenaz, “Extending the real remoteness of long-range Brillouin optical time-domain fiber analyzers,” J. Lightwave Technol. 32(1), 152–162 (2014).
    [Crossref]
  29. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
    [Crossref]
  30. M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar optical pulse coding for performance enhancement in BOTDA sensors,” Opt. Express 21(14), 16390–16397 (2013).
    [Crossref] [PubMed]
  31. M. A. Soto and L. Thévenaz, “Advanced pulse coding techniques for distributed optical fiber sensors,” in Frontiers in Optics 2013, I. Kang, D. Reitze, N. Alic, and D. Hagan, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper FW4I.3.
  32. S. Le Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE 8794, Fifth European Workshop on Optical Fibre Sensors, 879437 (2013).
    [Crossref]
  33. M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar pulse coding for enhanced performance in Brillouin distributed optical fiber sensors,” Proc. SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors, 84219Y (2012).
    [Crossref]
  34. N. Levanon, “Noncoherent pulse compression,” IEEE T. Aero. Elec. Sys. 42(2), 756–765 (2006).
    [Crossref]
  35. D. Kravitz, D. Grodensky, N. Levanon, and A. Zadok, “High-resolution low-sidelobe laser ranging based on incoherent pulse compression,” IEEE Photonic Tech. L. 24(23), 2119–2121 (2012).
    [Crossref]
  36. X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, and M. Gonzalez-Herraez, “100 km BOTDA temperature sensor with sub-meter resolution,” Proc. SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors, 842117 (2012).
  37. X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, and M. González-Herraez, “Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km,” Opt. Express 20(11), 12147–12154 (2012).
    [Crossref] [PubMed]
  38. M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express 20(7), 6860–6869 (2012).
    [Crossref] [PubMed]
  39. M. Taki, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Study of Raman amplification in DPP-BOTDA sensing employing simplex coding for sub-mtere scale spatial resolution over long fiber distances,” Meas. Sci. Technol. 24(9), 094018 (2013).
    [Crossref]
  40. Y. Antman, N. Levanon, and A. Zadok, “Low-noise delays from dynamic Brillouin gratings based on perfect Golomb coding of pump waves,” Opt. Lett. 37(24), 5259–5261 (2012).
    [Crossref] [PubMed]
  41. S. W. Golomb, “Two-valued sequences with perfect periodic autocorrelation,” IEEE T. Aero. Elec. Sys. 28(2), 383–386 (1992).
    [Crossref]
  42. N. Levanon, “Cross-correlation of long binary signals with longer mismatched filters,” IEE P-Radar Son. Nav. 152(6), 377–382 (2005).
  43. R. Ferguson, private communication, unpublished (2008).
  44. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
    [Crossref] [PubMed]
  45. D. Grodensky, D. Kravitz, N. Arbel, N. Levanon, and A. Zadok, “Incoherent pulse compression in laser range finder”, Proc. SPIE 9080. Laser Radar Technology and Applications XIX and Atmospheric Propagation XI, 90800M (2014).
  46. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]

2014 (5)

2013 (4)

2012 (8)

D. Kravitz, D. Grodensky, N. Levanon, and A. Zadok, “High-resolution low-sidelobe laser ranging based on incoherent pulse compression,” IEEE Photonic Tech. L. 24(23), 2119–2121 (2012).
[Crossref]

A. Zadok, Y. Antman, N. Primrov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express 20(7), 6860–6869 (2012).
[Crossref] [PubMed]

Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
[Crossref] [PubMed]

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
[Crossref] [PubMed]

Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
[Crossref] [PubMed]

X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, and M. González-Herraez, “Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km,” Opt. Express 20(11), 12147–12154 (2012).
[Crossref] [PubMed]

Y. Antman, N. Levanon, and A. Zadok, “Low-noise delays from dynamic Brillouin gratings based on perfect Golomb coding of pump waves,” Opt. Lett. 37(24), 5259–5261 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

S. M. Foaleng, M. Tur, J. C. Beugnot, and L. Thévenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol. 28(20), 2993–3003 (2010).
[Crossref]

2008 (2)

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[Crossref] [PubMed]

K. Hotate, H. Arai, and K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J Control, Measurement, and System Integration 1(4), 271–274 (2008).
[Crossref]

2006 (2)

2005 (1)

N. Levanon, “Cross-correlation of long binary signals with longer mismatched filters,” IEE P-Radar Son. Nav. 152(6), 377–382 (2005).

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

1996 (1)

1992 (1)

S. W. Golomb, “Two-valued sequences with perfect periodic autocorrelation,” IEEE T. Aero. Elec. Sys. 28(2), 383–386 (1992).
[Crossref]

1990 (2)

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[Crossref] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonic Tech. L. 2(5), 352–354 (1990).
[Crossref]

Angulo-Vinuesa, X.

Ania-Castanon, J. D.

Antman, Y.

Arai, H.

K. Hotate, H. Arai, and K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J Control, Measurement, and System Integration 1(4), 271–274 (2008).
[Crossref]

Arbel, N.

D. Grodensky, D. Kravitz, N. Arbel, N. Levanon, and A. Zadok, “Incoherent pulse compression in laser range finder”, Proc. SPIE 9080. Laser Radar Technology and Applications XIX and Atmospheric Propagation XI, 90800M (2014).

Bao, X.

Beugnot, J. C.

Bolognini, G.

M. Taki, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Study of Raman amplification in DPP-BOTDA sensing employing simplex coding for sub-mtere scale spatial resolution over long fiber distances,” Meas. Sci. Technol. 24(9), 094018 (2013).
[Crossref]

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express 20(7), 6860–6869 (2012).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

Chen, L.

Chen, L. A.

X. Bao and L. A. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
[Crossref] [PubMed]

Chin, S.

Cohen, R.

Corredera, P.

Denisov, A.

A. Zadok, Y. Antman, N. Primrov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).

Di Pasquale, F.

M. Taki, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Study of Raman amplification in DPP-BOTDA sensing employing simplex coding for sub-mtere scale spatial resolution over long fiber distances,” Meas. Sci. Technol. 24(9), 094018 (2013).
[Crossref]

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express 20(7), 6860–6869 (2012).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

Dong, Y.

Elooz, D.

Eyal, A.

Foaleng, S. M.

Golomb, S. W.

S. W. Golomb, “Two-valued sequences with perfect periodic autocorrelation,” IEEE T. Aero. Elec. Sys. 28(2), 383–386 (1992).
[Crossref]

Gonzalez-Herraez, M.

González-Herraez, M.

Grodensky, D.

D. Grodensky, D. Kravitz, N. Arbel, N. Levanon, and A. Zadok, “Incoherent pulse compression in laser range finder”, Proc. SPIE 9080. Laser Radar Technology and Applications XIX and Atmospheric Propagation XI, 90800M (2014).

D. Kravitz, D. Grodensky, N. Levanon, and A. Zadok, “High-resolution low-sidelobe laser ranging based on incoherent pulse compression,” IEEE Photonic Tech. L. 24(23), 2119–2121 (2012).
[Crossref]

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

He, Z.

W. Zou, Z. He, and K. Hotate, “Range elongation of distributed discrimination of strain and temperature in Brillouin optical correlation-domain analysis based on dual frequency modulations,” IEEE Sens. J. 14(1), 244–248 (2014).
[Crossref]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[Crossref] [PubMed]

Horiguchi, T.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[Crossref] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonic Tech. L. 2(5), 352–354 (1990).
[Crossref]

Hotate, K.

W. Zou, Z. He, and K. Hotate, “Range elongation of distributed discrimination of strain and temperature in Brillouin optical correlation-domain analysis based on dual frequency modulations,” IEEE Sens. J. 14(1), 244–248 (2014).
[Crossref]

K. Hotate, H. Arai, and K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J Control, Measurement, and System Integration 1(4), 271–274 (2008).
[Crossref]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[Crossref] [PubMed]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

Kravitz, D.

D. Grodensky, D. Kravitz, N. Arbel, N. Levanon, and A. Zadok, “Incoherent pulse compression in laser range finder”, Proc. SPIE 9080. Laser Radar Technology and Applications XIX and Atmospheric Propagation XI, 90800M (2014).

D. Kravitz, D. Grodensky, N. Levanon, and A. Zadok, “High-resolution low-sidelobe laser ranging based on incoherent pulse compression,” IEEE Photonic Tech. L. 24(23), 2119–2121 (2012).
[Crossref]

Kurashima, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonic Tech. L. 2(5), 352–354 (1990).
[Crossref]

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[Crossref] [PubMed]

Langer, T.

Le Floch, S.

Levanon, N.

D. Elooz, Y. Antman, N. Levanon, and A. Zadok, “High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis,” Opt. Express 22(6), 6453–6463 (2014).
[Crossref] [PubMed]

D. Grodensky, D. Kravitz, N. Arbel, N. Levanon, and A. Zadok, “Incoherent pulse compression in laser range finder”, Proc. SPIE 9080. Laser Radar Technology and Applications XIX and Atmospheric Propagation XI, 90800M (2014).

Y. Antman, L. Yaron, T. Langer, M. Tur, N. Levanon, and A. Zadok, “Experimental demonstration of localized Brillouin gratings with low off-peak reflectivity established by perfect Golomb codes,” Opt. Lett. 38(22), 4701–4704 (2013).
[Crossref] [PubMed]

Y. Antman, N. Levanon, and A. Zadok, “Low-noise delays from dynamic Brillouin gratings based on perfect Golomb coding of pump waves,” Opt. Lett. 37(24), 5259–5261 (2012).
[Crossref] [PubMed]

D. Kravitz, D. Grodensky, N. Levanon, and A. Zadok, “High-resolution low-sidelobe laser ranging based on incoherent pulse compression,” IEEE Photonic Tech. L. 24(23), 2119–2121 (2012).
[Crossref]

N. Levanon, “Noncoherent pulse compression,” IEEE T. Aero. Elec. Sys. 42(2), 756–765 (2006).
[Crossref]

N. Levanon, “Cross-correlation of long binary signals with longer mismatched filters,” IEE P-Radar Son. Nav. 152(6), 377–382 (2005).

London, Y.

Martin-Lopez, S.

Motil, A.

Niklès, M.

Peled, Y.

Primerov, N.

Primrov, N.

A. Zadok, Y. Antman, N. Primrov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).

Robert, P. A.

Rochat, E.

Sancho, J.

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
[Crossref] [PubMed]

A. Zadok, Y. Antman, N. Primrov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).

Song, K. Y.

K. Hotate, H. Arai, and K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J Control, Measurement, and System Integration 1(4), 271–274 (2008).
[Crossref]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[Crossref] [PubMed]

Soto, M.

Soto, M. A.

Taki, M.

M. Taki, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Study of Raman amplification in DPP-BOTDA sensing employing simplex coding for sub-mtere scale spatial resolution over long fiber distances,” Meas. Sci. Technol. 24(9), 094018 (2013).
[Crossref]

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express 20(7), 6860–6869 (2012).
[Crossref] [PubMed]

Tateda, M.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
[Crossref] [PubMed]

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonic Tech. L. 2(5), 352–354 (1990).
[Crossref]

Thevenaz, L.

Thévenaz, L.

Tur, M.

Yaron, L.

Zadok, A.

D. Elooz, Y. Antman, N. Levanon, and A. Zadok, “High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis,” Opt. Express 22(6), 6453–6463 (2014).
[Crossref] [PubMed]

R. Cohen, Y. London, Y. Antman, and A. Zadok, “Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission,” Opt. Express 22(10), 12070–12078 (2014).
[Crossref] [PubMed]

D. Grodensky, D. Kravitz, N. Arbel, N. Levanon, and A. Zadok, “Incoherent pulse compression in laser range finder”, Proc. SPIE 9080. Laser Radar Technology and Applications XIX and Atmospheric Propagation XI, 90800M (2014).

Y. Antman, L. Yaron, T. Langer, M. Tur, N. Levanon, and A. Zadok, “Experimental demonstration of localized Brillouin gratings with low off-peak reflectivity established by perfect Golomb codes,” Opt. Lett. 38(22), 4701–4704 (2013).
[Crossref] [PubMed]

Y. Antman, N. Levanon, and A. Zadok, “Low-noise delays from dynamic Brillouin gratings based on perfect Golomb coding of pump waves,” Opt. Lett. 37(24), 5259–5261 (2012).
[Crossref] [PubMed]

D. Kravitz, D. Grodensky, N. Levanon, and A. Zadok, “High-resolution low-sidelobe laser ranging based on incoherent pulse compression,” IEEE Photonic Tech. L. 24(23), 2119–2121 (2012).
[Crossref]

A. Zadok, Y. Antman, N. Primrov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
[Crossref] [PubMed]

A. Zadok, A. Eyal, and M. Tur, “Stimulated Brillouin scattering slow light in optical fibers [Invited],” Appl. Opt. 50(25), E38–E49 (2011).
[Crossref]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[Crossref] [PubMed]

Zhang, H.

Zilka, E.

Zou, W.

W. Zou, Z. He, and K. Hotate, “Range elongation of distributed discrimination of strain and temperature in Brillouin optical correlation-domain analysis based on dual frequency modulations,” IEEE Sens. J. 14(1), 244–248 (2014).
[Crossref]

Appl. Opt. (2)

IEE P-Radar Son. Nav. (1)

N. Levanon, “Cross-correlation of long binary signals with longer mismatched filters,” IEE P-Radar Son. Nav. 152(6), 377–382 (2005).

IEEE Photonic Tech. L. (2)

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photonic Tech. L. 2(5), 352–354 (1990).
[Crossref]

D. Kravitz, D. Grodensky, N. Levanon, and A. Zadok, “High-resolution low-sidelobe laser ranging based on incoherent pulse compression,” IEEE Photonic Tech. L. 24(23), 2119–2121 (2012).
[Crossref]

IEEE Sens. J. (1)

W. Zou, Z. He, and K. Hotate, “Range elongation of distributed discrimination of strain and temperature in Brillouin optical correlation-domain analysis based on dual frequency modulations,” IEEE Sens. J. 14(1), 244–248 (2014).
[Crossref]

IEEE T. Aero. Elec. Sys. (2)

N. Levanon, “Noncoherent pulse compression,” IEEE T. Aero. Elec. Sys. 42(2), 756–765 (2006).
[Crossref]

S. W. Golomb, “Two-valued sequences with perfect periodic autocorrelation,” IEEE T. Aero. Elec. Sys. 28(2), 383–386 (1992).
[Crossref]

IEICE Trans. Electron. (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation,” IEICE Trans. Electron. E83-C(3), 405–412 (2000).

J. Lightwave Technol. (2)

Laser Photonics Rev. (1)

A. Zadok, Y. Antman, N. Primrov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).

Meas. Sci. Technol. (2)

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

M. Taki, M. A. Soto, G. Bolognini, and F. Di Pasquale, “Study of Raman amplification in DPP-BOTDA sensing employing simplex coding for sub-mtere scale spatial resolution over long fiber distances,” Meas. Sci. Technol. 24(9), 094018 (2013).
[Crossref]

Opt. Express (9)

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
[Crossref] [PubMed]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
[Crossref] [PubMed]

M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar optical pulse coding for performance enhancement in BOTDA sensors,” Opt. Express 21(14), 16390–16397 (2013).
[Crossref] [PubMed]

R. Cohen, Y. London, Y. Antman, and A. Zadok, “Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission,” Opt. Express 22(10), 12070–12078 (2014).
[Crossref] [PubMed]

X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, and M. González-Herraez, “Raman-assisted Brillouin optical time-domain analysis with sub-meter resolution over 100 km,” Opt. Express 20(11), 12147–12154 (2012).
[Crossref] [PubMed]

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, “Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification,” Opt. Express 20(7), 6860–6869 (2012).
[Crossref] [PubMed]

D. Elooz, Y. Antman, N. Levanon, and A. Zadok, “High-resolution long-reach distributed Brillouin sensing based on combined time-domain and correlation-domain analysis,” Opt. Express 22(6), 6453–6463 (2014).
[Crossref] [PubMed]

Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express 20(7), 7807–7821 (2012).
[Crossref] [PubMed]

Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
[Crossref] [PubMed]

Opt. Lett. (6)

Proc. SPIE 9080. Laser Radar Technology and Applications XIX and Atmospheric Propagation (1)

D. Grodensky, D. Kravitz, N. Arbel, N. Levanon, and A. Zadok, “Incoherent pulse compression in laser range finder”, Proc. SPIE 9080. Laser Radar Technology and Applications XIX and Atmospheric Propagation XI, 90800M (2014).

Sensors (Basel) (1)

X. Bao and L. A. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel) 11(12), 4152–4187 (2011).
[Crossref] [PubMed]

SICE J Control, Measurement, and System Integration (1)

K. Hotate, H. Arai, and K. Y. Song, “Range-enlargement of simplified Brillouin optical correlation domain analysis based on a temporal gating scheme,” SICE J Control, Measurement, and System Integration 1(4), 271–274 (2008).
[Crossref]

Other (14)

A. Denisov, M. A. Soto, and L. Thévenaz, “Time gated phase-correlation distributed Brillouin fiber sensor,” Proc. SPIE 8794, Fifth European Workshop on Optical Fibre Sensors, 87943I (2013).

A. Denisov, M. Soto, and L. Thévenaz, 1’000’000 resolved points along a Brillouin distributed fibre sensor,” Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 9157D2 (2014).

N. Levenon and E. Mozeson, Radar Signals (Wiley, 2004).

M. A. Soto and L. Thévenaz, “Advanced pulse coding techniques for distributed optical fiber sensors,” in Frontiers in Optics 2013, I. Kang, D. Reitze, N. Alic, and D. Hagan, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper FW4I.3.

S. Le Floch, F. Sauser, M. Llera, M. A. Soto, and L. Thévenaz, “Colour simplex coding for Brillouin distributed sensors,” Proc. SPIE 8794, Fifth European Workshop on Optical Fibre Sensors, 879437 (2013).
[Crossref]

M. A. Soto, S. Le Floch, and L. Thévenaz, “Bipolar pulse coding for enhanced performance in Brillouin distributed optical fiber sensors,” Proc. SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors, 84219Y (2012).
[Crossref]

R. Cohen, Y. London, Y. Antman, and A. Zadok, “Few millimeter-resolution Brillouin optical correlation domain analysis using amplified-spontaneous-emission pump and signal waves,” Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 91576B (2014).

O. Matsuoka, M. Kishi, and K. Hotate, “Brillouin optical correlation domain reflectometry with double frequency modulation and phase modulation,” Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 91576G (2014).

X. Angulo-Vinuesa, S. Martin-Lopez, P. Corredera, and M. Gonzalez-Herraez, “100 km BOTDA temperature sensor with sub-meter resolution,” Proc. SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors, 842117 (2012).

F. Gyger, E. Rochat, S. Chin, M. Niklès, and L. Thévenaz, “Extending the sensing range of Brillouin optical time-domain analysis up to 325 km combining four optical repeaters,” Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 91576Q (2014).

A. Fellay, L. Thevenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in 12th International Conference on Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

D. Elooz, Y. Antman, and A. Zadok, “Combined time-domain and correlation-domain Brillouin analysis with 1600 meters range and 2 centimeters resolution,” Proc. SPIE 9157, 23rd International Conference on Optical Fibre Sensors, 91576O (2014).

R. Ferguson, private communication, unpublished (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) - Simulated magnitude of the acoustic wave density fluctuations (in normalized units), as a function of position and time along a 20 m-long fiber section. Both pump and signal waves are co-modulated by a repeating perfect Golomb phase code that is 499 bits long, with symbol duration of 200 ps. The pump wave is further modulated by a single amplitude pulse of 40 ns duration (see Eq. (2) and Eq. (3)). The acoustic field, and hence the SBS interaction between pump and signal, is confined to three discrete and periodic narrow correlation peaks within the simulated section. The peaks are built up sequentially one after another with no temporal overlap [16,17]. (b) – Magnified view of the acoustic wave magnitude in the central 1 m of the simulated fiber. (c) - Simulated output signal power as a function of time. The trace consists of a series of three isolated amplification events, each of which can be unambiguously related to the SBS interaction at a specific correlation peak of known location.
Fig. 2
Fig. 2 (a) - Simulated magnitude of the acoustic wave density fluctuations (in normalized units), as a function of position and time along a 20 m-long fiber section. Both pump and signal waves are co-modulated by a repeating perfect Golomb phase code that is 499 bits long, with symbol duration of 200 ps. The pump wave is further modulated by a 26 bits-long amplitude sequence, with a pulse duration of 40 ns. The acoustic field at the three correlation peaks of the phase codes is turned on and off by the overlaying amplitude modulation of the pump wave. (b) - Magnified view of the acoustic wave magnitude in the central 1 m of the simulated fiber.
Fig. 3
Fig. 3 (a): Simulated intensity of the output signal as a function of time, following SBS interaction at a single correlation peak. Both pump and signal waves are co-modulated by a repeating perfect Golomb phase code that is 499 bits long, with symbol duration of 200 ps. The pump wave is further modulated by a 26 bits-long amplitude sequence, with a pulse duration of 40 ns. 13 amplification events are observed, corresponding to 13 pulses within the amplitude modulating sequence which assume '1' value. (b): Incoherently compressed form of the simulated output signal intensity of the panel (a). (c): Simulated intensity of the output signal as a function of time, following SBS interaction at five adjacent correlation peaks. The modulation of pump and signal is the same as that of panel (a). (d): Incoherently compressed form of the simulated output signal intensity of panel (c), resolving five localized amplification events. In all panels, the horizontal time axis is given in units of the amplitude modulation bit duration.
Fig. 4
Fig. 4 (a) - Transmitted code d (top) and matched filtering code r (bottom), corresponding to the Barker 13 code: [1 1 1 1 1 −1 −1 1 1 −1 1 −1 1]. (b) - Top – aperiodic auto-correlation of the Barker 13 bipolar code. The correlation peak is 13, whereas the maximal sidelobe equals unity. Bottom – aperiodic cross-correlation between the transmitted code d and matched filtering code r corresponding to the Barker 13 bipolar code. With the exception of the two time slots in the immediate vicinity of the central peak, the suppression of sidelobes reaches that of the original bipolar sequence [35].
Fig. 5
Fig. 5 Calculated incoherent compression of a 1112 pulses-long unipolar sequence. The code was drawn from a 1112 bit-long, bipolar MPSL sequence through a pulse-position modulation algorithm. Both matched (a) and mismatched (b) filters were used in the compression process [35].
Fig. 6
Fig. 6 Experimental setup for hybrid B-OTDA / B-OCDA. EDFA: erbium-doped fiber amplifier. Amp. Mod.: amplitude modulator. Phase Mod.: phase modulator.
Fig. 7
Fig. 7 Examples of experimentally obtained, incoherently compressed traces of the output signal wave, taken for the same location of the phase-code correlation peaks. Only four peaks out of over 200 are shown for clarity. The final peak is in overlap with the hot spot. The blue (red) trace was taken at a frequency offset between pump and signal of 10.845 GHz (10.88 GHz), which corresponds to the Brillouin shift at room temperature (temperature of the hot spot).
Fig. 8
Fig. 8 Measured Brillouin gain map (relative units), as a function of frequency offset between pump and signal, and of position along a 2200 m-long fiber under test. A 5 cm-long hot spot was located towards the output end of the fiber. The map was reconstructed using 499 scans per frequency offset. The complete map is shown in the left-hand panel, and a zoom-in on the hot spot region is shown in the right-hand panel.The reconstructed Brillouin shift as a function of position is shown in Fig. 9(a). The experimental error σ ν in the reconstructed Brillouin shift is estimated by the standard deviation of the difference ν B ( z ) ν B ( zΔz ) , to be on the order of ± 2 MHz. With the exception of the hot spot, it is assumed that any variations in the local Brillouin shift over short segments of length Δz are due to noise, and do not represent physically meaningful strain or temperature changes. Larger variations in ν B ( z ) that are observed in Fig. 9(a) are continuous over tens of cm, and represent actual, periodic strain patterns that are due to the winding of the fiber around a drum. A magnified view of the region including the hot spot is shown in Fig. 9(b). The hot spot and splice are clearly recognized.
Fig. 9
Fig. 9 (a) Brillouin frequency shift (relative to 10.845 GHz) as a function of position, as extracted from the experimental Brillouin gain map of Fig. 8 above. (b) Zoom-in on the hot spot region towards the end of the fiber.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q( t,z )=j g 1 0 t exp[ Γ A ( tt' ) ] A p ( t' z v g ) A s * [ t' z v g +θ( z ) ]dt'
A s ( z=L,t )= A s0 n c n rect[ tn T phase T phase ] A s ( t )
A p ( z=0,t )= A p0 m=1 N amp d m rect( tm T amp T amp ) × n c n rect[ tn T phase T phase ] A p ( t )
| A s0 | 2 [ exp( g 0 | A p0 | 2 Δz )1 ] | A s0 | 2 g 0 | A p0 | 2 Δz g 0 γ Δz L = g 0 γ 1 M 100 M
FoM= ( α L eff ) 2 e 2αL Δz N av N phase δ( Γ B / 2π ) σ ν

Metrics