Abstract

Resonance coupling of two resonators with the same resonant frequency is a highly efficient energy transfer approach in physics. Here we report total broadband transmission of microwaves through a metallic subwavelength aperture using the coupled resonances of the strongly localized electric fields at the gaps of two split-ring resonators (SRRs) placed on either side of the aperture. At the center frequency of the broad band, the phase difference between the two localized time-varying electric fields is 90°, which is consistent with the critical coupling state that is a sufficient condition for the two-resonator system to realize total transmission if the resonators are assumed to be lossless.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transmission enhancement through deep subwavelength apertures using connected split ring resonators

Damla Ates, Atilla Ozgur Cakmak, Evrim Colak, Rongkuo Zhao, C. M. Soukoulis, and Ekmel Ozbay
Opt. Express 18(4) 3952-3966 (2010)

Transmission properties of terahertz pulses through subwavelength double split-ring resonators

Abul K. Azad, Jianming Dai, and Weili Zhang
Opt. Lett. 31(5) 634-636 (2006)

Multi-gap individual and coupled split-ring resonator structures

R. S. Penciu, K. Aydin, M. Kafesaki, Th. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis
Opt. Express 16(22) 18131-18144 (2008)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  2. Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
    [Crossref] [PubMed]
  3. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
    [Crossref] [PubMed]
  4. F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
    [Crossref]
  5. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [Crossref] [PubMed]
  6. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
    [Crossref] [PubMed]
  7. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
    [Crossref] [PubMed]
  8. U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58(23), 15419–15421 (1998).
    [Crossref]
  9. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
    [Crossref]
  10. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
    [Crossref]
  11. Y. P. Jia, Y. L. Zhang, X. Z. Dong, M. L. Zheng, J. Li, J. Liu, Z. S. Zhao, and X. M. Duan, “Complementary chiral metasurface with strong broadband optical activity and enhanced transmission,” Appl. Phys. Lett. 104(1), 011108 (2014).
    [Crossref]
  12. A. Maurel, S. Felix, and J. F. Mercier, “Enhanced transmission through gratings: Structural and geometrical effects,” Phys. Rev. B 88(11), 115416 (2013).
    [Crossref]
  13. X. N. Zhang, G. Q. Liu, Z. Q. Liu, Y. H. Chen, Y. Hu, Z. J. Cai, K. Huang, A. Yan, and X. S. Liu, “Broadband enhanced transmission in a film-array plasmonic structure through the plasmon coupling effects,” Opt. Commun. 315, 47–54 (2014).
    [Crossref]
  14. P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Single nanohole and photonic crystal: wavelength selective enhanced transmission of light,” Opt. Express 19(23), 22743–22754 (2011).
    [Crossref] [PubMed]
  15. D. S. Bulgarevich, M. Watanabe, and M. Shiwa, “Single sub-wavelength aperture with greatly enhanced transmission,” New J. Phys. 14(5), 053001 (2012).
    [Crossref]
  16. C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express 13(11), 3921–3930 (2005).
    [Crossref] [PubMed]
  17. K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
    [Crossref] [PubMed]
  18. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85(7), 1098–1100 (2004).
    [Crossref]
  19. R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
    [Crossref] [PubMed]
  20. L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. H. Xiong, “Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum,” Adv. Opt. Mater. 2(3), 280–285 (2014).
    [Crossref]
  21. T. Tomioka, S. Kubo, M. Nakagawa, M. Hoga, and T. Tanaka, “Split-ring resonators interacting with a magnetic field at visible frequencies,” Appl. Phys. Lett. 103(7), 071104 (2013).
    [Crossref]
  22. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  23. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys. 7, 168 (2005).
    [Crossref]
  24. Z. G. Dong, P. G. Ni, J. Zhu, X. B. Yin, and X. Zhang, “Toroidal dipole response in a multifold double-ring metamaterial,” Opt. Express 20(12), 13065–13070 (2012).
    [Crossref] [PubMed]
  25. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
    [Crossref] [PubMed]
  26. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
    [Crossref] [PubMed]
  27. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  28. Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
    [Crossref]
  29. K. Aydin and E. Ozbay, “Left-handed metamaterial based superlens for subwavelength imaging of electromagnetic waves,” Appl. Phys., A Mater. Sci. Process. 87(2), 137–141 (2007).
    [Crossref]
  30. G. Castaldi, I. Gallina, and V. Galdi, “Nearly perfect nonmagnetic invisibility cloaking: Analytic solutions and parametric studies,” Phys. Rev. B 80(12), 125116 (2009).
    [Crossref]
  31. O. Sydoruk, E. Shamonina, and L. Solymar, “Parametric amplification in coupled magnetoinductive waveguides,” J. Phys. D Appl. Phys. 40(22), 6879–6887 (2007).
    [Crossref]
  32. J. D. Baena, L. Jelinek, R. Marques, and M. Silveirinha, “Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials,” Phys. Rev. A 78(1), 013842 (2008).
    [Crossref]
  33. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
    [Crossref] [PubMed]
  34. M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007).
    [Crossref]
  35. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
    [Crossref] [PubMed]
  36. C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
    [Crossref]
  37. A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Ann. Phys. 323(1), 34–48 (2008).
    [Crossref]
  38. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007).
    [Crossref] [PubMed]
  39. A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron. 58(2), 544–554 (2011).
    [Crossref]
  40. Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87, 115417 (2013).
    [Crossref]
  41. Y. C. Fan, Z. Y. Wei, J. Han, X. G. Liu, and H. Q. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
    [Crossref]
  42. Y. S. Guo, J. Zhou, C. W. Lan, and K. Bi, “Resonance transmission of electromagnetic wave through a thin dielectric rod,” Appl. Phys. Lett. 104(12), 123902 (2014).
    [Crossref]

2014 (5)

Y. P. Jia, Y. L. Zhang, X. Z. Dong, M. L. Zheng, J. Li, J. Liu, Z. S. Zhao, and X. M. Duan, “Complementary chiral metasurface with strong broadband optical activity and enhanced transmission,” Appl. Phys. Lett. 104(1), 011108 (2014).
[Crossref]

X. N. Zhang, G. Q. Liu, Z. Q. Liu, Y. H. Chen, Y. Hu, Z. J. Cai, K. Huang, A. Yan, and X. S. Liu, “Broadband enhanced transmission in a film-array plasmonic structure through the plasmon coupling effects,” Opt. Commun. 315, 47–54 (2014).
[Crossref]

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. H. Xiong, “Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum,” Adv. Opt. Mater. 2(3), 280–285 (2014).
[Crossref]

Y. S. Guo, J. Zhou, C. W. Lan, and K. Bi, “Resonance transmission of electromagnetic wave through a thin dielectric rod,” Appl. Phys. Lett. 104(12), 123902 (2014).
[Crossref]

2013 (3)

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87, 115417 (2013).
[Crossref]

T. Tomioka, S. Kubo, M. Nakagawa, M. Hoga, and T. Tanaka, “Split-ring resonators interacting with a magnetic field at visible frequencies,” Appl. Phys. Lett. 103(7), 071104 (2013).
[Crossref]

A. Maurel, S. Felix, and J. F. Mercier, “Enhanced transmission through gratings: Structural and geometrical effects,” Phys. Rev. B 88(11), 115416 (2013).
[Crossref]

2012 (3)

D. S. Bulgarevich, M. Watanabe, and M. Shiwa, “Single sub-wavelength aperture with greatly enhanced transmission,” New J. Phys. 14(5), 053001 (2012).
[Crossref]

Z. G. Dong, P. G. Ni, J. Zhu, X. B. Yin, and X. Zhang, “Toroidal dipole response in a multifold double-ring metamaterial,” Opt. Express 20(12), 13065–13070 (2012).
[Crossref] [PubMed]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
[Crossref]

2011 (3)

Y. C. Fan, Z. Y. Wei, J. Han, X. G. Liu, and H. Q. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron. 58(2), 544–554 (2011).
[Crossref]

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Single nanohole and photonic crystal: wavelength selective enhanced transmission of light,” Opt. Express 19(23), 22743–22754 (2011).
[Crossref] [PubMed]

2010 (2)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

2009 (2)

G. Castaldi, I. Gallina, and V. Galdi, “Nearly perfect nonmagnetic invisibility cloaking: Analytic solutions and parametric studies,” Phys. Rev. B 80(12), 125116 (2009).
[Crossref]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[Crossref] [PubMed]

2008 (3)

J. D. Baena, L. Jelinek, R. Marques, and M. Silveirinha, “Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials,” Phys. Rev. A 78(1), 013842 (2008).
[Crossref]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
[Crossref] [PubMed]

A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Ann. Phys. 323(1), 34–48 (2008).
[Crossref]

2007 (5)

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007).
[Crossref] [PubMed]

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007).
[Crossref]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

O. Sydoruk, E. Shamonina, and L. Solymar, “Parametric amplification in coupled magnetoinductive waveguides,” J. Phys. D Appl. Phys. 40(22), 6879–6887 (2007).
[Crossref]

K. Aydin and E. Ozbay, “Left-handed metamaterial based superlens for subwavelength imaging of electromagnetic waves,” Appl. Phys., A Mater. Sci. Process. 87(2), 137–141 (2007).
[Crossref]

2006 (3)

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[Crossref]

2005 (3)

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[Crossref] [PubMed]

C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express 13(11), 3921–3930 (2005).
[Crossref] [PubMed]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys. 7, 168 (2005).
[Crossref]

2004 (2)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85(7), 1098–1100 (2004).
[Crossref]

2003 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

2001 (3)

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58(23), 15419–15421 (1998).
[Crossref]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[Crossref]

Afanasiev, A. E.

Akarca-Biyikli, S. S.

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85(7), 1098–1100 (2004).
[Crossref]

Aydin, K.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[Crossref] [PubMed]

K. Aydin and E. Ozbay, “Left-handed metamaterial based superlens for subwavelength imaging of electromagnetic waves,” Appl. Phys., A Mater. Sci. Process. 87(2), 137–141 (2007).
[Crossref]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys. 7, 168 (2005).
[Crossref]

Baena, J. D.

J. D. Baena, L. Jelinek, R. Marques, and M. Silveirinha, “Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials,” Phys. Rev. A 78(1), 013842 (2008).
[Crossref]

Balykin, V. I.

Basov, D. N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Baturin, A. S.

Beere, H. E.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[Crossref]

Bi, K.

Y. S. Guo, J. Zhou, C. W. Lan, and K. Bi, “Resonance transmission of electromagnetic wave through a thin dielectric rod,” Appl. Phys. Lett. 104(12), 123902 (2014).
[Crossref]

Bilotti, F.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[Crossref] [PubMed]

Bingham, C.

Bulgarevich, D. S.

D. S. Bulgarevich, M. Watanabe, and M. Shiwa, “Single sub-wavelength aperture with greatly enhanced transmission,” New J. Phys. 14(5), 053001 (2012).
[Crossref]

Bulu, I.

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys. 7, 168 (2005).
[Crossref]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85(7), 1098–1100 (2004).
[Crossref]

Cai, B. G.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Cai, Z. J.

X. N. Zhang, G. Q. Liu, Z. Q. Liu, Y. H. Chen, Y. Hu, Z. J. Cai, K. Huang, A. Yan, and X. S. Liu, “Broadband enhanced transmission in a film-array plasmonic structure through the plasmon coupling effects,” Opt. Commun. 315, 47–54 (2014).
[Crossref]

Cakmak, A. O.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[Crossref] [PubMed]

Castaldi, G.

G. Castaldi, I. Gallina, and V. Galdi, “Nearly perfect nonmagnetic invisibility cloaking: Analytic solutions and parametric studies,” Phys. Rev. B 80(12), 125116 (2009).
[Crossref]

Chen, H.

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87, 115417 (2013).
[Crossref]

Chen, Y. H.

X. N. Zhang, G. Q. Liu, Z. Q. Liu, Y. H. Chen, Y. Hu, Z. J. Cai, K. Huang, A. Yan, and X. S. Liu, “Broadband enhanced transmission in a film-array plasmonic structure through the plasmon coupling effects,” Opt. Commun. 315, 47–54 (2014).
[Crossref]

Cheng, Q.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Ciracì, C.

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
[Crossref]

Cui, T. J.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Cummer, S. A.

Degiron, A.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

Degl’Innocenti, R.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Dong, X. Z.

Y. P. Jia, Y. L. Zhang, X. Z. Dong, M. L. Zheng, J. Li, J. Liu, Z. S. Zhao, and X. M. Duan, “Complementary chiral metasurface with strong broadband optical activity and enhanced transmission,” Appl. Phys. Lett. 104(1), 011108 (2014).
[Crossref]

Dong, Z. G.

Duan, X. M.

Y. P. Jia, Y. L. Zhang, X. Z. Dong, M. L. Zheng, J. Li, J. Liu, Z. S. Zhao, and X. M. Duan, “Complementary chiral metasurface with strong broadband optical activity and enhanced transmission,” Appl. Phys. Lett. 104(1), 011108 (2014).
[Crossref]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Economou, E. N.

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007).
[Crossref]

Enkrich, C.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Fan, Y. C.

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87, 115417 (2013).
[Crossref]

Y. C. Fan, Z. Y. Wei, J. Han, X. G. Liu, and H. Q. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Fang, N.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Felix, S.

A. Maurel, S. Felix, and J. F. Mercier, “Enhanced transmission through gratings: Structural and geometrical effects,” Phys. Rev. B 88(11), 115416 (2013).
[Crossref]

Fisher, P.

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007).
[Crossref] [PubMed]

Galdi, V.

G. Castaldi, I. Gallina, and V. Galdi, “Nearly perfect nonmagnetic invisibility cloaking: Analytic solutions and parametric studies,” Phys. Rev. B 80(12), 125116 (2009).
[Crossref]

Gallina, I.

G. Castaldi, I. Gallina, and V. Galdi, “Nearly perfect nonmagnetic invisibility cloaking: Analytic solutions and parametric studies,” Phys. Rev. B 80(12), 125116 (2009).
[Crossref]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[Crossref]

García-Vidal, F. J.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Gordon, R.

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[Crossref]

Guo, Y. S.

Y. S. Guo, J. Zhou, C. W. Lan, and K. Bi, “Resonance transmission of electromagnetic wave through a thin dielectric rod,” Appl. Phys. Lett. 104(12), 123902 (2014).
[Crossref]

Guven, K.

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys. 7, 168 (2005).
[Crossref]

Han, J.

Y. C. Fan, Z. Y. Wei, J. Han, X. G. Liu, and H. Q. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Hand, T. H.

Hangyo, M.

Heitmann, D.

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58(23), 15419–15421 (1998).
[Crossref]

Hofmann, S.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Hoga, M.

T. Tomioka, S. Kubo, M. Nakagawa, M. Hoga, and T. Tanaka, “Split-ring resonators interacting with a magnetic field at visible frequencies,” Appl. Phys. Lett. 103(7), 071104 (2013).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Hsieh, C. F.

Hu, Y.

X. N. Zhang, G. Q. Liu, Z. Q. Liu, Y. H. Chen, Y. Hu, Z. J. Cai, K. Huang, A. Yan, and X. S. Liu, “Broadband enhanced transmission in a film-array plasmonic structure through the plasmon coupling effects,” Opt. Commun. 315, 47–54 (2014).
[Crossref]

Huang, K.

X. N. Zhang, G. Q. Liu, Z. Q. Liu, Y. H. Chen, Y. Hu, Z. J. Cai, K. Huang, A. Yan, and X. S. Liu, “Broadband enhanced transmission in a film-array plasmonic structure through the plasmon coupling effects,” Opt. Commun. 315, 47–54 (2014).
[Crossref]

Jelinek, L.

J. D. Baena, L. Jelinek, R. Marques, and M. Silveirinha, “Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials,” Phys. Rev. A 78(1), 013842 (2008).
[Crossref]

Jessop, D. S.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Jia, Y. P.

Y. P. Jia, Y. L. Zhang, X. Z. Dong, M. L. Zheng, J. Li, J. Liu, Z. S. Zhao, and X. M. Duan, “Complementary chiral metasurface with strong broadband optical activity and enhanced transmission,” Appl. Phys. Lett. 104(1), 011108 (2014).
[Crossref]

Jiang, W. X.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Joannopoulos, J. D.

A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Ann. Phys. 323(1), 34–48 (2008).
[Crossref]

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007).
[Crossref] [PubMed]

Jokerst, N. M.

Kafesaki, M.

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007).
[Crossref]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys. 7, 168 (2005).
[Crossref]

Karalis, A.

A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Ann. Phys. 323(1), 34–48 (2008).
[Crossref]

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007).
[Crossref] [PubMed]

Katsarakis, N.

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007).
[Crossref]

Kidambi, P. R.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Klein, M. W.

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Koschny, T.

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007).
[Crossref]

Kubo, S.

T. Tomioka, S. Kubo, M. Nakagawa, M. Hoga, and T. Tanaka, “Split-ring resonators interacting with a magnetic field at visible frequencies,” Appl. Phys. Lett. 103(7), 071104 (2013).
[Crossref]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Kumar, L. K. S.

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[Crossref]

Kurs, A.

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007).
[Crossref] [PubMed]

Kuzin, A. A.

Lan, C. W.

Y. S. Guo, J. Zhou, C. W. Lan, and K. Bi, “Resonance transmission of electromagnetic wave through a thin dielectric rod,” Appl. Phys. Lett. 104(12), 123902 (2014).
[Crossref]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, H. Q.

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87, 115417 (2013).
[Crossref]

Y. C. Fan, Z. Y. Wei, J. Han, X. G. Liu, and H. Q. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Li, J.

Y. P. Jia, Y. L. Zhang, X. Z. Dong, M. L. Zheng, J. Li, J. Liu, Z. S. Zhao, and X. M. Duan, “Complementary chiral metasurface with strong broadband optical activity and enhanced transmission,” Appl. Phys. Lett. 104(1), 011108 (2014).
[Crossref]

Li, Z.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[Crossref] [PubMed]

Linden, S.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Liu, G. Q.

X. N. Zhang, G. Q. Liu, Z. Q. Liu, Y. H. Chen, Y. Hu, Z. J. Cai, K. Huang, A. Yan, and X. S. Liu, “Broadband enhanced transmission in a film-array plasmonic structure through the plasmon coupling effects,” Opt. Commun. 315, 47–54 (2014).
[Crossref]

Liu, J.

Y. P. Jia, Y. L. Zhang, X. Z. Dong, M. L. Zheng, J. Li, J. Liu, Z. S. Zhao, and X. M. Duan, “Complementary chiral metasurface with strong broadband optical activity and enhanced transmission,” Appl. Phys. Lett. 104(1), 011108 (2014).
[Crossref]

Liu, X. G.

Y. C. Fan, Z. Y. Wei, J. Han, X. G. Liu, and H. Q. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Liu, X. S.

X. N. Zhang, G. Q. Liu, Z. Q. Liu, Y. H. Chen, Y. Hu, Z. J. Cai, K. Huang, A. Yan, and X. S. Liu, “Broadband enhanced transmission in a film-array plasmonic structure through the plasmon coupling effects,” Opt. Commun. 315, 47–54 (2014).
[Crossref]

Liu, Z. Q.

X. N. Zhang, G. Q. Liu, Z. Q. Liu, Y. H. Chen, Y. Hu, Z. J. Cai, K. Huang, A. Yan, and X. S. Liu, “Broadband enhanced transmission in a film-array plasmonic structure through the plasmon coupling effects,” Opt. Commun. 315, 47–54 (2014).
[Crossref]

Marques, R.

J. D. Baena, L. Jelinek, R. Marques, and M. Silveirinha, “Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials,” Phys. Rev. A 78(1), 013842 (2008).
[Crossref]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[Crossref]

Martín-Moreno, L.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Maurel, A.

A. Maurel, S. Felix, and J. F. Mercier, “Enhanced transmission through gratings: Structural and geometrical effects,” Phys. Rev. B 88(11), 115416 (2013).
[Crossref]

Melentiev, P. N.

Mercier, J. F.

A. Maurel, S. Felix, and J. F. Mercier, “Enhanced transmission through gratings: Structural and geometrical effects,” Phys. Rev. B 88(11), 115416 (2013).
[Crossref]

Meyer, D. A.

A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron. 58(2), 544–554 (2011).
[Crossref]

Miyamaru, F.

Moffatt, R.

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007).
[Crossref] [PubMed]

Moreno, E.

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[Crossref]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[Crossref] [PubMed]

Nakagawa, M.

T. Tomioka, S. Kubo, M. Nakagawa, M. Hoga, and T. Tanaka, “Split-ring resonators interacting with a magnetic field at visible frequencies,” Appl. Phys. Lett. 103(7), 071104 (2013).
[Crossref]

Ni, P. G.

Ozbay, E.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[Crossref] [PubMed]

K. Aydin and E. Ozbay, “Left-handed metamaterial based superlens for subwavelength imaging of electromagnetic waves,” Appl. Phys., A Mater. Sci. Process. 87(2), 137–141 (2007).
[Crossref]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys. 7, 168 (2005).
[Crossref]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85(7), 1098–1100 (2004).
[Crossref]

Padilla, W. J.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Palit, S.

Pan, C. L.

Pan, R. P.

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Pendry, J. B.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Porto, J. A.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[Crossref] [PubMed]

Poutrina, E.

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
[Crossref]

Qiu, M.

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[Crossref] [PubMed]

Ritchie, D. A.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Ruan, Z. C.

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[Crossref] [PubMed]

Sahin, L.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[Crossref] [PubMed]

Sample, A. P.

A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron. 58(2), 544–554 (2011).
[Crossref]

Scalora, M.

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
[Crossref]

Schröter, U.

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58(23), 15419–15421 (1998).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shah, Y. D.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Shamonina, E.

O. Sydoruk, E. Shamonina, and L. Solymar, “Parametric amplification in coupled magnetoinductive waveguides,” J. Phys. D Appl. Phys. 40(22), 6879–6887 (2007).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shiwa, M.

D. S. Bulgarevich, M. Watanabe, and M. Shiwa, “Single sub-wavelength aperture with greatly enhanced transmission,” New J. Phys. 14(5), 053001 (2012).
[Crossref]

Sibik, J.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Silveirinha, M.

J. D. Baena, L. Jelinek, R. Marques, and M. Silveirinha, “Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials,” Phys. Rev. A 78(1), 013842 (2008).
[Crossref]

Smith, D. R.

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
[Crossref]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Smith, J. R.

A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron. 58(2), 544–554 (2011).
[Crossref]

Soljacic, M.

A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Ann. Phys. 323(1), 34–48 (2008).
[Crossref]

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007).
[Crossref] [PubMed]

Solymar, L.

O. Sydoruk, E. Shamonina, and L. Solymar, “Parametric amplification in coupled magnetoinductive waveguides,” J. Phys. D Appl. Phys. 40(22), 6879–6887 (2007).
[Crossref]

Soukoulis, C. M.

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87, 115417 (2013).
[Crossref]

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007).
[Crossref]

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys. 7, 168 (2005).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Sydoruk, O.

O. Sydoruk, E. Shamonina, and L. Solymar, “Parametric amplification in coupled magnetoinductive waveguides,” J. Phys. D Appl. Phys. 40(22), 6879–6887 (2007).
[Crossref]

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[Crossref] [PubMed]

Tanaka, M.

Tanaka, T.

T. Tomioka, S. Kubo, M. Nakagawa, M. Hoga, and T. Tanaka, “Split-ring resonators interacting with a magnetic field at visible frequencies,” Appl. Phys. Lett. 103(7), 071104 (2013).
[Crossref]

Tani, M.

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Tjahjana, L.

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. H. Xiong, “Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum,” Adv. Opt. Mater. 2(3), 280–285 (2014).
[Crossref]

Tobing, L. Y. M.

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. H. Xiong, “Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum,” Adv. Opt. Mater. 2(3), 280–285 (2014).
[Crossref]

Tomioka, T.

T. Tomioka, S. Kubo, M. Nakagawa, M. Hoga, and T. Tanaka, “Split-ring resonators interacting with a magnetic field at visible frequencies,” Appl. Phys. Lett. 103(7), 071104 (2013).
[Crossref]

Tsiapa, I.

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007).
[Crossref]

Tyler, T.

Vegni, L.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[Crossref] [PubMed]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Watanabe, M.

D. S. Bulgarevich, M. Watanabe, and M. Shiwa, “Single sub-wavelength aperture with greatly enhanced transmission,” New J. Phys. 14(5), 053001 (2012).
[Crossref]

Wegener, M.

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

Wei, Z. Y.

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87, 115417 (2013).
[Crossref]

Y. C. Fan, Z. Y. Wei, J. Han, X. G. Liu, and H. Q. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Xiong, Q. H.

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. H. Xiong, “Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum,” Adv. Opt. Mater. 2(3), 280–285 (2014).
[Crossref]

Yan, A.

X. N. Zhang, G. Q. Liu, Z. Q. Liu, Y. H. Chen, Y. Hu, Z. J. Cai, K. Huang, A. Yan, and X. S. Liu, “Broadband enhanced transmission in a film-array plasmonic structure through the plasmon coupling effects,” Opt. Commun. 315, 47–54 (2014).
[Crossref]

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Yin, X. B.

Yuan, Y.

Zablotskiy, A. V.

Zeitler, J. A.

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Zhang, D. H.

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. H. Xiong, “Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum,” Adv. Opt. Mater. 2(3), 280–285 (2014).
[Crossref]

Zhang, Q.

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. H. Xiong, “Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum,” Adv. Opt. Mater. 2(3), 280–285 (2014).
[Crossref]

Zhang, X.

Z. G. Dong, P. G. Ni, J. Zhu, X. B. Yin, and X. Zhang, “Toroidal dipole response in a multifold double-ring metamaterial,” Opt. Express 20(12), 13065–13070 (2012).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

Zhang, X. N.

X. N. Zhang, G. Q. Liu, Z. Q. Liu, Y. H. Chen, Y. Hu, Z. J. Cai, K. Huang, A. Yan, and X. S. Liu, “Broadband enhanced transmission in a film-array plasmonic structure through the plasmon coupling effects,” Opt. Commun. 315, 47–54 (2014).
[Crossref]

Zhang, Y. L.

Y. P. Jia, Y. L. Zhang, X. Z. Dong, M. L. Zheng, J. Li, J. Liu, Z. S. Zhao, and X. M. Duan, “Complementary chiral metasurface with strong broadband optical activity and enhanced transmission,” Appl. Phys. Lett. 104(1), 011108 (2014).
[Crossref]

Zhao, Z. S.

Y. P. Jia, Y. L. Zhang, X. Z. Dong, M. L. Zheng, J. Li, J. Liu, Z. S. Zhao, and X. M. Duan, “Complementary chiral metasurface with strong broadband optical activity and enhanced transmission,” Appl. Phys. Lett. 104(1), 011108 (2014).
[Crossref]

Zheng, M. L.

Y. P. Jia, Y. L. Zhang, X. Z. Dong, M. L. Zheng, J. Li, J. Liu, Z. S. Zhao, and X. M. Duan, “Complementary chiral metasurface with strong broadband optical activity and enhanced transmission,” Appl. Phys. Lett. 104(1), 011108 (2014).
[Crossref]

Zhou, J.

Y. S. Guo, J. Zhou, C. W. Lan, and K. Bi, “Resonance transmission of electromagnetic wave through a thin dielectric rod,” Appl. Phys. Lett. 104(12), 123902 (2014).
[Crossref]

Zhu, J.

ACS Nano (1)

R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, and D. A. Ritchie, “Low-bias terahertz amplitude modulator based on split-ring resonators and graphene,” ACS Nano 8(3), 2548–2554 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

L. Y. M. Tobing, L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. H. Xiong, “Sub-100-nm sized silver split ring resonator metamaterials with fundamental magnetic resonance in the middle visible spectrum,” Adv. Opt. Mater. 2(3), 280–285 (2014).
[Crossref]

Ann. Phys. (1)

A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Ann. Phys. 323(1), 34–48 (2008).
[Crossref]

Appl. Phys. Lett. (4)

Y. S. Guo, J. Zhou, C. W. Lan, and K. Bi, “Resonance transmission of electromagnetic wave through a thin dielectric rod,” Appl. Phys. Lett. 104(12), 123902 (2014).
[Crossref]

T. Tomioka, S. Kubo, M. Nakagawa, M. Hoga, and T. Tanaka, “Split-ring resonators interacting with a magnetic field at visible frequencies,” Appl. Phys. Lett. 103(7), 071104 (2013).
[Crossref]

Y. P. Jia, Y. L. Zhang, X. Z. Dong, M. L. Zheng, J. Li, J. Liu, Z. S. Zhao, and X. M. Duan, “Complementary chiral metasurface with strong broadband optical activity and enhanced transmission,” Appl. Phys. Lett. 104(1), 011108 (2014).
[Crossref]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85(7), 1098–1100 (2004).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

K. Aydin and E. Ozbay, “Left-handed metamaterial based superlens for subwavelength imaging of electromagnetic waves,” Appl. Phys., A Mater. Sci. Process. 87(2), 137–141 (2007).
[Crossref]

IEEE Trans. Ind. Electron. (1)

A. P. Sample, D. A. Meyer, and J. R. Smith, “Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer,” IEEE Trans. Ind. Electron. 58(2), 544–554 (2011).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. Phys. D Appl. Phys. (2)

O. Sydoruk, E. Shamonina, and L. Solymar, “Parametric amplification in coupled magnetoinductive waveguides,” J. Phys. D Appl. Phys. 40(22), 6879–6887 (2007).
[Crossref]

Y. C. Fan, Z. Y. Wei, J. Han, X. G. Liu, and H. Q. Li, “Nonlinear properties of meta-dimer comprised of coupled ring resonators,” J. Phys. D Appl. Phys. 44(42), 425303 (2011).
[Crossref]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

New J. Phys. (3)

D. S. Bulgarevich, M. Watanabe, and M. Shiwa, “Single sub-wavelength aperture with greatly enhanced transmission,” New J. Phys. 14(5), 053001 (2012).
[Crossref]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” New J. Phys. 7, 168 (2005).
[Crossref]

Opt. Commun. (1)

X. N. Zhang, G. Q. Liu, Z. Q. Liu, Y. H. Chen, Y. Hu, Z. J. Cai, K. Huang, A. Yan, and X. S. Liu, “Broadband enhanced transmission in a film-array plasmonic structure through the plasmon coupling effects,” Opt. Commun. 315, 47–54 (2014).
[Crossref]

Opt. Express (4)

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[Crossref]

Phys. Rev. A (1)

J. D. Baena, L. Jelinek, R. Marques, and M. Silveirinha, “Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials,” Phys. Rev. A 78(1), 013842 (2008).
[Crossref]

Phys. Rev. B (7)

G. Castaldi, I. Gallina, and V. Galdi, “Nearly perfect nonmagnetic invisibility cloaking: Analytic solutions and parametric studies,” Phys. Rev. B 80(12), 125116 (2009).
[Crossref]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B 85(20), 201403 (2012).
[Crossref]

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75(23), 235114 (2007).
[Crossref]

A. Maurel, S. Felix, and J. F. Mercier, “Enhanced transmission through gratings: Structural and geometrical effects,” Phys. Rev. B 88(11), 115416 (2013).
[Crossref]

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58(23), 15419–15421 (1998).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[Crossref]

Y. C. Fan, Z. Y. Wei, H. Q. Li, H. Chen, and C. M. Soukoulis, “Low-loss and high-Q planar metamaterial with toroidal moment,” Phys. Rev. B 87, 115417 (2013).
[Crossref]

Phys. Rev. Lett. (6)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[Crossref] [PubMed]

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[Crossref] [PubMed]

Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[Crossref] [PubMed]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[Crossref] [PubMed]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Science (5)

C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007).
[Crossref] [PubMed]

M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006).
[Crossref] [PubMed]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303(5663), 1494–1496 (2004).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, “Wireless power transfer via strongly coupled magnetic resonances,” Science 317(5834), 83–86 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the experimental setup. (a) A unit cell of the designed coupled SRR pair. (b) Photograph of one side of the fabricated coupled SRR array patterns. (c) A coupled SRR pair unit cell inserted in a metal subwavelength aperture. (d) Measurement system using two rectangular waveguides to demonstrate total broadband transmission. The Cartesian frame and the size nomenclature are depicted in (a), (c), and (d).
Fig. 2
Fig. 2 Measured (red line) and simulated (blue line) transmission spectra (in dB) of (a) a single SRR unit and (b) a coupled SRR pair unit in the waveguides. The insets show schematics of the experimental setups and the simulation models.
Fig. 3
Fig. 3 Simulated electric field intensity distributions in the z = 0 plane at (a) 6.6 GHz for the resonance frequency of the single SRR, (b) 6.05 GHz and (c) 7 GHz for the resonance frequencies of the coupled SRR pair, and (d) 6.6 GHz for the center frequency of the passband of the coupled SRR pair. The field intensity values have been normalized.
Fig. 4
Fig. 4 (a) Measured (black dotted line) and simulated (black solid line) transmission spectra (in dB) of microwaves transmitted through the subwavelength aperture. (b) Measured (blue dashed lines) and simulated (blue solid lines) transmission spectra of microwaves transmitted by E-field coupling of two resonant SRRs located on either side of the subwavelength aperture. The red solid line represents the simulation result obtained when the metal plane and the FR4 are assumed to be lossless. The insets show schematics of the experimental setups and the simulation models.
Fig. 5
Fig. 5 Simulated electric field intensity distributions at the two gaps in the y = 0 plane at 6.3 GHz at phase angles of (a) 0°, (b) 45°, (c) 90° and (d) 135°.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

a ˙ 1 (t)=(i ω 1 - T 1 ) a 1 (t)+iκ a 2 (t)+ F 1 (t)
a ˙ 2 (t)=(i ω 2 - T 2 ) a 2 (t)+iκ a 1 (t)+ F 2 (t)
η= Γ w | a 2 | 2 Γ 1 | a 1 | 2 +( Γ w + Γ 2 ) | a 2 | 2

Metrics