Abstract

We demonstrate that balanced optical-microwave phase detectors (BOMPD) are capable of optical-RF synchronization with sub-femtosecond residual timing jitter for large-scale timing distribution systems. RF-to-optical synchronization is achieved with a long-term stability of < 1 fs RMS and < 7 fs pk-pk drift for over 10 hours and short-term stability of < 2 fs RMS jitter integrated from 1 Hz to 200 kHz as well as optical-to-RF synchronization with 0.5 fs RMS jitter integrated from 1 Hz to 20 kHz. Moreover, we achieve a −161 dBc/Hz noise floor that integrates well into the sub-fs regime and measure a nominal 50-dB AM-PM suppression ratio with potential improvement via DC offset adjustment.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-precise timing and synchronization for large-scale scientific instruments

Ming Xin, Kemal Şafak, and Franz X. Kärtner
Optica 5(12) 1564-1578 (2018)

Simple-structured, subfemtosecond-resolution optical-microwave phase detector

Chan-Gi Jeon, Yongjin Na, Bong-Wan Lee, and Jungwon Kim
Opt. Lett. 43(16) 3997-4000 (2018)

Distribution of a phase-stabilized 100.02 GHz millimeter-wave signal over a 160 km optical fiber with 4.1 × 10−17 instability

Nan Deng, Zhangweiyi Liu, Xiaocheng Wang, Tiantian Fu, Weilin Xie, and Yi Dong
Opt. Express 26(1) 339-346 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
    [Crossref]
  2. M. Y. Peng, P. T. Callahan, A. H. Nejadmalayeri, S. Valente, M. Xin, L. Grüner-Nielsen, E. M. Monberg, M. Yan, J. M. Fini, and F. X. Kärtner, “Long-term stable, sub-femtosecond timing distribution via a 1.2-km polarization-maintaining fiber link: approaching 10-21 link stability,” Opt. Express 21(17), 19982–19989 (2013).
    [Crossref] [PubMed]
  3. M. Xin, K. Safak, M. Y. Peng, P. T. Callahan, and F. X. Kärtner, “One-femtosecond, long-term stable remote laser synchronization over a 3.5-km fiber link,” Opt. Express 22(12), 14904–14912 (2014).
    [Crossref] [PubMed]
  4. J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
    [Crossref]
  5. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
    [Crossref]
  6. D. Li, M. Peng, H.-W. Chen, J. Lim, M. R. Watts, and F. Kärtner, “Fiber-Optic Demonstration of Optical Frequency Division for Erbium Silicon Photonics Integrated Oscillator,” in Conference on Lasers < Electro-Optics (Optical Society of America, 2014), p. SF1I.3.
    [Crossref]
  7. K. Jung, J. Shin, and J. Kim, “Ultralow Phase Noise Microwave Generation From Mode-Locked Er-Fiber Lasers With Subfemtosecond Integrated Timing Jitter,” IEEE Photon. J. 5(3), 5500906 (2013).
    [Crossref]
  8. V. Dolgovskiy, S. Schilt, N. Bucalovic, G. D. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3) 593–601 (2013).
  9. A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30(6), 667–669 (2005).
    [Crossref] [PubMed]
  10. K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol. 14(1), 84–96 (1996).
    [Crossref]
  11. X. Xie, Q. Zhou, K. Li, A. Beling, and J. C. Campbell, “1.8 Watt RF Power and 60% Power Conversion Efficiency Based on Photodiode Flip-chip-bonded on Diamond,” in Conference on Lasers < Electro-Optics (Optical Society of America, 2014), p. JTh5B.9.
    [Crossref]
  12. T. M. Fortier, F. Quinlan, A. Hati, C. Nelson, J. A. Taylor, Y. Fu, J. Campbell, and S. A. Diddams, “Photonic microwave generation with high-power photodiodes,” Opt. Lett. 38(10), 1712–1714 (2013).
    [PubMed]
  13. J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of Power-to-Phase Conversion in High-Speed P-I-N Photodiodes,” IEEE Photon. J. 3(1), 140–151 (2011).
    [Crossref]
  14. W. Zhang, T. Li, M. Lours, S. Seidelin, G. Santarelli, and Y. L. Coq, “Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation,” Appl. Phys. B 106(2), 301–308 (2012).
    [Crossref]
  15. W. Zhang, S. Seidelin, A. Joshi, S. Datta, G. Santarelli, and Y. Le Coq, “Dual photo-detector system for low phase noise microwave generation with femtosecond lasers,” Opt. Lett. 39(5), 1204–1207 (2014).
    [Crossref] [PubMed]
  16. F. Quinlan, F. N. Baynes, T. M. Fortier, Q. Zhou, A. Cross, J. C. Campbell, and S. A. Diddams, “Optical amplification and pulse interleaving for low-noise photonic microwave generation,” Opt. Lett. 39(6), 1581–1584 (2014).
    [Crossref] [PubMed]
  17. J. Kim, F. X. Kärtner, and F. Ludwig, “Balanced optical-microwave phase detectors for optoelectronic phase-locked loops,” Opt. Lett. 31(24), 3659–3661 (2006).
    [Crossref] [PubMed]
  18. J. Kim and F. X. Kärtner, “Attosecond-precision ultrafast photonics,” Laser Photon. Rev. 4(3), 432–456 (2010).
    [Crossref]
  19. K. Jung and J. Kim, “Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers,” Opt. Lett. 37(14), 2958–2960 (2012).
    [Crossref] [PubMed]
  20. M. Lessing, H. S. Margolis, C. T. A. Brown, P. Gill, and G. Marra, “Suppression of amplitude-to-phase noise conversion in balanced optical-microwave phase detectors,” Opt. Express 21(22), 27057–27062 (2013).
    [Crossref] [PubMed]

2014 (3)

2013 (5)

2012 (2)

W. Zhang, T. Li, M. Lours, S. Seidelin, G. Santarelli, and Y. L. Coq, “Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation,” Appl. Phys. B 106(2), 301–308 (2012).
[Crossref]

K. Jung and J. Kim, “Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers,” Opt. Lett. 37(14), 2958–2960 (2012).
[Crossref] [PubMed]

2011 (2)

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of Power-to-Phase Conversion in High-Speed P-I-N Photodiodes,” IEEE Photon. J. 3(1), 140–151 (2011).
[Crossref]

2010 (1)

J. Kim and F. X. Kärtner, “Attosecond-precision ultrafast photonics,” Laser Photon. Rev. 4(3), 432–456 (2010).
[Crossref]

2009 (1)

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

2008 (1)

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

2006 (1)

2005 (1)

1996 (1)

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol. 14(1), 84–96 (1996).
[Crossref]

Abgrall, M.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Bartels, A.

Baynes, F. N.

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30(6), 667–669 (2005).
[Crossref] [PubMed]

Bize, S.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Brown, C. T. A.

Bucalovic, N.

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. D. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3) 593–601 (2013).

Callahan, P. T.

Campbell, J.

Campbell, J. C.

Chen, J.

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Clairon, A.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Coq, Y. L.

W. Zhang, T. Li, M. Lours, S. Seidelin, G. Santarelli, and Y. L. Coq, “Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation,” Appl. Phys. B 106(2), 301–308 (2012).
[Crossref]

Cox, J. A.

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Cross, A.

Dagenais, M.

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol. 14(1), 84–96 (1996).
[Crossref]

Datta, S.

W. Zhang, S. Seidelin, A. Joshi, S. Datta, G. Santarelli, and Y. Le Coq, “Dual photo-detector system for low phase noise microwave generation with femtosecond lasers,” Opt. Lett. 39(5), 1204–1207 (2014).
[Crossref] [PubMed]

J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of Power-to-Phase Conversion in High-Speed P-I-N Photodiodes,” IEEE Photon. J. 3(1), 140–151 (2011).
[Crossref]

Diddams, S.

J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of Power-to-Phase Conversion in High-Speed P-I-N Photodiodes,” IEEE Photon. J. 3(1), 140–151 (2011).
[Crossref]

Diddams, S. A.

Dolgovskiy, V.

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. D. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3) 593–601 (2013).

Domenico, G. D.

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. D. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3) 593–601 (2013).

Dubois, B.

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. D. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3) 593–601 (2013).

English, E. M. L.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Esman, R. D.

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol. 14(1), 84–96 (1996).
[Crossref]

Fini, J. M.

Fortier, T. M.

Fu, Y.

Gill, P.

Giordano, V.

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. D. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3) 593–601 (2013).

Grop, S.

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. D. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3) 593–601 (2013).

Grüner-Nielsen, L.

Guéna, J.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Hati, A.

T. M. Fortier, F. Quinlan, A. Hati, C. Nelson, J. A. Taylor, Y. Fu, J. Campbell, and S. A. Diddams, “Photonic microwave generation with high-power photodiodes,” Opt. Lett. 38(10), 1712–1714 (2013).
[PubMed]

J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of Power-to-Phase Conversion in High-Speed P-I-N Photodiodes,” IEEE Photon. J. 3(1), 140–151 (2011).
[Crossref]

Hollberg, L.

Jiang, H.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Joshi, A.

W. Zhang, S. Seidelin, A. Joshi, S. Datta, G. Santarelli, and Y. Le Coq, “Dual photo-detector system for low phase noise microwave generation with femtosecond lasers,” Opt. Lett. 39(5), 1204–1207 (2014).
[Crossref] [PubMed]

J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of Power-to-Phase Conversion in High-Speed P-I-N Photodiodes,” IEEE Photon. J. 3(1), 140–151 (2011).
[Crossref]

Jung, K.

K. Jung, J. Shin, and J. Kim, “Ultralow Phase Noise Microwave Generation From Mode-Locked Er-Fiber Lasers With Subfemtosecond Integrated Timing Jitter,” IEEE Photon. J. 5(3), 5500906 (2013).
[Crossref]

K. Jung and J. Kim, “Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers,” Opt. Lett. 37(14), 2958–2960 (2012).
[Crossref] [PubMed]

Kärtner, F. X.

Kim, J.

K. Jung, J. Shin, and J. Kim, “Ultralow Phase Noise Microwave Generation From Mode-Locked Er-Fiber Lasers With Subfemtosecond Integrated Timing Jitter,” IEEE Photon. J. 5(3), 5500906 (2013).
[Crossref]

K. Jung and J. Kim, “Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers,” Opt. Lett. 37(14), 2958–2960 (2012).
[Crossref] [PubMed]

J. Kim and F. X. Kärtner, “Attosecond-precision ultrafast photonics,” Laser Photon. Rev. 4(3), 432–456 (2010).
[Crossref]

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

J. Kim, F. X. Kärtner, and F. Ludwig, “Balanced optical-microwave phase detectors for optoelectronic phase-locked loops,” Opt. Lett. 31(24), 3659–3661 (2006).
[Crossref] [PubMed]

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Le Coq, Y.

W. Zhang, S. Seidelin, A. Joshi, S. Datta, G. Santarelli, and Y. Le Coq, “Dual photo-detector system for low phase noise microwave generation with femtosecond lasers,” Opt. Lett. 39(5), 1204–1207 (2014).
[Crossref] [PubMed]

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Lessing, M.

Li, T.

W. Zhang, T. Li, M. Lours, S. Seidelin, G. Santarelli, and Y. L. Coq, “Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation,” Appl. Phys. B 106(2), 301–308 (2012).
[Crossref]

Lours, M.

W. Zhang, T. Li, M. Lours, S. Seidelin, G. Santarelli, and Y. L. Coq, “Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation,” Appl. Phys. B 106(2), 301–308 (2012).
[Crossref]

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Ludwig, F.

Margolis, H. S.

Marra, G.

Millo, J.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Monberg, E. M.

Nejadmalayeri, A. H.

Nelson, C.

T. M. Fortier, F. Quinlan, A. Hati, C. Nelson, J. A. Taylor, Y. Fu, J. Campbell, and S. A. Diddams, “Photonic microwave generation with high-power photodiodes,” Opt. Lett. 38(10), 1712–1714 (2013).
[PubMed]

J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of Power-to-Phase Conversion in High-Speed P-I-N Photodiodes,” IEEE Photon. J. 3(1), 140–151 (2011).
[Crossref]

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. Hollberg, “Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30(6), 667–669 (2005).
[Crossref] [PubMed]

Oskay, W. H.

Peng, M. Y.

Quinlan, F.

F. Quinlan, F. N. Baynes, T. M. Fortier, Q. Zhou, A. Cross, J. C. Campbell, and S. A. Diddams, “Optical amplification and pulse interleaving for low-noise photonic microwave generation,” Opt. Lett. 39(6), 1581–1584 (2014).
[Crossref] [PubMed]

T. M. Fortier, F. Quinlan, A. Hati, C. Nelson, J. A. Taylor, Y. Fu, J. Campbell, and S. A. Diddams, “Photonic microwave generation with high-power photodiodes,” Opt. Lett. 38(10), 1712–1714 (2013).
[PubMed]

J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of Power-to-Phase Conversion in High-Speed P-I-N Photodiodes,” IEEE Photon. J. 3(1), 140–151 (2011).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Safak, K.

Santarelli, G.

W. Zhang, S. Seidelin, A. Joshi, S. Datta, G. Santarelli, and Y. Le Coq, “Dual photo-detector system for low phase noise microwave generation with femtosecond lasers,” Opt. Lett. 39(5), 1204–1207 (2014).
[Crossref] [PubMed]

W. Zhang, T. Li, M. Lours, S. Seidelin, G. Santarelli, and Y. L. Coq, “Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation,” Appl. Phys. B 106(2), 301–308 (2012).
[Crossref]

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Schilt, S.

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. D. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3) 593–601 (2013).

Seidelin, S.

W. Zhang, S. Seidelin, A. Joshi, S. Datta, G. Santarelli, and Y. Le Coq, “Dual photo-detector system for low phase noise microwave generation with femtosecond lasers,” Opt. Lett. 39(5), 1204–1207 (2014).
[Crossref] [PubMed]

W. Zhang, T. Li, M. Lours, S. Seidelin, G. Santarelli, and Y. L. Coq, “Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation,” Appl. Phys. B 106(2), 301–308 (2012).
[Crossref]

Shin, J.

K. Jung, J. Shin, and J. Kim, “Ultralow Phase Noise Microwave Generation From Mode-Locked Er-Fiber Lasers With Subfemtosecond Integrated Timing Jitter,” IEEE Photon. J. 5(3), 5500906 (2013).
[Crossref]

Südmeyer, T.

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. D. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3) 593–601 (2013).

Taylor, J.

J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of Power-to-Phase Conversion in High-Speed P-I-N Photodiodes,” IEEE Photon. J. 3(1), 140–151 (2011).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Taylor, J. A.

Tobar, M. E.

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

Valente, S.

Williams, K. J.

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol. 14(1), 84–96 (1996).
[Crossref]

Wilpers, G.

Xin, M.

Yan, M.

Zhang, W.

W. Zhang, S. Seidelin, A. Joshi, S. Datta, G. Santarelli, and Y. Le Coq, “Dual photo-detector system for low phase noise microwave generation with femtosecond lasers,” Opt. Lett. 39(5), 1204–1207 (2014).
[Crossref] [PubMed]

W. Zhang, T. Li, M. Lours, S. Seidelin, G. Santarelli, and Y. L. Coq, “Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation,” Appl. Phys. B 106(2), 301–308 (2012).
[Crossref]

Zhou, Q.

Appl. Phys. B (2)

V. Dolgovskiy, S. Schilt, N. Bucalovic, G. D. Domenico, S. Grop, B. Dubois, V. Giordano, and T. Südmeyer, “Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range,” Appl. Phys. B 116(3) 593–601 (2013).

W. Zhang, T. Li, M. Lours, S. Seidelin, G. Santarelli, and Y. L. Coq, “Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation,” Appl. Phys. B 106(2), 301–308 (2012).
[Crossref]

Appl. Phys. Lett. (1)

J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guéna, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94(14), 141105 (2009).
[Crossref]

IEEE Photon. J. (2)

K. Jung, J. Shin, and J. Kim, “Ultralow Phase Noise Microwave Generation From Mode-Locked Er-Fiber Lasers With Subfemtosecond Integrated Timing Jitter,” IEEE Photon. J. 5(3), 5500906 (2013).
[Crossref]

J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of Power-to-Phase Conversion in High-Speed P-I-N Photodiodes,” IEEE Photon. J. 3(1), 140–151 (2011).
[Crossref]

J. Lightwave Technol. (1)

K. J. Williams, R. D. Esman, and M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” J. Lightwave Technol. 14(1), 84–96 (1996).
[Crossref]

Laser Photon. Rev. (1)

J. Kim and F. X. Kärtner, “Attosecond-precision ultrafast photonics,” Laser Photon. Rev. 4(3), 432–456 (2010).
[Crossref]

Nat. Photonics (2)

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Other (2)

X. Xie, Q. Zhou, K. Li, A. Beling, and J. C. Campbell, “1.8 Watt RF Power and 60% Power Conversion Efficiency Based on Photodiode Flip-chip-bonded on Diamond,” in Conference on Lasers < Electro-Optics (Optical Society of America, 2014), p. JTh5B.9.
[Crossref]

D. Li, M. Peng, H.-W. Chen, J. Lim, M. R. Watts, and F. Kärtner, “Fiber-Optic Demonstration of Optical Frequency Division for Erbium Silicon Photonics Integrated Oscillator,” in Conference on Lasers < Electro-Optics (Optical Society of America, 2014), p. SF1I.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Simplified schematic for an optoelectronic PLL to synchronize a VCO to a mode-locked laser (MLL). Gray inset shows a detailed schematic for the operation of the BOMPD as a phase detector. Assume N = 1 for simplicity.
Fig. 2
Fig. 2 Electro-optic sampling in the SGI for various modulator biasing conditions; (a) no RF signal applied, (b) reference bias signal applied for alternating quadrature bias, (c) VCO signal applied in addition to quadrature bias. Yellow dots indicate instances of electro-optic sampling.
Fig. 3
Fig. 3 Detailed experimental set-up for RF-to-optical synchronization. Second BOMPD is for an out-of-loop residual phase error measurement; MLL, mode-locked laser; BPF, bandpass filter; LNA, low noise amplifier; DIV, frequency divider; LPF, lowpass filter, LPNA, low phase noise amplifier; DCF, dispersion-compensation fiber; DAQ, analog-to-digital converter
Fig. 4
Fig. 4 Short-term residual phase error measurements for remote-station locking referred to 10.220 GHz (top) and its corresponding integrated RMS timing jitter starting from 1 Hz (bottom); Free-running phase noise of the VCO and laser are shown in black. Out-of-loop integrated jitter is <2 fs for a 100-kHz locking bandwidth.
Fig. 5
Fig. 5 Long-term drift measurement for remote-station locking referred to 10.220 GHz. Out-of-loop curve shows 1 fs RMS drift and < 7 fs pk-pk over 10 hours of uninterrupted operation, and 0.8 fs RMS drift over the first 6 hours.
Fig. 6
Fig. 6 Short-term residual phase error measurements for central-station locking referred to 10.833 GHz (top) and its corresponding integrated RMS timing jitter starting from 1 Hz (bottom); Free-running phase noise of the SLCO and laser are shown in black. Out-of-loop integrated jitter is < 0.5 fs for a 20-kHz locking bandwidth. Noise floor data below 10 Hz is discarded due to data acquisition error.
Fig. 7
Fig. 7 Improved BOMPD noise floor using low-frequency detection electronics for increased signal power. The −161 dBc/Hz noise floor corresponds to an integrated sub-fs noise floor well beyond 1 MHz.
Fig. 8
Fig. 8 AM-PM suppression measurement with the PLL unlocked (red) and locked (blue). BOMPD exhibits a nominal wideband −50 dB (or α = 0.003 rad) AM-PM suppression with improvement via DC offset adjustment.

Metrics