Abstract

A novel system has been developed that can capture the wide-field interference pattern generated by interfering two independent and incoherent laser sources. The interferograms are captured using a custom CMOS modulated light camera (MLC) which is capable of demodulating light in the megahertz region. Two stabilised HeNe lasers were constructed in order to keep the optical frequency difference (beat frequency) between the beams within the operational range of the camera.

This system is based on previously reported work of an ultrastable heterodyne interferometer [Opt. Express 20, 17722 (2012)]. The system used an electronic feedback system to mix down the heterodyne signal captured at each pixel on the camera to cancel out the effects of time varying piston phase changes observed across the array. In this paper, a similar technique is used to track and negate the effects of beat frequency variations across the two laser pattern. This technique makes it possible to capture the full field interferogram caused by interfering two independent lasers even though the beat frequency is effectively random.

As a demonstration of the system’s widefield interferogram capture capability, an image of a phase shifting object is taken using a very simple two laser interferometer.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrastable heterodyne interferometer system using a CMOS modulated light camera

Rikesh Patel, Samuel Achamfuo-Yeboah, Roger Light, and Matt Clark
Opt. Express 20(16) 17722-17733 (2012)

Widefield heterodyne interferometry using a custom CMOS modulated light camera

Rikesh Patel, Samuel Achamfuo-Yeboah, Roger Light, and Matt Clark
Opt. Express 19(24) 24546-24556 (2011)

Dynamic 3D imaging based on acousto-optic heterodyne fringe interferometry

Yingjian Guan, Yongkai Yin, Ameng Li, Xiaoli Liu, and Xiang Peng
Opt. Lett. 39(12) 3678-3681 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974).
    [Crossref] [PubMed]
  2. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [Crossref]
  3. N. A. Massie, R. D. Nelson, and S. Holly, “High-performance real-time heterodyne interferometry,” Appl. Opt. 18, 1797–1803 (1979).
    [Crossref] [PubMed]
  4. R. Dandliker, R. Thalmann, and D. Prongue, “Two-wavelength laser interferometry using superheterodyne detection,” Opt. Lett. 13, 339–341 (1988).
    [Crossref] [PubMed]
  5. M. Akiba, K. P. Chan, and N. Tanno, “Real-Time, micrometer depth-resolved imaging by low-coherence reflectometry and a two-dimensional heterodyne detection technique,” Jpn. J. App. Phys. 39, 1194–1196 (2000).
    [Crossref]
  6. S. Bourquin, V. Monterosso, P. Seitz, and R. P. Salathe, “Video-rate optical low-coherence reflectometry based on a linear smart detector array,” Opt. Lett. 25, 102–104 (2000).
    [Crossref]
  7. M. C. Pitter, C. W. See, and M. G. Somekh, “Full-field heterodyne interference microscope with spatially incoherent illumination,” Opt. Lett. 29, 1200–1202 (2004).
    [Crossref] [PubMed]
  8. A. Kimachi, “Real-time heterodyne speckle pattern interferometry using the correlation image sensor,” Appl. Opt. 49, 6808–6815 (2010).
    [Crossref] [PubMed]
  9. R. Patel, S. Achamfuo-Yeboah, R. Light, and M. Clark, “Widefield heterodyne interferometry using a custom CMOS modulated light camera,” Opt. Express 19, 24546–24556 (2011).
    [Crossref] [PubMed]
  10. G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Quantum Electronics Laser Science Conference (QELS) 1, 292–294 (2005).
    [Crossref]
  11. D. T. Pegg, “Interference of light from independent sources,” Phys. Rev. A 74, 063812 (2006).
    [Crossref]
  12. Z. Y. Ou, “Multi-photon interference and temporal distinguishability of photons,” Int. J. Mod. Phys. B 21, 5033–5058 (2007).
    [Crossref]
  13. H. Paul, “Interference between independent photons,” Rev. Mod. Phys. 58, 209–231 (1986).
    [Crossref]
  14. G. Magyar and L. Mandel, “Interference fringes produced by superposition of two independent maser light beams,” Nature (London) 198, 255–256 (1963).
    [Crossref]
  15. F. Louradour, F. Reynaud, B. Colombeau, and C. Froehly, “Interference fringes between two separate lasers,” Am. J. Phys 61, 242–245 (1993).
    [Crossref]
  16. L. Basano and P. Ottonello, “Interference fringes from stabilized diode lasers,” Am. J. Phys 68, 245–247 (2000).
    [Crossref]
  17. T. Kawalec and D. Bartoszek-Bober, “Two-laser interference visible to the naked eye,” Eur. J. Phys. 33, 85–90 (2012).
    [Crossref]
  18. R. Patel, S. Achamfuo-Yeboah, R. Light, and M. Clark, “Ultrastable heterodyne interferometer system using a CMOS modulated light camera,” Opt. Express 20, 17722–17733 (2012).
    [Crossref] [PubMed]
  19. S. J. Bennett, R. E. Ward, and D. C. Wilson, “Comments on: frequency stabilization of internal mirror he-ne lasers,” Appl. Opt. 12, 1406 (1973).
    [Crossref] [PubMed]
  20. C. L. Tang and H. Statz, “Nonlinear effects in the resonant absorption of several oscillating fields by a gas,” Phys. Rev. 128, 1013–1021 (1962).
    [Crossref]

2012 (2)

2011 (1)

2010 (1)

2007 (1)

Z. Y. Ou, “Multi-photon interference and temporal distinguishability of photons,” Int. J. Mod. Phys. B 21, 5033–5058 (2007).
[Crossref]

2006 (1)

D. T. Pegg, “Interference of light from independent sources,” Phys. Rev. A 74, 063812 (2006).
[Crossref]

2005 (1)

G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Quantum Electronics Laser Science Conference (QELS) 1, 292–294 (2005).
[Crossref]

2004 (1)

2000 (3)

M. Akiba, K. P. Chan, and N. Tanno, “Real-Time, micrometer depth-resolved imaging by low-coherence reflectometry and a two-dimensional heterodyne detection technique,” Jpn. J. App. Phys. 39, 1194–1196 (2000).
[Crossref]

S. Bourquin, V. Monterosso, P. Seitz, and R. P. Salathe, “Video-rate optical low-coherence reflectometry based on a linear smart detector array,” Opt. Lett. 25, 102–104 (2000).
[Crossref]

L. Basano and P. Ottonello, “Interference fringes from stabilized diode lasers,” Am. J. Phys 68, 245–247 (2000).
[Crossref]

1993 (1)

F. Louradour, F. Reynaud, B. Colombeau, and C. Froehly, “Interference fringes between two separate lasers,” Am. J. Phys 61, 242–245 (1993).
[Crossref]

1988 (1)

1986 (1)

H. Paul, “Interference between independent photons,” Rev. Mod. Phys. 58, 209–231 (1986).
[Crossref]

1982 (1)

1979 (1)

1974 (1)

1973 (1)

1963 (1)

G. Magyar and L. Mandel, “Interference fringes produced by superposition of two independent maser light beams,” Nature (London) 198, 255–256 (1963).
[Crossref]

1962 (1)

C. L. Tang and H. Statz, “Nonlinear effects in the resonant absorption of several oscillating fields by a gas,” Phys. Rev. 128, 1013–1021 (1962).
[Crossref]

Achamfuo-Yeboah, S.

Akiba, M.

M. Akiba, K. P. Chan, and N. Tanno, “Real-Time, micrometer depth-resolved imaging by low-coherence reflectometry and a two-dimensional heterodyne detection technique,” Jpn. J. App. Phys. 39, 1194–1196 (2000).
[Crossref]

Bartoszek-Bober, D.

T. Kawalec and D. Bartoszek-Bober, “Two-laser interference visible to the naked eye,” Eur. J. Phys. 33, 85–90 (2012).
[Crossref]

Basano, L.

L. Basano and P. Ottonello, “Interference fringes from stabilized diode lasers,” Am. J. Phys 68, 245–247 (2000).
[Crossref]

Bennett, S. J.

Bourquin, S.

Brangaccio, D. J.

Bruning, J. H.

Chan, K. P.

M. Akiba, K. P. Chan, and N. Tanno, “Real-Time, micrometer depth-resolved imaging by low-coherence reflectometry and a two-dimensional heterodyne detection technique,” Jpn. J. App. Phys. 39, 1194–1196 (2000).
[Crossref]

Clark, M.

Colombeau, B.

F. Louradour, F. Reynaud, B. Colombeau, and C. Froehly, “Interference fringes between two separate lasers,” Am. J. Phys 61, 242–245 (1993).
[Crossref]

Dandliker, R.

Froehly, C.

F. Louradour, F. Reynaud, B. Colombeau, and C. Froehly, “Interference fringes between two separate lasers,” Am. J. Phys 61, 242–245 (1993).
[Crossref]

Gallagher, J. E.

Herriott, D. R.

Holly, S.

Ina, H.

Kawalec, T.

T. Kawalec and D. Bartoszek-Bober, “Two-laser interference visible to the naked eye,” Eur. J. Phys. 33, 85–90 (2012).
[Crossref]

Kimachi, A.

Kobayashi, S.

Light, R.

Louradour, F.

F. Louradour, F. Reynaud, B. Colombeau, and C. Froehly, “Interference fringes between two separate lasers,” Am. J. Phys 61, 242–245 (1993).
[Crossref]

Magyar, G.

G. Magyar and L. Mandel, “Interference fringes produced by superposition of two independent maser light beams,” Nature (London) 198, 255–256 (1963).
[Crossref]

Mandel, L.

G. Magyar and L. Mandel, “Interference fringes produced by superposition of two independent maser light beams,” Nature (London) 198, 255–256 (1963).
[Crossref]

Massie, N. A.

Monterosso, V.

Nelson, R. D.

Ottonello, P.

L. Basano and P. Ottonello, “Interference fringes from stabilized diode lasers,” Am. J. Phys 68, 245–247 (2000).
[Crossref]

Ou, Z. Y.

Z. Y. Ou, “Multi-photon interference and temporal distinguishability of photons,” Int. J. Mod. Phys. B 21, 5033–5058 (2007).
[Crossref]

Patel, R.

Paul, H.

H. Paul, “Interference between independent photons,” Rev. Mod. Phys. 58, 209–231 (1986).
[Crossref]

Pegg, D. T.

D. T. Pegg, “Interference of light from independent sources,” Phys. Rev. A 74, 063812 (2006).
[Crossref]

Pitter, M. C.

Prongue, D.

Reynaud, F.

F. Louradour, F. Reynaud, B. Colombeau, and C. Froehly, “Interference fringes between two separate lasers,” Am. J. Phys 61, 242–245 (1993).
[Crossref]

Rosenfeld, D. P.

Salathe, R. P.

Scarcelli, G.

G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Quantum Electronics Laser Science Conference (QELS) 1, 292–294 (2005).
[Crossref]

See, C. W.

Seitz, P.

Shih, Y.

G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Quantum Electronics Laser Science Conference (QELS) 1, 292–294 (2005).
[Crossref]

Somekh, M. G.

Statz, H.

C. L. Tang and H. Statz, “Nonlinear effects in the resonant absorption of several oscillating fields by a gas,” Phys. Rev. 128, 1013–1021 (1962).
[Crossref]

Takeda, M.

Tang, C. L.

C. L. Tang and H. Statz, “Nonlinear effects in the resonant absorption of several oscillating fields by a gas,” Phys. Rev. 128, 1013–1021 (1962).
[Crossref]

Tanno, N.

M. Akiba, K. P. Chan, and N. Tanno, “Real-Time, micrometer depth-resolved imaging by low-coherence reflectometry and a two-dimensional heterodyne detection technique,” Jpn. J. App. Phys. 39, 1194–1196 (2000).
[Crossref]

Thalmann, R.

Valencia, A.

G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Quantum Electronics Laser Science Conference (QELS) 1, 292–294 (2005).
[Crossref]

Ward, R. E.

White, A. D.

Wilson, D. C.

Am. J. Phys (2)

F. Louradour, F. Reynaud, B. Colombeau, and C. Froehly, “Interference fringes between two separate lasers,” Am. J. Phys 61, 242–245 (1993).
[Crossref]

L. Basano and P. Ottonello, “Interference fringes from stabilized diode lasers,” Am. J. Phys 68, 245–247 (2000).
[Crossref]

Appl. Opt. (4)

Eur. J. Phys. (1)

T. Kawalec and D. Bartoszek-Bober, “Two-laser interference visible to the naked eye,” Eur. J. Phys. 33, 85–90 (2012).
[Crossref]

Int. J. Mod. Phys. B (1)

Z. Y. Ou, “Multi-photon interference and temporal distinguishability of photons,” Int. J. Mod. Phys. B 21, 5033–5058 (2007).
[Crossref]

J. Opt. Soc. Am. (1)

Jpn. J. App. Phys. (1)

M. Akiba, K. P. Chan, and N. Tanno, “Real-Time, micrometer depth-resolved imaging by low-coherence reflectometry and a two-dimensional heterodyne detection technique,” Jpn. J. App. Phys. 39, 1194–1196 (2000).
[Crossref]

Nature (London) (1)

G. Magyar and L. Mandel, “Interference fringes produced by superposition of two independent maser light beams,” Nature (London) 198, 255–256 (1963).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. (1)

C. L. Tang and H. Statz, “Nonlinear effects in the resonant absorption of several oscillating fields by a gas,” Phys. Rev. 128, 1013–1021 (1962).
[Crossref]

Phys. Rev. A (1)

D. T. Pegg, “Interference of light from independent sources,” Phys. Rev. A 74, 063812 (2006).
[Crossref]

Quantum Electronics Laser Science Conference (QELS) (1)

G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Quantum Electronics Laser Science Conference (QELS) 1, 292–294 (2005).
[Crossref]

Rev. Mod. Phys. (1)

H. Paul, “Interference between independent photons,” Rev. Mod. Phys. 58, 209–231 (1986).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1:
Fig. 1: A simple flow schematic of a MLC pixel. The modulated optical signal is amplified, mixed (with reference signals) and output (when the pixel is selected) continuously. Two laser interferograms appear stable as long as the beat frequency is within the system operational bandwidth, which is dependent on the amplitude/phase/frequency response of the individual components in each pixel. Further details on the MLC is available in a previous publication [9].
Fig. 2:
Fig. 2: The two laser interferometer system. Each laser is completely independent with separate power supply units and heated using individual tube coiling, and are aligned separately. Polarisers are used to adjust the polarisation plane, improving fringe visibility. The monitoring photodiode is used to keep track of the beat frequency. The MLC uses the signal generated by one pixel to mix with the detected signal at all other pixels, tracking any changes in frequency and phase relative to that single pixel. Filters and amplifiers are used to clean up the signal before it is used as the reference signal.
Fig. 3:
Fig. 3: Stabilised laser system. Each HeNe laser outputs two longitudinal modes which are orthogonally polarised. As the tubes expand and contract (e.g. due to temperature), the optical frequency and intensity of these modes shift. The intensities are detected at the waste exit and compared; the current into the tube coiling is adjusted, which generates heat and changes the tube length. This feedback system is used to maintain a constant frequency for each mode.
Fig. 4:
Fig. 4: A photograph of the two laser interferometer system showing that each laser source is independent and the simplicity of the system.
Fig. 5:
Fig. 5: The images of interference fringe patterns generated using two lasers. Image (a), (b) and (c) show the captured fringe pattern. Colour represents radians. The beat signal is also recorded at the point of each image capture and an FFT is conducted on the snapshot beat signal waveform, shown in plots (d), (e) and (f). Even though this beat frequency varies, the interferometer system compensates and outputs the same relative fringe pattern.
Fig. 6:
Fig. 6: Figure (a) shows the captured fringe pattern generated by interfering two lasers with a microscope slide introduced part way (right of image). Figure (b) shows the image after an unwrapping process. Figure (c) shows the difference between the exposed and unexposed images (after normalisation and unwrapping). Colour represents radians.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V pixel = V dc x , y + V mod x , y sin ( ω x , y , t + ϕ x , y ) V rfout = V dc 0 + V mod 0 sin ( ω 0 , t τ t + ϕ 0 )
V i = V pixel . V rfout 0 ° = V mod x , y . V mod 0 sin ( ϕ x , y ϕ 0 ) V q = V pixel . V rfout 90 ° = V mod x , y . V mod 0 . cos ( ϕ x , y ϕ 0 )
ϕ x , y = atan ( V i V q ) ϕ 0

Metrics