Abstract

The possibility of all-optical phase-preserving amplitude regeneration for star-8QAM is demonstrated using a modified nonlinear optical loop mirror. Experiments show a reduction in amplitude noise on both amplitude levels simultaneously, considering two different types of signal distortions: deterministic low-frequency amplitude modulation and broadband amplitude noise. Furthermore, using this amplitude regeneration, the robustness against nonlinear phase noise from fiber nonlinearity in a transmission line is increased. The scheme suppresses the conversion of amplitude noise to nonlinear phase noise. This is shown for simultaneous amplitude regeneration of the two amplitude states as well as for amplitude regeneration of the high-power states only. If the transmission is limited by nonlinear phase noise, single-level operation at the more critical higher-power state will benefit because of the wider plateau region. Numerical simulations confirm the experimental results.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cascaded phase-preserving multilevel amplitude regeneration

Tobias Roethlingshoefer, Georgy Onishchukov, Bernhard Schmauss, and Gerd Leuchs
Opt. Express 22(26) 31729-31734 (2014)

All-optical tunable multilevel amplitude regeneration based on coherent wave mixing using a polarizer

Zahra Bakhtiari and Alexander A. Sawchuk
Opt. Express 23(8) 10533-10539 (2015)

All-optical DQPSK signal regeneration using 2R amplitude regenerators

Masayuki Matsumoto
Opt. Express 18(1) 10-24 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer and R.-J. Essiambre, “Advanced Modulation Formats for High-capacity Optical Transport Networks,” J. Lightwave Technol. 24(12), 4711–4728 (2006).
    [Crossref]
  2. M. Seimetz, “High-Order Modulation for Optical Fiber Transmission,” Springer Series in Optical Sciences, Springer, (2009).
  3. J. P. Gordon and L. F. Mollenauer, “Phase Noise in Photonic Communications Systems using Linear Amplifiers,” Opt. Lett. 15(23), 1351–1353 (1990).
    [Crossref] [PubMed]
  4. K. Hoon, “Cross-Phase-Modulation-Induced Nonlinear Phase Noise in WDM Direct-Detection DPSK Systems,” J. Lightwave Technol. 21(8), 1770–1774 (2003).
    [Crossref]
  5. P. Johannisson, G. Adolfsson, and M. Karlsson, “Suppression of Phase Error in Differential Phase-shift Keying Data by Amplitude Regeneration,” Opt. Lett. 31(10), 1385–1387 (2006).
    [Crossref] [PubMed]
  6. M. Matsumoto, “Performance Improvement of Phase-shift-keying Signal Transmission by Means of Optical Limiters using Four-wave Mixing in Fibers,” J. Lightwave Technol. 23(9), 2696–2701 (2005).
    [Crossref]
  7. T. I. Lakoba, J. R. Williams, and M. Vasilyev, “Low-power, Phase-preserving 2R Amplitude Regenerator,” Opt. Commun. 285(3), 331–337 (2012).
    [Crossref]
  8. L. Bramerie, Q. T. Le, M. Guy, A. O’Hare, S. Lobo, M. Joindot, J.-C. Simon, H. T. Nguyen, and J.-L. Oudar, “All-Optical 2R Regeneration With a Vertical Microcavity-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 870–883 (2012).
  9. K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-Regeneration of an 80-Gb/s RZ-DQPSK Signal by a Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 19(19), 1475–1477 (2007).
    [Crossref]
  10. M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel Phase-preserving Amplitude Rregeneration using a Single Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
    [Crossref]
  11. M. Sorokina, “Design of multilevel amplitude regenerative system,” Opt. Lett. 39(8), 2499–2502 (2014).
    [Crossref] [PubMed]
  12. T. Roethlingshoefer, T. Richter, C. Schubert, G. Onishchukov, B. Schmauss, and G. Leuchs, “Phase-preserving Amplitude Regeneration of a Two-amplitude-level Modulation Format,” Proc. Conference on Lasers and Electro-Optics - Pacific Rim, paper TuPO-1, 2013.
    [Crossref]
  13. S. Boscolo, R. Bhamber, and S. K. Turitsyn, “Design of Raman-based Nonlinear Loop Mirror for All-Optical 2R Regeneration of Differential Phase-Shift-Keying Transmission,” IEEE J. Quantum Electron. 42(7), 619–624 (2006).
    [Crossref]
  14. N. Chi, B. Carlsson, and P. Jeppesen, “2R Regeneration based on Dispersion-imbalanced Loop Mirror and its Applications in WDM systems,” J. Lightwave Technol. 2002. 20(10), 1809–1817 (2002).
    [Crossref]
  15. R. Elschner, T. Richter, and C. Schubert, “QAM Phase-Regeneration in a Phase-sensitive Fiber-amplifier,” Proc. 39th European Conference on Optical Communication (ECOC), paper We.3.A.2, 2013.
    [Crossref]

2014 (1)

2012 (2)

T. I. Lakoba, J. R. Williams, and M. Vasilyev, “Low-power, Phase-preserving 2R Amplitude Regenerator,” Opt. Commun. 285(3), 331–337 (2012).
[Crossref]

L. Bramerie, Q. T. Le, M. Guy, A. O’Hare, S. Lobo, M. Joindot, J.-C. Simon, H. T. Nguyen, and J.-L. Oudar, “All-Optical 2R Regeneration With a Vertical Microcavity-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 870–883 (2012).

2011 (1)

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel Phase-preserving Amplitude Rregeneration using a Single Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

2007 (1)

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-Regeneration of an 80-Gb/s RZ-DQPSK Signal by a Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

2006 (3)

2005 (1)

2003 (1)

2002 (1)

N. Chi, B. Carlsson, and P. Jeppesen, “2R Regeneration based on Dispersion-imbalanced Loop Mirror and its Applications in WDM systems,” J. Lightwave Technol. 2002. 20(10), 1809–1817 (2002).
[Crossref]

1990 (1)

Adolfsson, G.

Bhamber, R.

S. Boscolo, R. Bhamber, and S. K. Turitsyn, “Design of Raman-based Nonlinear Loop Mirror for All-Optical 2R Regeneration of Differential Phase-Shift-Keying Transmission,” IEEE J. Quantum Electron. 42(7), 619–624 (2006).
[Crossref]

Boscolo, S.

S. Boscolo, R. Bhamber, and S. K. Turitsyn, “Design of Raman-based Nonlinear Loop Mirror for All-Optical 2R Regeneration of Differential Phase-Shift-Keying Transmission,” IEEE J. Quantum Electron. 42(7), 619–624 (2006).
[Crossref]

Bramerie, L.

L. Bramerie, Q. T. Le, M. Guy, A. O’Hare, S. Lobo, M. Joindot, J.-C. Simon, H. T. Nguyen, and J.-L. Oudar, “All-Optical 2R Regeneration With a Vertical Microcavity-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 870–883 (2012).

Carlsson, B.

N. Chi, B. Carlsson, and P. Jeppesen, “2R Regeneration based on Dispersion-imbalanced Loop Mirror and its Applications in WDM systems,” J. Lightwave Technol. 2002. 20(10), 1809–1817 (2002).
[Crossref]

Chi, N.

N. Chi, B. Carlsson, and P. Jeppesen, “2R Regeneration based on Dispersion-imbalanced Loop Mirror and its Applications in WDM systems,” J. Lightwave Technol. 2002. 20(10), 1809–1817 (2002).
[Crossref]

Cvecek, K.

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-Regeneration of an 80-Gb/s RZ-DQPSK Signal by a Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

Essiambre, R.-J.

Gordon, J. P.

Guy, M.

L. Bramerie, Q. T. Le, M. Guy, A. O’Hare, S. Lobo, M. Joindot, J.-C. Simon, H. T. Nguyen, and J.-L. Oudar, “All-Optical 2R Regeneration With a Vertical Microcavity-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 870–883 (2012).

Hierold, M.

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel Phase-preserving Amplitude Rregeneration using a Single Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

Hoon, K.

Jeppesen, P.

N. Chi, B. Carlsson, and P. Jeppesen, “2R Regeneration based on Dispersion-imbalanced Loop Mirror and its Applications in WDM systems,” J. Lightwave Technol. 2002. 20(10), 1809–1817 (2002).
[Crossref]

Johannisson, P.

Joindot, M.

L. Bramerie, Q. T. Le, M. Guy, A. O’Hare, S. Lobo, M. Joindot, J.-C. Simon, H. T. Nguyen, and J.-L. Oudar, “All-Optical 2R Regeneration With a Vertical Microcavity-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 870–883 (2012).

Karlsson, M.

Lakoba, T. I.

T. I. Lakoba, J. R. Williams, and M. Vasilyev, “Low-power, Phase-preserving 2R Amplitude Regenerator,” Opt. Commun. 285(3), 331–337 (2012).
[Crossref]

Le, Q. T.

L. Bramerie, Q. T. Le, M. Guy, A. O’Hare, S. Lobo, M. Joindot, J.-C. Simon, H. T. Nguyen, and J.-L. Oudar, “All-Optical 2R Regeneration With a Vertical Microcavity-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 870–883 (2012).

Leuchs, G.

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel Phase-preserving Amplitude Rregeneration using a Single Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-Regeneration of an 80-Gb/s RZ-DQPSK Signal by a Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

Lobo, S.

L. Bramerie, Q. T. Le, M. Guy, A. O’Hare, S. Lobo, M. Joindot, J.-C. Simon, H. T. Nguyen, and J.-L. Oudar, “All-Optical 2R Regeneration With a Vertical Microcavity-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 870–883 (2012).

Ludwig, R.

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-Regeneration of an 80-Gb/s RZ-DQPSK Signal by a Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

Matsumoto, M.

Mollenauer, L. F.

Nguyen, H. T.

L. Bramerie, Q. T. Le, M. Guy, A. O’Hare, S. Lobo, M. Joindot, J.-C. Simon, H. T. Nguyen, and J.-L. Oudar, “All-Optical 2R Regeneration With a Vertical Microcavity-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 870–883 (2012).

O’Hare, A.

L. Bramerie, Q. T. Le, M. Guy, A. O’Hare, S. Lobo, M. Joindot, J.-C. Simon, H. T. Nguyen, and J.-L. Oudar, “All-Optical 2R Regeneration With a Vertical Microcavity-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 870–883 (2012).

Onishchukov, G.

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel Phase-preserving Amplitude Rregeneration using a Single Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-Regeneration of an 80-Gb/s RZ-DQPSK Signal by a Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

Oudar, J.-L.

L. Bramerie, Q. T. Le, M. Guy, A. O’Hare, S. Lobo, M. Joindot, J.-C. Simon, H. T. Nguyen, and J.-L. Oudar, “All-Optical 2R Regeneration With a Vertical Microcavity-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 870–883 (2012).

Roethlingshoefer, T.

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel Phase-preserving Amplitude Rregeneration using a Single Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

Schmauss, B.

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel Phase-preserving Amplitude Rregeneration using a Single Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-Regeneration of an 80-Gb/s RZ-DQPSK Signal by a Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

Schubert, C.

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-Regeneration of an 80-Gb/s RZ-DQPSK Signal by a Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

Simon, J.-C.

L. Bramerie, Q. T. Le, M. Guy, A. O’Hare, S. Lobo, M. Joindot, J.-C. Simon, H. T. Nguyen, and J.-L. Oudar, “All-Optical 2R Regeneration With a Vertical Microcavity-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 870–883 (2012).

Sorokina, M.

Sponsel, K.

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel Phase-preserving Amplitude Rregeneration using a Single Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-Regeneration of an 80-Gb/s RZ-DQPSK Signal by a Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

Stephan, C.

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-Regeneration of an 80-Gb/s RZ-DQPSK Signal by a Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

Turitsyn, S. K.

S. Boscolo, R. Bhamber, and S. K. Turitsyn, “Design of Raman-based Nonlinear Loop Mirror for All-Optical 2R Regeneration of Differential Phase-Shift-Keying Transmission,” IEEE J. Quantum Electron. 42(7), 619–624 (2006).
[Crossref]

Vasilyev, M.

T. I. Lakoba, J. R. Williams, and M. Vasilyev, “Low-power, Phase-preserving 2R Amplitude Regenerator,” Opt. Commun. 285(3), 331–337 (2012).
[Crossref]

Williams, J. R.

T. I. Lakoba, J. R. Williams, and M. Vasilyev, “Low-power, Phase-preserving 2R Amplitude Regenerator,” Opt. Commun. 285(3), 331–337 (2012).
[Crossref]

Winzer, P. J.

IEEE J. Quantum Electron. (1)

S. Boscolo, R. Bhamber, and S. K. Turitsyn, “Design of Raman-based Nonlinear Loop Mirror for All-Optical 2R Regeneration of Differential Phase-Shift-Keying Transmission,” IEEE J. Quantum Electron. 42(7), 619–624 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Bramerie, Q. T. Le, M. Guy, A. O’Hare, S. Lobo, M. Joindot, J.-C. Simon, H. T. Nguyen, and J.-L. Oudar, “All-Optical 2R Regeneration With a Vertical Microcavity-Based Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 870–883 (2012).

IEEE Photon. Technol. Lett. (2)

K. Cvecek, K. Sponsel, R. Ludwig, C. Schubert, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-Regeneration of an 80-Gb/s RZ-DQPSK Signal by a Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 19(19), 1475–1477 (2007).
[Crossref]

M. Hierold, T. Roethlingshoefer, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Multilevel Phase-preserving Amplitude Rregeneration using a Single Nonlinear Amplifying Loop Mirror,” IEEE Photon. Technol. Lett. 23(14), 1007–1009 (2011).
[Crossref]

J. Lightwave Technol. (3)

J. Lightwave Technol. 2002. (1)

N. Chi, B. Carlsson, and P. Jeppesen, “2R Regeneration based on Dispersion-imbalanced Loop Mirror and its Applications in WDM systems,” J. Lightwave Technol. 2002. 20(10), 1809–1817 (2002).
[Crossref]

Opt. Commun. (1)

T. I. Lakoba, J. R. Williams, and M. Vasilyev, “Low-power, Phase-preserving 2R Amplitude Regenerator,” Opt. Commun. 285(3), 331–337 (2012).
[Crossref]

Opt. Lett. (3)

Other (3)

M. Seimetz, “High-Order Modulation for Optical Fiber Transmission,” Springer Series in Optical Sciences, Springer, (2009).

R. Elschner, T. Richter, and C. Schubert, “QAM Phase-Regeneration in a Phase-sensitive Fiber-amplifier,” Proc. 39th European Conference on Optical Communication (ECOC), paper We.3.A.2, 2013.
[Crossref]

T. Roethlingshoefer, T. Richter, C. Schubert, G. Onishchukov, B. Schmauss, and G. Leuchs, “Phase-preserving Amplitude Regeneration of a Two-amplitude-level Modulation Format,” Proc. Conference on Lasers and Electro-Optics - Pacific Rim, paper TuPO-1, 2013.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental aNOLM setup (left) and typical amplitude transfer function (right).

Fig. 2
Fig. 2

Eye diagrams of undistorted (left), distorted (middle) and regenerated (right) signal obtained with a direct-detection receiver. Amplitude noise reduction as well as an increase in state power ratio can be clearly seen.

Fig. 3
Fig. 3

Histogram of the deterministically distorted signal (left) and regenerated signal (right) obtained with a direct-detection receiver and the constellation diagram of a star-8QAM signal. The low-power states are marked red, the high-power states green.

Fig. 4
Fig. 4

Experimental setup emulating a nonlinear transmission line.

Fig. 5
Fig. 5

Constellation diagrams of a distorted star-8QAM before (a) and after (b) a nonlinear transmission line as well as the regenerated signal before (c) and after (d) the same transmission line.

Fig. 6
Fig. 6

Constellation diagrams of a distorted star-8QAM before (a) and after (b) a nonlinear transmission line as well as the regenerated signal before (c) and after (d) the same transmission line at a fiber launch power of 15 dBm.

Fig. 7
Fig. 7

Left: Signal phase histograms for the high-power (top) and low-power (bottom) states of the regenerated (solid) signal and the reference one (dotted), respectively, for a launch power of 15 dBm. Right: Phase noise suppression in the nonlinear transmission line for different fiber launch power.

Fig. 8
Fig. 8

Simulated transfer function for the pulse centers (dotted) and the average power (solid), both normalized to the first plateau. Additionally, the input and output noise distributions obtained are shown. The input noise distribution is chosen in accordance to the experimental results from section 3.2.

Metrics