Abstract

State-of-the-art autostereoscopic displays often do not comply with mandatory requirements for outdoor use, because of their limitations in size, luminance, number of 3D viewing zones, and maximum 3D viewing distances. In this paper we propose a concept for a modular autostereoscopic multi-view laser display with sunlight readable luminance, theoretically up to several thousand 3D viewing zones, and maximum 3D viewing distances of up to 70 meters. Each picture element contains three laser diodes, a cylindrical microlens, as well as a MEMS mirror, which deflects the collimated light beams to the left and right eyes of multiple viewers in a time-multiplexed manner. To demonstrate the principle, we have developed a prototype display with 5 x 3 picture elements.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic exit pupil trackers for autostereoscopic displays

Kaan Akşit, Hadi Baghsiahi, Phil Surman, Selim Ӧlçer, Eero Willman, David R. Selviah, Sally Day, and Hakan Urey
Opt. Express 21(12) 14331-14341 (2013)

Three-dimensional display technologies

Jason Geng
Adv. Opt. Photon. 5(4) 456-535 (2013)

Demonstration of a multiview projection display using decentered microlens arrays

Lawrence Bogaert, Youri Meuret, Stijn Roelandt, Aykut Avci, Herbert De Smet, and Hugo Thienpont
Opt. Express 18(25) 26092-26106 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
    [Crossref]
  2. O. Eldes, K. Akşit, and H. Urey, “Multi-view autostereoscopic projection display using rotating screen,” Opt. Express 21(23), 29043–29054 (2013).
    [Crossref] [PubMed]
  3. T. Balogh, P. Kovacs, and A. Barsi, “Holovizio 3D display system,” in Proceedings of 3DTV Conference 2007, (Kos Island, Greece, 2007) pp. 1–4.
    [Crossref]
  4. J. Reitterer, F. Fidler, F. Saint Julien-Wallsee, G. Schmid, W. Gartner, W. Leeb, and U. Schmid, “Large-scale autostereoscopic outdoor display,” Proc. SPIE 8648, 86480G (2013).
    [Crossref]
  5. J. Jurik, A. Jones, M. Bolas, and P. Debevec, “Prototyping a light field display involving direct observation of a video projector array,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, (Colorado Springs, 2011) pp. 15–20.
    [Crossref]
  6. L. Lipton, Foundations of the Stereoscopic Cinema (Van Nostrand Reinhold, 1982), Chap. 2.
  7. V. Sturm, H. Treusch, and P. Loosen, “Cylindrical microlenses for collimating high-power diode lasers,” Proc. SPIE 3097, 717–726 (1997).
    [Crossref]
  8. International Electrotechnical Commission, “Safety of laser products - Part 1: Equipment classification and requirements,” IEC (EN) 60825–1 Ed. 2.0 (IEC, 2007).
  9. L. Kilcher and N. Abelé, “MEMS-based micro projection system with a 1.5cc optical engine,” Proc. SPIE 8252, 825204 (2012).
    [Crossref]

2013 (3)

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[Crossref]

O. Eldes, K. Akşit, and H. Urey, “Multi-view autostereoscopic projection display using rotating screen,” Opt. Express 21(23), 29043–29054 (2013).
[Crossref] [PubMed]

J. Reitterer, F. Fidler, F. Saint Julien-Wallsee, G. Schmid, W. Gartner, W. Leeb, and U. Schmid, “Large-scale autostereoscopic outdoor display,” Proc. SPIE 8648, 86480G (2013).
[Crossref]

2012 (1)

L. Kilcher and N. Abelé, “MEMS-based micro projection system with a 1.5cc optical engine,” Proc. SPIE 8252, 825204 (2012).
[Crossref]

1997 (1)

V. Sturm, H. Treusch, and P. Loosen, “Cylindrical microlenses for collimating high-power diode lasers,” Proc. SPIE 3097, 717–726 (1997).
[Crossref]

Abelé, N.

L. Kilcher and N. Abelé, “MEMS-based micro projection system with a 1.5cc optical engine,” Proc. SPIE 8252, 825204 (2012).
[Crossref]

Aksit, K.

Bolas, M.

J. Jurik, A. Jones, M. Bolas, and P. Debevec, “Prototyping a light field display involving direct observation of a video projector array,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, (Colorado Springs, 2011) pp. 15–20.
[Crossref]

Debevec, P.

J. Jurik, A. Jones, M. Bolas, and P. Debevec, “Prototyping a light field display involving direct observation of a video projector array,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, (Colorado Springs, 2011) pp. 15–20.
[Crossref]

Eldes, O.

Fidler, F.

J. Reitterer, F. Fidler, F. Saint Julien-Wallsee, G. Schmid, W. Gartner, W. Leeb, and U. Schmid, “Large-scale autostereoscopic outdoor display,” Proc. SPIE 8648, 86480G (2013).
[Crossref]

Gartner, W.

J. Reitterer, F. Fidler, F. Saint Julien-Wallsee, G. Schmid, W. Gartner, W. Leeb, and U. Schmid, “Large-scale autostereoscopic outdoor display,” Proc. SPIE 8648, 86480G (2013).
[Crossref]

Jones, A.

J. Jurik, A. Jones, M. Bolas, and P. Debevec, “Prototyping a light field display involving direct observation of a video projector array,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, (Colorado Springs, 2011) pp. 15–20.
[Crossref]

Jurik, J.

J. Jurik, A. Jones, M. Bolas, and P. Debevec, “Prototyping a light field display involving direct observation of a video projector array,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, (Colorado Springs, 2011) pp. 15–20.
[Crossref]

Kilcher, L.

L. Kilcher and N. Abelé, “MEMS-based micro projection system with a 1.5cc optical engine,” Proc. SPIE 8252, 825204 (2012).
[Crossref]

Lee, B.

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[Crossref]

Leeb, W.

J. Reitterer, F. Fidler, F. Saint Julien-Wallsee, G. Schmid, W. Gartner, W. Leeb, and U. Schmid, “Large-scale autostereoscopic outdoor display,” Proc. SPIE 8648, 86480G (2013).
[Crossref]

Loosen, P.

V. Sturm, H. Treusch, and P. Loosen, “Cylindrical microlenses for collimating high-power diode lasers,” Proc. SPIE 3097, 717–726 (1997).
[Crossref]

Reitterer, J.

J. Reitterer, F. Fidler, F. Saint Julien-Wallsee, G. Schmid, W. Gartner, W. Leeb, and U. Schmid, “Large-scale autostereoscopic outdoor display,” Proc. SPIE 8648, 86480G (2013).
[Crossref]

Saint Julien-Wallsee, F.

J. Reitterer, F. Fidler, F. Saint Julien-Wallsee, G. Schmid, W. Gartner, W. Leeb, and U. Schmid, “Large-scale autostereoscopic outdoor display,” Proc. SPIE 8648, 86480G (2013).
[Crossref]

Schmid, G.

J. Reitterer, F. Fidler, F. Saint Julien-Wallsee, G. Schmid, W. Gartner, W. Leeb, and U. Schmid, “Large-scale autostereoscopic outdoor display,” Proc. SPIE 8648, 86480G (2013).
[Crossref]

Schmid, U.

J. Reitterer, F. Fidler, F. Saint Julien-Wallsee, G. Schmid, W. Gartner, W. Leeb, and U. Schmid, “Large-scale autostereoscopic outdoor display,” Proc. SPIE 8648, 86480G (2013).
[Crossref]

Sturm, V.

V. Sturm, H. Treusch, and P. Loosen, “Cylindrical microlenses for collimating high-power diode lasers,” Proc. SPIE 3097, 717–726 (1997).
[Crossref]

Treusch, H.

V. Sturm, H. Treusch, and P. Loosen, “Cylindrical microlenses for collimating high-power diode lasers,” Proc. SPIE 3097, 717–726 (1997).
[Crossref]

Urey, H.

Opt. Express (1)

Phys. Today (1)

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[Crossref]

Proc. SPIE (3)

L. Kilcher and N. Abelé, “MEMS-based micro projection system with a 1.5cc optical engine,” Proc. SPIE 8252, 825204 (2012).
[Crossref]

V. Sturm, H. Treusch, and P. Loosen, “Cylindrical microlenses for collimating high-power diode lasers,” Proc. SPIE 3097, 717–726 (1997).
[Crossref]

J. Reitterer, F. Fidler, F. Saint Julien-Wallsee, G. Schmid, W. Gartner, W. Leeb, and U. Schmid, “Large-scale autostereoscopic outdoor display,” Proc. SPIE 8648, 86480G (2013).
[Crossref]

Other (4)

J. Jurik, A. Jones, M. Bolas, and P. Debevec, “Prototyping a light field display involving direct observation of a video projector array,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, (Colorado Springs, 2011) pp. 15–20.
[Crossref]

L. Lipton, Foundations of the Stereoscopic Cinema (Van Nostrand Reinhold, 1982), Chap. 2.

T. Balogh, P. Kovacs, and A. Barsi, “Holovizio 3D display system,” in Proceedings of 3DTV Conference 2007, (Kos Island, Greece, 2007) pp. 1–4.
[Crossref]

International Electrotechnical Commission, “Safety of laser products - Part 1: Equipment classification and requirements,” IEC (EN) 60825–1 Ed. 2.0 (IEC, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Basic time multiplex principle of a single trixel: (a) image information Im is displayed at the time instance t = t0 for the viewer’s left eye and (b) a different image information Im+1 is displayed at the subsequent time instance t = t0 + Δt for the viewer’s right eye.

Fig. 2
Fig. 2

Schematics of (a) integrated laser light source and (b) trixel including MEMS mirror and MID substrate.

Fig. 3
Fig. 3

Divergence angle θ and maximum 3D viewing distance dmax as a function of the reciprocal micromirror curvature (99% confidence intervals; the dashed lines represent the mean values).

Fig. 4
Fig. 4

(a) Prototype display and (b) different image information in viewing zones m and m + 1 at the maximum viewing distance of the first prototype of dmax = 5.1 m.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E e (ρ,φ,y) E 0 rect( φ 2 α max ) Horizontal MEMS mirror scanning w 0,SA 2 w SA 2 (ρ) exp( 2 y 2 w SA 2 (ρ) ) Vertical Gaussian “slow axis” profile ,
I e (r,ϑ,φ) I 0 rect( φ 2 α max ) ( λ πsin(ϑ) tan 2 ( θ 0,SA ) ) 2 exp( 2 tan 2 (ϑ) tan 2 ( θ 0,SA ) ).
φ=0 2π ϑ=0 π I e (ϑ,φ) sin(ϑ)dϑdφ=K P 0 ,

Metrics