Abstract

This work performs a paraxial analysis of three-component zoom lens with a fixed position of image-space focal point and a distance between object and image points, which is composed of three tunable-focus elements. Formulas for the calculation of paraxial parameters of such optical systems are derived and the calculation is presented on examples.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Paraxial analysis of four-component zoom lens with fixed distance between focal points

Antonin Miks and Jiri Novak
Appl. Opt. 51(21) 5231-5235 (2012)

Three-component double conjugate zoom lens system from tunable focus lenses

Antonín Mikš and Jiří Novák
Appl. Opt. 52(4) 862-865 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Clark, Zoom Lenses (Adam Hilger 1973).
  2. K. Yamaji, Progres in Optics, Vol.VI (North-Holland Publishing Co. 1967).
  3. A. Mikš, J. Novák, and P. Novák, “Method of zoom lens design,” Appl. Opt. 47(32), 6088–6098 (2008).
    [Crossref] [PubMed]
  4. T. Kryszczyński and J. Mikucki, “Structural optical design of the complex multi-group zoom systems by means of matrix optics,” Opt. Express 21(17), 19634–19647 (2013).
    [Crossref] [PubMed]
  5. A. Walther, “Angle eikonals for a perfect zoom system,” J. Opt. Soc. Am. A 18(8), 1968–1971 (2001).
    [Crossref] [PubMed]
  6. G. Wooters and E. W. Silvertooth, “Optically compensated zoom lens,” J. Opt. Soc. Am. 55(4), 347–351 (1965).
    [Crossref]
  7. D. F. Kienholz, “The design of a zoom lens with a large computer,” Appl. Opt. 9(6), 1443–1452 (1970).
    [Crossref] [PubMed]
  8. A. V. Grinkevich, “Version of an objective with variable focal length,” J. Opt. Technol. 73(5), 343–345 (2006).
    [Crossref]
  9. K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 1: Four-component type,” Appl. Opt. 21(12), 2174–2183 (1982).
    [Crossref] [PubMed]
  10. G. H. Matter and E. T. Luszcz, “A family of optically compensated zoom lenses,” Appl. Opt. 9(4), 844–848 (1970).
    [Crossref] [PubMed]
  11. K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 1: Four-component type. Errata,” Appl. Opt. 21(21), 3805 (1982).
    [Crossref] [PubMed]
  12. K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 2: Generalization of Yamaji type V,” Appl. Opt. 21(22), 4045–4053 (1982).
    [Crossref] [PubMed]
  13. K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 3: Five-component type,” Appl. Opt. 22(4), 541–553 (1983).
    [Crossref] [PubMed]
  14. A. Mikš and J. Novák, “Paraxial analysis of four-component zoom lens with fixed distance between focal points,” Appl. Opt. 51(21), 5231–5235 (2012).
    [Crossref] [PubMed]
  15. A. Mikš, J. Novák, and P. Novák, “Three-element zoom lens with fixed distance between focal points,” Opt. Lett. 37(12), 2187–2189 (2012).
    [Crossref] [PubMed]
  16. A. Mikš and J. Novák, “Design of a double-sided telecentric zoom lens,” Appl. Opt. 51(24), 5928–5935 (2012).
    [Crossref] [PubMed]
  17. A. Mikš and J. Novák, “Three-component double conjugate zoom lens system from tunable focus lenses,” Appl. Opt. 52(4), 862–865 (2013).
    [Crossref] [PubMed]
  18. T. Kryszczyński, “Development of the double-sided telecentric three-component zoom systems by means of matrix optics,” Proc. SPIE 7141, 16th Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, 71411Y (November 20, 2008).
    [Crossref]
  19. T. Kryszczyński, M. Leśniewski, and J. Mikucki, ” Use of matrix optics to analyze the complex multi-group zoom systems,” Proc. SPIE 8697, 18th Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics, 86970I (December 18, 2012).
    [Crossref]
  20. S. Pal and L. Hazra, “Ab initio synthesis of linearly compensated zoom lenses by evolutionary programming,” Appl. Opt. 50(10), 1434–1441 (2011).
    [Crossref] [PubMed]
  21. L. Hazra and S. Pal, “A novel approach for structural synthesis of zoom systems,” Proc. SPIE7786, (2010).
  22. S. Pal and L. Hazra, “Stabilization of pupils in a zoom lens with two independent movements,” Appl. Opt. 52(23), 5611–5618 (2013).
    [Crossref] [PubMed]
  23. S. Pal, “Aberration correction of zoom lenses using evolutionary programming,” Appl. Opt. 52(23), 5724–5732 (2013).
    [Crossref] [PubMed]
  24. G. Li, “Adaptive lens,” Prog. Opt. 55, 199–284 (2010).
    [Crossref]
  25. H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley 2012).
  26. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [Crossref]
  27. R. Peng, J. Chen, and S. Zhuang, “Electrowetting-actuated zoom lens with spherical-interface liquid lenses,” J. Opt. Soc. Am. A 25(11), 2644–2650 (2008).
    [Crossref] [PubMed]
  28. H. W. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
    [Crossref] [PubMed]
  29. L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51(4), 043001 (2012).
    [Crossref]
  30. M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realised using liquid crystal lenses,” Electron. Lett. 45(12), 646–648 (2009).
    [Crossref]
  31. D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
    [Crossref]
  32. R. Peng, J. Chen, and S. Zhuang, “Electrowetting-actuated zoom lens with spherical-interface liquid lenses,” J. Opt. Soc. Am. A 25(11), 2644–2650 (2008).
    [Crossref] [PubMed]
  33. S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15(21), 14146–14154 (2007).
    [Crossref] [PubMed]
  34. R. Peng, J. Chen, Ch. Zhu, and S. Zhuang, “Design of a zoom lens without motorized optical elements,” Opt. Express 15(11), 6664–6669 (2007).
    [Crossref] [PubMed]
  35. Z. Wang, Y. Xu, and Y. Zhao, “Aberration analyses of liquid zooming lenses without moving parts,” Opt. Commun. 275(1), 22–26 (2007).
    [Crossref]
  36. J.-H. Sun, B.-R. Hsueh, Y.-Ch. Fang, J. MacDonald, and C. C. Hu, “Optical design and multiobjective optimization of miniature zoom optics with liquid lens element,” Appl. Opt. 48(9), 1741–1757 (2009).
    [Crossref] [PubMed]
  37. A. Mikš and J. Novák, “Analysis of two-element zoom systems based on variable power lenses,” Opt. Express 18(7), 6797–6810 (2010).
    [Crossref] [PubMed]
  38. A. Mikš and J. Novák, “Analysis of three-element zoom lens based on refractive variable-focus lenses,” Opt. Express 19(24), 23989–23996 (2011).
    [Crossref] [PubMed]
  39. A. Mikš and J. Novák, “Three-component double conjugate zoom lens system from tunable focus lenses,” Appl. Opt. 52(4), 862–865 (2013).
    [Crossref] [PubMed]
  40. A. Mikš and J. Novák, “Paraxial analysis of three-component zoom lens with fixed distance between object and image points and fixed position of image-space focal point,” Opt. Express 22(13), 15571–15576 (2014).
    [Crossref] [PubMed]
  41. M. Herzberger, Modern Geometrical Optics (Interscience 1958).
  42. M. Herzberger, “Gaussian Optics and Gaussian Brackets,” J. Opt. Soc. Am. 33(12), 651–655 (1943).
    [Crossref]
  43. M. Born and E. Wolf, Principles of Optics (7th edition), (Cambridge University 1999).
  44. A. Mikš, “Modification of the Formulas for Third-Order Aberration Coefficients,” J. Opt. Soc. Am. A 19(9), 1867–1871 (2002).
    [Crossref] [PubMed]
  45. A.Mikš, Applied Optics (Czech Technical University 2009).
  46. H. Haferkorn, Bewertung optisher systeme (VEB Deutscher Verlag der Wissenschaften 1986).
  47. W. T. Welford, Aberrations of the Symmetrical Optical Systems (Academic Press 1974).
  48. A. Mikš and P. Novák, “Theoretical and experimental analysis of basic parameters of two-element optical systems,” Appl. Opt. 51(30), 7286–7294 (2012).
    [Crossref] [PubMed]
  49. A. Mikš, J. Novák, and P. Novák, “Generalized refractive tunable-focus lens and its imaging characteristics,” Opt. Express 18(9), 9034–9047 (2010).
    [Crossref] [PubMed]
  50. A. Mikš and J. Novák, “Third-order aberrations of the thin refractive tunable-focus lens,” Opt. Lett. 35(7), 1031–1033 (2010).
    [Crossref] [PubMed]
  51. A. Mikš, J. Novák, and P. Novák, “Chromatic aberrations of thin refractive variable-focus lens,” Opt. Commun. 285(10-11), 2506–2509 (2012).
    [Crossref]
  52. J. L. Bentley, C. Olson, and R. N. Youngworth, “In the era of global optimization, the understanding of aberrations remains the key to designing superior optical systems,” Proc. SPIE 7849, Opt. Design Testing IV, 78490C (2010).
    [Crossref]
  53. www.optotune.com
  54. www.varioptic.com
  55. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill 1996).
  56. A. Papoulis, Systems and Transforms with Application in Optics (McGraw-Hill 1968).
  57. J. G. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley 1978).

2014 (1)

2013 (5)

2012 (6)

2011 (2)

2010 (5)

2009 (2)

J.-H. Sun, B.-R. Hsueh, Y.-Ch. Fang, J. MacDonald, and C. C. Hu, “Optical design and multiobjective optimization of miniature zoom optics with liquid lens element,” Appl. Opt. 48(9), 1741–1757 (2009).
[Crossref] [PubMed]

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realised using liquid crystal lenses,” Electron. Lett. 45(12), 646–648 (2009).
[Crossref]

2008 (3)

2007 (4)

2006 (1)

2005 (1)

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[Crossref]

2002 (1)

2001 (1)

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

1983 (1)

1982 (3)

1970 (2)

1965 (1)

1943 (1)

Bentley, J. L.

J. L. Bentley, C. Olson, and R. N. Youngworth, “In the era of global optimization, the understanding of aberrations remains the key to designing superior optical systems,” Proc. SPIE 7849, Opt. Design Testing IV, 78490C (2010).
[Crossref]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Chen, J.

Fang, Y.-Ch.

Grinkevich, A. V.

Hazra, L.

Herzberger, M.

Hsueh, B.-R.

Hu, C. C.

Justis, N.

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[Crossref]

Kienholz, D. F.

Kryszczynski, T.

Li, G.

G. Li, “Adaptive lens,” Prog. Opt. 55, 199–284 (2010).
[Crossref]

Li, L.

L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51(4), 043001 (2012).
[Crossref]

Lo, Y. H.

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[Crossref]

Luszcz, E. T.

MacDonald, J.

Matter, G. H.

Mikš, A.

A. Mikš and J. Novák, “Paraxial analysis of three-component zoom lens with fixed distance between object and image points and fixed position of image-space focal point,” Opt. Express 22(13), 15571–15576 (2014).
[Crossref] [PubMed]

A. Mikš and J. Novák, “Three-component double conjugate zoom lens system from tunable focus lenses,” Appl. Opt. 52(4), 862–865 (2013).
[Crossref] [PubMed]

A. Mikš and J. Novák, “Three-component double conjugate zoom lens system from tunable focus lenses,” Appl. Opt. 52(4), 862–865 (2013).
[Crossref] [PubMed]

A. Mikš and J. Novák, “Design of a double-sided telecentric zoom lens,” Appl. Opt. 51(24), 5928–5935 (2012).
[Crossref] [PubMed]

A. Mikš and P. Novák, “Theoretical and experimental analysis of basic parameters of two-element optical systems,” Appl. Opt. 51(30), 7286–7294 (2012).
[Crossref] [PubMed]

A. Mikš, J. Novák, and P. Novák, “Chromatic aberrations of thin refractive variable-focus lens,” Opt. Commun. 285(10-11), 2506–2509 (2012).
[Crossref]

A. Mikš, J. Novák, and P. Novák, “Three-element zoom lens with fixed distance between focal points,” Opt. Lett. 37(12), 2187–2189 (2012).
[Crossref] [PubMed]

A. Mikš and J. Novák, “Paraxial analysis of four-component zoom lens with fixed distance between focal points,” Appl. Opt. 51(21), 5231–5235 (2012).
[Crossref] [PubMed]

A. Mikš and J. Novák, “Analysis of three-element zoom lens based on refractive variable-focus lenses,” Opt. Express 19(24), 23989–23996 (2011).
[Crossref] [PubMed]

A. Mikš and J. Novák, “Third-order aberrations of the thin refractive tunable-focus lens,” Opt. Lett. 35(7), 1031–1033 (2010).
[Crossref] [PubMed]

A. Mikš and J. Novák, “Analysis of two-element zoom systems based on variable power lenses,” Opt. Express 18(7), 6797–6810 (2010).
[Crossref] [PubMed]

A. Mikš, J. Novák, and P. Novák, “Generalized refractive tunable-focus lens and its imaging characteristics,” Opt. Express 18(9), 9034–9047 (2010).
[Crossref] [PubMed]

A. Mikš, J. Novák, and P. Novák, “Method of zoom lens design,” Appl. Opt. 47(32), 6088–6098 (2008).
[Crossref] [PubMed]

A. Mikš, “Modification of the Formulas for Third-Order Aberration Coefficients,” J. Opt. Soc. Am. A 19(9), 1867–1871 (2002).
[Crossref] [PubMed]

Mikucki, J.

Noguchi, M.

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realised using liquid crystal lenses,” Electron. Lett. 45(12), 646–648 (2009).
[Crossref]

Novák, J.

A. Mikš and J. Novák, “Paraxial analysis of three-component zoom lens with fixed distance between object and image points and fixed position of image-space focal point,” Opt. Express 22(13), 15571–15576 (2014).
[Crossref] [PubMed]

A. Mikš and J. Novák, “Three-component double conjugate zoom lens system from tunable focus lenses,” Appl. Opt. 52(4), 862–865 (2013).
[Crossref] [PubMed]

A. Mikš and J. Novák, “Three-component double conjugate zoom lens system from tunable focus lenses,” Appl. Opt. 52(4), 862–865 (2013).
[Crossref] [PubMed]

A. Mikš and J. Novák, “Design of a double-sided telecentric zoom lens,” Appl. Opt. 51(24), 5928–5935 (2012).
[Crossref] [PubMed]

A. Mikš, J. Novák, and P. Novák, “Chromatic aberrations of thin refractive variable-focus lens,” Opt. Commun. 285(10-11), 2506–2509 (2012).
[Crossref]

A. Mikš and J. Novák, “Paraxial analysis of four-component zoom lens with fixed distance between focal points,” Appl. Opt. 51(21), 5231–5235 (2012).
[Crossref] [PubMed]

A. Mikš, J. Novák, and P. Novák, “Three-element zoom lens with fixed distance between focal points,” Opt. Lett. 37(12), 2187–2189 (2012).
[Crossref] [PubMed]

A. Mikš and J. Novák, “Analysis of three-element zoom lens based on refractive variable-focus lenses,” Opt. Express 19(24), 23989–23996 (2011).
[Crossref] [PubMed]

A. Mikš and J. Novák, “Third-order aberrations of the thin refractive tunable-focus lens,” Opt. Lett. 35(7), 1031–1033 (2010).
[Crossref] [PubMed]

A. Mikš, J. Novák, and P. Novák, “Generalized refractive tunable-focus lens and its imaging characteristics,” Opt. Express 18(9), 9034–9047 (2010).
[Crossref] [PubMed]

A. Mikš and J. Novák, “Analysis of two-element zoom systems based on variable power lenses,” Opt. Express 18(7), 6797–6810 (2010).
[Crossref] [PubMed]

A. Mikš, J. Novák, and P. Novák, “Method of zoom lens design,” Appl. Opt. 47(32), 6088–6098 (2008).
[Crossref] [PubMed]

Novák, P.

Olson, C.

J. L. Bentley, C. Olson, and R. N. Youngworth, “In the era of global optimization, the understanding of aberrations remains the key to designing superior optical systems,” Proc. SPIE 7849, Opt. Design Testing IV, 78490C (2010).
[Crossref]

Pal, S.

Peng, R.

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Reichelt, S.

Ren, H. W.

Sato, S.

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realised using liquid crystal lenses,” Electron. Lett. 45(12), 646–648 (2009).
[Crossref]

Silvertooth, E. W.

Sun, J.-H.

Tanaka, K.

Walther, A.

Wang, B.

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realised using liquid crystal lenses,” Electron. Lett. 45(12), 646–648 (2009).
[Crossref]

Wang, Q. H.

L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51(4), 043001 (2012).
[Crossref]

Wang, Z.

Z. Wang, Y. Xu, and Y. Zhao, “Aberration analyses of liquid zooming lenses without moving parts,” Opt. Commun. 275(1), 22–26 (2007).
[Crossref]

Wooters, G.

Wu, S. T.

Xu, Y.

Z. Wang, Y. Xu, and Y. Zhao, “Aberration analyses of liquid zooming lenses without moving parts,” Opt. Commun. 275(1), 22–26 (2007).
[Crossref]

Ye, M.

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realised using liquid crystal lenses,” Electron. Lett. 45(12), 646–648 (2009).
[Crossref]

Youngworth, R. N.

J. L. Bentley, C. Olson, and R. N. Youngworth, “In the era of global optimization, the understanding of aberrations remains the key to designing superior optical systems,” Proc. SPIE 7849, Opt. Design Testing IV, 78490C (2010).
[Crossref]

Zappe, H.

Zhang, D. Y.

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[Crossref]

Zhao, Y.

Z. Wang, Y. Xu, and Y. Zhao, “Aberration analyses of liquid zooming lenses without moving parts,” Opt. Commun. 275(1), 22–26 (2007).
[Crossref]

Zhu, Ch.

Zhuang, S.

Appl. Opt. (16)

A. Mikš, J. Novák, and P. Novák, “Method of zoom lens design,” Appl. Opt. 47(32), 6088–6098 (2008).
[Crossref] [PubMed]

D. F. Kienholz, “The design of a zoom lens with a large computer,” Appl. Opt. 9(6), 1443–1452 (1970).
[Crossref] [PubMed]

K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 1: Four-component type,” Appl. Opt. 21(12), 2174–2183 (1982).
[Crossref] [PubMed]

G. H. Matter and E. T. Luszcz, “A family of optically compensated zoom lenses,” Appl. Opt. 9(4), 844–848 (1970).
[Crossref] [PubMed]

K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 1: Four-component type. Errata,” Appl. Opt. 21(21), 3805 (1982).
[Crossref] [PubMed]

K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 2: Generalization of Yamaji type V,” Appl. Opt. 21(22), 4045–4053 (1982).
[Crossref] [PubMed]

K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 3: Five-component type,” Appl. Opt. 22(4), 541–553 (1983).
[Crossref] [PubMed]

A. Mikš and J. Novák, “Paraxial analysis of four-component zoom lens with fixed distance between focal points,” Appl. Opt. 51(21), 5231–5235 (2012).
[Crossref] [PubMed]

A. Mikš and J. Novák, “Design of a double-sided telecentric zoom lens,” Appl. Opt. 51(24), 5928–5935 (2012).
[Crossref] [PubMed]

A. Mikš and J. Novák, “Three-component double conjugate zoom lens system from tunable focus lenses,” Appl. Opt. 52(4), 862–865 (2013).
[Crossref] [PubMed]

S. Pal and L. Hazra, “Stabilization of pupils in a zoom lens with two independent movements,” Appl. Opt. 52(23), 5611–5618 (2013).
[Crossref] [PubMed]

S. Pal, “Aberration correction of zoom lenses using evolutionary programming,” Appl. Opt. 52(23), 5724–5732 (2013).
[Crossref] [PubMed]

S. Pal and L. Hazra, “Ab initio synthesis of linearly compensated zoom lenses by evolutionary programming,” Appl. Opt. 50(10), 1434–1441 (2011).
[Crossref] [PubMed]

J.-H. Sun, B.-R. Hsueh, Y.-Ch. Fang, J. MacDonald, and C. C. Hu, “Optical design and multiobjective optimization of miniature zoom optics with liquid lens element,” Appl. Opt. 48(9), 1741–1757 (2009).
[Crossref] [PubMed]

A. Mikš and J. Novák, “Three-component double conjugate zoom lens system from tunable focus lenses,” Appl. Opt. 52(4), 862–865 (2013).
[Crossref] [PubMed]

A. Mikš and P. Novák, “Theoretical and experimental analysis of basic parameters of two-element optical systems,” Appl. Opt. 51(30), 7286–7294 (2012).
[Crossref] [PubMed]

Electron. Lett. (1)

M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realised using liquid crystal lenses,” Electron. Lett. 45(12), 646–648 (2009).
[Crossref]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (4)

J. Opt. Technol. (1)

Opt. Commun. (3)

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005).
[Crossref]

Z. Wang, Y. Xu, and Y. Zhao, “Aberration analyses of liquid zooming lenses without moving parts,” Opt. Commun. 275(1), 22–26 (2007).
[Crossref]

A. Mikš, J. Novák, and P. Novák, “Chromatic aberrations of thin refractive variable-focus lens,” Opt. Commun. 285(10-11), 2506–2509 (2012).
[Crossref]

Opt. Eng. (1)

L. Li and Q. H. Wang, “Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target,” Opt. Eng. 51(4), 043001 (2012).
[Crossref]

Opt. Express (8)

Opt. Lett. (2)

Proc. SPIE 7849, Opt. Design Testing (1)

J. L. Bentley, C. Olson, and R. N. Youngworth, “In the era of global optimization, the understanding of aberrations remains the key to designing superior optical systems,” Proc. SPIE 7849, Opt. Design Testing IV, 78490C (2010).
[Crossref]

Prog. Opt. (1)

G. Li, “Adaptive lens,” Prog. Opt. 55, 199–284 (2010).
[Crossref]

Other (16)

H. Ren and S. T. Wu, Introduction to Adaptive Lenses (Wiley 2012).

L. Hazra and S. Pal, “A novel approach for structural synthesis of zoom systems,” Proc. SPIE7786, (2010).

T. Kryszczyński, “Development of the double-sided telecentric three-component zoom systems by means of matrix optics,” Proc. SPIE 7141, 16th Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, 71411Y (November 20, 2008).
[Crossref]

T. Kryszczyński, M. Leśniewski, and J. Mikucki, ” Use of matrix optics to analyze the complex multi-group zoom systems,” Proc. SPIE 8697, 18th Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics, 86970I (December 18, 2012).
[Crossref]

A. D. Clark, Zoom Lenses (Adam Hilger 1973).

K. Yamaji, Progres in Optics, Vol.VI (North-Holland Publishing Co. 1967).

www.optotune.com

www.varioptic.com

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill 1996).

A. Papoulis, Systems and Transforms with Application in Optics (McGraw-Hill 1968).

J. G. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley 1978).

M. Herzberger, Modern Geometrical Optics (Interscience 1958).

M. Born and E. Wolf, Principles of Optics (7th edition), (Cambridge University 1999).

A.Mikš, Applied Optics (Czech Technical University 2009).

H. Haferkorn, Bewertung optisher systeme (VEB Deutscher Verlag der Wissenschaften 1986).

W. T. Welford, Aberrations of the Symmetrical Optical Systems (Academic Press 1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 Three-element zoom lens composed of tunable-focus lenses.
Fig. 2
Fig. 2 Powers of individual lenses

Tables (1)

Tables Icon

Table 1 Parameters of Zoom Lens and Incidence heights of the Aperture and Principal Rays

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

α=1 d 2 ( φ 1 + φ 2 φ 1 φ 2 d 1 ) φ 1 d 1 ,
β= d 1 + d 2 φ 2 d 1 d 2 ,
γ=φ=( φ 1 + φ 2 + φ 3 )+ φ 1 φ 2 d 1 + φ 2 φ 3 d 2 + φ 1 φ 3 ( d 1 + d 2 ) φ 1 φ 2 φ 3 d 1 d 2 ,
δ=1 d 1 ( φ 2 + φ 3 ) d 2 φ 3 + d 1 d 2 φ 2 φ 3 .
φ=γ, s F =δ/γ, s F =α/γ, s = βαs δγs ,m= 1 δsγ ,
L= A A ¯ =s+ d 1 + d 2 + s
D= A F ¯ =s+ d 1 + d 2 + s F ,
φ 1 = 1 d 1 [ 1+ m[ d 2 ( s F s )+ d 1 m s F ] s ( s F s ) m 2 s F s ], φ 2 = 1 d 1 d 2 [ d 1 + d 2 + s m m s F s s F s ], φ 3 = 1 d 2 [ 1+ m[ d 1 ( s F s ) d 2 ms]+ d 2 ( s F s ) s ( s F s ) m 2 s F s ].

Metrics