Abstract

We propose a floating aerial LED signage technique by utilizing retro-reflection. The proposed display is composed of LEDs, a half mirror, and retro-reflective sheeting. Directivity of the aerial image formation and size of the aerial image have been investigated. Furthermore, a floating aerial LED sign has been successfully formed in free space.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design, fabrication and characterization of transparent retro-reflective screen

Shoaib R Soomro and Hakan Urey
Opt. Express 24(21) 24232-24241 (2016)

Investigation of a 3D head-mounted projection display using retro-reflective screen

Dalma Héricz, Tamás Sarkadi, Viktor Lucza, Viktor Kovács, and Pál Koppa
Opt. Express 22(15) 17823-17829 (2014)

Realization of an aerial 3D image that occludes the background scenery

Hideki Kakeya, Shuta Ishizuka, and Yuya Sato
Opt. Express 22(20) 24491-24496 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional photography for three-dimensional images,” Appl. Opt. 37, 2034–2045 (1998).
    [Crossref] [PubMed]
  2. S.-W. Min, M. Hahn, J. Kim, and B. Lee, “Three-dimensional electro-floating display system using an integral imaging method,” Opt. Express 13(12), 4358–4369 (2005).
    [Crossref] [PubMed]
  3. S. Maekawa, K. Nitta, and O. Matoba, “Transmissive optical imaging device with micromirror array,” Proc. SPIE 6392, 63920E (2006).
    [Crossref]
  4. D. Miyazaki, N. Hirano, Y. Maeda, K. Ohno, and S. Maekawa, “Volumetric display using a roof mirror grid array,” Proc. SPIE 7524, 75240N (2010).
    [Crossref]
  5. H. Yamamoto, R. Kujime, H. Bando, and S. Suyama, Proc. SPIE8643, 864302 (2013).
    [Crossref]
  6. C. B. Burckhardt, R. J. Collier, and E. T. Doherty, “Formation and inversion of pseudoscopic images,” Appl. Opt. 7(4), 627–631 (1968).
    [Crossref] [PubMed]
  7. S. Maekawa, K. Nitta, and O. Matoba, “Advances in passive imaging elements with micromirror array,” Proc. SPIE 6803, 68030B (2008).
    [Crossref]
  8. H. Yamamoto and S. Suyama, “Aerial 3D LED display by use of retroreflective sheeting,” Proc. SPIE 8648, 8648 (2013).
    [Crossref]
  9. H. Yamamoto, S. Farhan, S. Motoki, and S. Suyama, “Development of 480-fps LED display by use of spatiotemporal mapping,” in Proc. of 2012 IEEE Industry Applications Society Annual Meeting, 2012-ILDC-259 (2012).
    [Crossref]

2013 (1)

H. Yamamoto and S. Suyama, “Aerial 3D LED display by use of retroreflective sheeting,” Proc. SPIE 8648, 8648 (2013).
[Crossref]

2010 (1)

D. Miyazaki, N. Hirano, Y. Maeda, K. Ohno, and S. Maekawa, “Volumetric display using a roof mirror grid array,” Proc. SPIE 7524, 75240N (2010).
[Crossref]

2008 (1)

S. Maekawa, K. Nitta, and O. Matoba, “Advances in passive imaging elements with micromirror array,” Proc. SPIE 6803, 68030B (2008).
[Crossref]

2006 (1)

S. Maekawa, K. Nitta, and O. Matoba, “Transmissive optical imaging device with micromirror array,” Proc. SPIE 6392, 63920E (2006).
[Crossref]

2005 (1)

1998 (1)

1968 (1)

Arai, J.

Bando, H.

H. Yamamoto, R. Kujime, H. Bando, and S. Suyama, Proc. SPIE8643, 864302 (2013).
[Crossref]

Burckhardt, C. B.

Collier, R. J.

Doherty, E. T.

Hahn, M.

Hirano, N.

D. Miyazaki, N. Hirano, Y. Maeda, K. Ohno, and S. Maekawa, “Volumetric display using a roof mirror grid array,” Proc. SPIE 7524, 75240N (2010).
[Crossref]

Hoshino, H.

Kim, J.

Kujime, R.

H. Yamamoto, R. Kujime, H. Bando, and S. Suyama, Proc. SPIE8643, 864302 (2013).
[Crossref]

Lee, B.

Maeda, Y.

D. Miyazaki, N. Hirano, Y. Maeda, K. Ohno, and S. Maekawa, “Volumetric display using a roof mirror grid array,” Proc. SPIE 7524, 75240N (2010).
[Crossref]

Maekawa, S.

D. Miyazaki, N. Hirano, Y. Maeda, K. Ohno, and S. Maekawa, “Volumetric display using a roof mirror grid array,” Proc. SPIE 7524, 75240N (2010).
[Crossref]

S. Maekawa, K. Nitta, and O. Matoba, “Advances in passive imaging elements with micromirror array,” Proc. SPIE 6803, 68030B (2008).
[Crossref]

S. Maekawa, K. Nitta, and O. Matoba, “Transmissive optical imaging device with micromirror array,” Proc. SPIE 6392, 63920E (2006).
[Crossref]

Matoba, O.

S. Maekawa, K. Nitta, and O. Matoba, “Advances in passive imaging elements with micromirror array,” Proc. SPIE 6803, 68030B (2008).
[Crossref]

S. Maekawa, K. Nitta, and O. Matoba, “Transmissive optical imaging device with micromirror array,” Proc. SPIE 6392, 63920E (2006).
[Crossref]

Min, S.-W.

Miyazaki, D.

D. Miyazaki, N. Hirano, Y. Maeda, K. Ohno, and S. Maekawa, “Volumetric display using a roof mirror grid array,” Proc. SPIE 7524, 75240N (2010).
[Crossref]

Nitta, K.

S. Maekawa, K. Nitta, and O. Matoba, “Advances in passive imaging elements with micromirror array,” Proc. SPIE 6803, 68030B (2008).
[Crossref]

S. Maekawa, K. Nitta, and O. Matoba, “Transmissive optical imaging device with micromirror array,” Proc. SPIE 6392, 63920E (2006).
[Crossref]

Ohno, K.

D. Miyazaki, N. Hirano, Y. Maeda, K. Ohno, and S. Maekawa, “Volumetric display using a roof mirror grid array,” Proc. SPIE 7524, 75240N (2010).
[Crossref]

Okano, F.

Suyama, S.

H. Yamamoto and S. Suyama, “Aerial 3D LED display by use of retroreflective sheeting,” Proc. SPIE 8648, 8648 (2013).
[Crossref]

H. Yamamoto, R. Kujime, H. Bando, and S. Suyama, Proc. SPIE8643, 864302 (2013).
[Crossref]

Yamamoto, H.

H. Yamamoto and S. Suyama, “Aerial 3D LED display by use of retroreflective sheeting,” Proc. SPIE 8648, 8648 (2013).
[Crossref]

H. Yamamoto, R. Kujime, H. Bando, and S. Suyama, Proc. SPIE8643, 864302 (2013).
[Crossref]

Yuyama, I.

Appl. Opt. (2)

Opt. Express (1)

Proc. SPIE (4)

S. Maekawa, K. Nitta, and O. Matoba, “Transmissive optical imaging device with micromirror array,” Proc. SPIE 6392, 63920E (2006).
[Crossref]

D. Miyazaki, N. Hirano, Y. Maeda, K. Ohno, and S. Maekawa, “Volumetric display using a roof mirror grid array,” Proc. SPIE 7524, 75240N (2010).
[Crossref]

S. Maekawa, K. Nitta, and O. Matoba, “Advances in passive imaging elements with micromirror array,” Proc. SPIE 6803, 68030B (2008).
[Crossref]

H. Yamamoto and S. Suyama, “Aerial 3D LED display by use of retroreflective sheeting,” Proc. SPIE 8648, 8648 (2013).
[Crossref]

Other (2)

H. Yamamoto, S. Farhan, S. Motoki, and S. Suyama, “Development of 480-fps LED display by use of spatiotemporal mapping,” in Proc. of 2012 IEEE Industry Applications Society Annual Meeting, 2012-ILDC-259 (2012).
[Crossref]

H. Yamamoto, R. Kujime, H. Bando, and S. Suyama, Proc. SPIE8643, 864302 (2013).
[Crossref]

Supplementary Material (1)

» Media 1: AVI (4794 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic diagram showing that defocusing changes the discrete LED dots into a smooth LED sign.
Fig. 2
Fig. 2 Compositions of retro-reflective sheeting. (a) Corner-cube type is consisted of micro-prism. (b) Micro-beads type is consisted of small glass beads in reflective material.
Fig. 3
Fig. 3 Principle of aerial image forming based on retro-reflection. (a) A half mirror separates the aerial images from the light sources. (b) The proposed display is free from alignment problem in retro-reflective sheeting.
Fig. 4
Fig. 4 Experimental setup to investigate directivity of an AIRR LED image.
Fig. 5
Fig. 5 Relationship between luminance intensity of the aerial LED image and the rotation angle of a retro-reflective sheet of micro-beads type.
Fig. 6
Fig. 6 Experimental setups to measure width of the reflected beam on the retro-reflective sheeting of micro-beads type.
Fig. 7
Fig. 7 Relationship between the width of the reflected beam and the screen distance.
Fig. 8
Fig. 8 Experimental setups to investigate aerial image size and pop-up distance.
Fig. 9
Fig. 9 Relationship between width of the aerial LED image and the pop-up distance.
Fig. 10
Fig. 10 Close-up photograph of a unit of the LED panel used to show LED sign.
Fig. 11
Fig. 11 Stereoscopic pair of images of an aerial LED sign floating over the palm (Media 1).

Metrics