Abstract

We report a novel temperature insensitive, APMgLN-based, high-power cascaded optical parametric oscillator (OPO) pumped by an Ytterbium-doped fiber laser. A monolithic APMgLN crystal was designed to compensate the phase mismatches for the nonlinear conversions from the pump to the idler and the primary signal to the idler simultaneously in a wide temperature range. Efficient parametric conversion with pump-to-idler conversion efficiency over 15% and slope efficiency higher than 20% was realized from 25 °C to 55 °C. The idler wavelength was down-shifted from 3.82 μm to 3.78 μm accordingly during the temperature rise. The highest idler power of 4.1 W at 3.8 μm under the pump power of 26.5 W was recorded which was improved by ~32% in pump-to-idler conversion efficiency when compared with the PPMgLN-based conventional OPO, in which the highest idler output power was 3.1W under the same pump and thermal condition.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
    [Crossref]
  2. B. Molocher, “Countermeasure laser development,” Proc. SPIE 5989(598902), 598902 (2005).
    [Crossref]
  3. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  4. S. Chaitanya Kumar and M. Ebrahim-Zadeh, “High-power, continuous-wave, mid-infrared optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 36(13), 2578–2580 (2011).
    [Crossref] [PubMed]
  5. D. Chen and T. S. Rose, “Low noise 10-W CW OPO generation near 3 µm with MgO doped PPLN,” CLEO, paper CThQ2 (2005).
  6. T. Chen, P. Jiang, D. Yang, C. Hu, B. Wu, and Y. Shen, “High-power PPMgLN-based optical parametric oscillator pumped by a linearly polarized, semi-fiber-coupled acousto-optic Q-switched fiber master oscillator power amplifier,” Appl. Opt. 52(25), 6316–6321 (2013).
    [Crossref] [PubMed]
  7. Z. Sacks, O. Gayer, E. Tal, and A. Arie, “Improving the efficiency of an optical parametric oscillator by tailoring the pump pulse shape,” Opt. Express 18(12), 12669–12674 (2010).
    [Crossref] [PubMed]
  8. S. C. Kumar and M. Ebrahim-Zadeh, “High-power, fiber-laser-pumped, picosecond optical parametric oscillator based on MgO:sPPLT,” Opt. Express 19(27), 26660–26665 (2011).
    [Crossref] [PubMed]
  9. K. Wei, T. Chen, P. Jiang, D. Yang, B. Wu, and Y. Shen, “Fiber laser pumped high power mid-infrared laser with picosecond pulse bunch output,” Opt. Express 21(21), 25364–25372 (2013).
    [Crossref] [PubMed]
  10. O. Kimmelma, S. Chaitanya Kumar, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Multi-gigahertz picosecond optical parametric oscillator pumped by 80-MHz Yb-fiber laser,” Opt. Lett. 38(22), 4550–4553 (2013).
    [Crossref] [PubMed]
  11. M. E. Dearborn, K. Koch, G. T. Moore, and J. C. Diels, “Greater than 100% photon-conversion efficiency from an optical parametric oscillator with intracavity difference-frequency mixing,” Opt. Lett. 23(10), 759–761 (1998).
    [Crossref] [PubMed]
  12. Y. H. Liu, Z. D. Xie, W. Ling, Y. Yuan, X. J. Lv, J. Lu, X. P. Hu, G. Zhao, and S. N. Zhu, “Efficiency-enhanced optical parametric down conversion for mid-infrared generation on a tandem periodically poled MgO-doped stoichiometric lithium tantalate chip,” Opt. Express 19(18), 17500–17505 (2011).
    [Crossref] [PubMed]
  13. G. Porat, O. Gayer, and A. Arie, “Simultaneous parametric oscillation and signal-to-idler conversion for efficient downconversion,” Opt. Lett. 35(9), 1401–1403 (2010).
    [Crossref] [PubMed]
  14. T. Chen, B. Wu, W. Liu, P. Jiang, J. Kong, and Y. Shen, “Efficient parametric conversion from 1.06 to 3.8 μm by an aperiodically poled cascaded lithium niobate,” Opt. Lett. 36(6), 921–923 (2011).
    [Crossref] [PubMed]
  15. Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106(2), 267–270 (2012).
    [Crossref]
  16. O. P. Naraniya, M. R. Shenoy, and K. Thyagarajan, “Multiple-wavelength quasi-phase-matching for efficient idler generation in MgO:LiNbO3 based nanosecond optical parametric oscillator,” Appl. Opt. 51(9), 1312–1317 (2012).
    [Crossref] [PubMed]
  17. T. Chen, B. Wu, P. Jiang, D. Yang, and Y. Shen, “High power efficient 3.81 μm emission from a fiber laser pumped aperiodically poled cascaded lithium niobate,” IEEE Photon. Technol. Lett. 25(20), 2000–2002 (2013).
    [Crossref]
  18. S. Sharabi, G. Porat, and A. Arie, “Improved idler beam quality via simultaneous parametric oscillation and signal-to-idler conversion,” Opt. Lett. 39(7), 2152–2155 (2014).
    [Crossref] [PubMed]
  19. P. V. Gorelik, F. N. Wong, D. Kolker, and J. Zondy, “Cascaded optical parametric oscillation using a dual grating PPLN crystal,” CLEO, paper CTuZ1 (2006).
  20. A. Godard, M. Raybaut, M. Lefebvre, A.-M. Michel, and M. Péalat, “Tunable mid-infrared optical parametric oscillator with intracavity parametric amplification based on a dual-grating PPLN crystal,” Appl. Phys. B 109(4), 567–571 (2012).
    [Crossref]
  21. G. Porat, H. Suchowski, Y. Silberberg, and A. Arie, “Tunable upconverted optical parametric oscillator with intracavity adiabatic sum-frequency generation,” Opt. Lett. 35(10), 1590–1592 (2010).
    [Crossref] [PubMed]
  22. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
    [Crossref]

2014 (1)

2013 (4)

2012 (3)

Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106(2), 267–270 (2012).
[Crossref]

O. P. Naraniya, M. R. Shenoy, and K. Thyagarajan, “Multiple-wavelength quasi-phase-matching for efficient idler generation in MgO:LiNbO3 based nanosecond optical parametric oscillator,” Appl. Opt. 51(9), 1312–1317 (2012).
[Crossref] [PubMed]

A. Godard, M. Raybaut, M. Lefebvre, A.-M. Michel, and M. Péalat, “Tunable mid-infrared optical parametric oscillator with intracavity parametric amplification based on a dual-grating PPLN crystal,” Appl. Phys. B 109(4), 567–571 (2012).
[Crossref]

2011 (4)

2010 (4)

2008 (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

2006 (1)

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

2005 (1)

B. Molocher, “Countermeasure laser development,” Proc. SPIE 5989(598902), 598902 (2005).
[Crossref]

1998 (1)

Arie, A.

Chaitanya Kumar, S.

Chen, T.

Clarkson, W. A.

Dearborn, M. E.

Diels, J. C.

Ebrahim-Zadeh, M.

Esteban-Martin, A.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Gayer, O.

Geiser, P.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Godard, A.

A. Godard, M. Raybaut, M. Lefebvre, A.-M. Michel, and M. Péalat, “Tunable mid-infrared optical parametric oscillator with intracavity parametric amplification based on a dual-grating PPLN crystal,” Appl. Phys. B 109(4), 567–571 (2012).
[Crossref]

Hu, C.

Hu, X. P.

Jiang, P.

Khorsandi, A.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Kimmelma, O.

Koch, K.

Kong, J.

Kumar, S. C.

Lefebvre, M.

A. Godard, M. Raybaut, M. Lefebvre, A.-M. Michel, and M. Péalat, “Tunable mid-infrared optical parametric oscillator with intracavity parametric amplification based on a dual-grating PPLN crystal,” Appl. Phys. B 109(4), 567–571 (2012).
[Crossref]

Ling, W.

Liu, W.

Liu, Y. H.

Lu, J.

Lv, X. J.

Michel, A.-M.

A. Godard, M. Raybaut, M. Lefebvre, A.-M. Michel, and M. Péalat, “Tunable mid-infrared optical parametric oscillator with intracavity parametric amplification based on a dual-grating PPLN crystal,” Appl. Phys. B 109(4), 567–571 (2012).
[Crossref]

Molocher, B.

B. Molocher, “Countermeasure laser development,” Proc. SPIE 5989(598902), 598902 (2005).
[Crossref]

Moore, G. T.

Naraniya, O. P.

Nilsson, J.

Péalat, M.

A. Godard, M. Raybaut, M. Lefebvre, A.-M. Michel, and M. Péalat, “Tunable mid-infrared optical parametric oscillator with intracavity parametric amplification based on a dual-grating PPLN crystal,” Appl. Phys. B 109(4), 567–571 (2012).
[Crossref]

Porat, G.

Raybaut, M.

A. Godard, M. Raybaut, M. Lefebvre, A.-M. Michel, and M. Péalat, “Tunable mid-infrared optical parametric oscillator with intracavity parametric amplification based on a dual-grating PPLN crystal,” Appl. Phys. B 109(4), 567–571 (2012).
[Crossref]

Richardson, D. J.

Sacks, Z.

Z. Sacks, O. Gayer, E. Tal, and A. Arie, “Improving the efficiency of an optical parametric oscillator by tailoring the pump pulse shape,” Opt. Express 18(12), 12669–12674 (2010).
[Crossref] [PubMed]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Saraji, M.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Schade, W.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Sharabi, S.

Shen, Y.

Shenoy, M. R.

Silberberg, Y.

Suchowski, H.

Tal, E.

Thyagarajan, K.

Wei, K.

Willer, U.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Wu, B.

Xie, Z. D.

Yang, D.

Yuan, Y.

Zhao, G.

Zhao, L. N.

Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106(2), 267–270 (2012).
[Crossref]

Zhu, S. N.

Appl. Opt. (2)

Appl. Phys. B (3)

A. Godard, M. Raybaut, M. Lefebvre, A.-M. Michel, and M. Péalat, “Tunable mid-infrared optical parametric oscillator with intracavity parametric amplification based on a dual-grating PPLN crystal,” Appl. Phys. B 109(4), 567–571 (2012).
[Crossref]

Y. H. Liu, X. J. Lv, Z. D. Xie, X. P. Hu, Y. Yuan, J. Lu, L. N. Zhao, and S. N. Zhu, “Amplification assisted optical parametric oscillator in the mid-infrared region,” Appl. Phys. B 106(2), 267–270 (2012).
[Crossref]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

IEEE Photon. Technol. Lett. (1)

T. Chen, B. Wu, P. Jiang, D. Yang, and Y. Shen, “High power efficient 3.81 μm emission from a fiber laser pumped aperiodically poled cascaded lithium niobate,” IEEE Photon. Technol. Lett. 25(20), 2000–2002 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lasers Eng. (1)

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44(7), 699–710 (2006).
[Crossref]

Opt. Lett. (7)

S. Chaitanya Kumar and M. Ebrahim-Zadeh, “High-power, continuous-wave, mid-infrared optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 36(13), 2578–2580 (2011).
[Crossref] [PubMed]

O. Kimmelma, S. Chaitanya Kumar, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Multi-gigahertz picosecond optical parametric oscillator pumped by 80-MHz Yb-fiber laser,” Opt. Lett. 38(22), 4550–4553 (2013).
[Crossref] [PubMed]

M. E. Dearborn, K. Koch, G. T. Moore, and J. C. Diels, “Greater than 100% photon-conversion efficiency from an optical parametric oscillator with intracavity difference-frequency mixing,” Opt. Lett. 23(10), 759–761 (1998).
[Crossref] [PubMed]

G. Porat, O. Gayer, and A. Arie, “Simultaneous parametric oscillation and signal-to-idler conversion for efficient downconversion,” Opt. Lett. 35(9), 1401–1403 (2010).
[Crossref] [PubMed]

T. Chen, B. Wu, W. Liu, P. Jiang, J. Kong, and Y. Shen, “Efficient parametric conversion from 1.06 to 3.8 μm by an aperiodically poled cascaded lithium niobate,” Opt. Lett. 36(6), 921–923 (2011).
[Crossref] [PubMed]

G. Porat, H. Suchowski, Y. Silberberg, and A. Arie, “Tunable upconverted optical parametric oscillator with intracavity adiabatic sum-frequency generation,” Opt. Lett. 35(10), 1590–1592 (2010).
[Crossref] [PubMed]

S. Sharabi, G. Porat, and A. Arie, “Improved idler beam quality via simultaneous parametric oscillation and signal-to-idler conversion,” Opt. Lett. 39(7), 2152–2155 (2014).
[Crossref] [PubMed]

Proc. SPIE (1)

B. Molocher, “Countermeasure laser development,” Proc. SPIE 5989(598902), 598902 (2005).
[Crossref]

Other (2)

D. Chen and T. S. Rose, “Low noise 10-W CW OPO generation near 3 µm with MgO doped PPLN,” CLEO, paper CThQ2 (2005).

P. V. Gorelik, F. N. Wong, D. Kolker, and J. Zondy, “Cascaded optical parametric oscillation using a dual grating PPLN crystal,” CLEO, paper CTuZ1 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Fourier transform of the designed APMgLN crystal, the inset shows the detailed information about the reciprocal vector compensating the phase mismatch for the DFG process. (b) The estimated acceptance bandwidth for DFG process and idler wavelength dependence on the crystal temperature for OPO and DFG processes.

Fig. 2
Fig. 2

Scheme of the experimental setups: HWP, half wave plate; M1, the input coupler; M2, the output coupler; Nonlinear Crystal: the composite lithium niobate chip with a PPMgLN channel and an APMgLN channel

Fig. 3
Fig. 3

(a) Spectra of the secondary and the idler wavelengths produced from the temperature insensitive cascaded OPO at different temperatures. (b)The measured secondary signal wavelengths at different crystal temperatures. (c)The measured idler wavelengths at different crystal temperatures.

Fig. 4
Fig. 4

(a) Idler output power dependence of the cascaded OPO and conventional OPO on pump power. (b) The pump-to-idler conversion efficiency as a function of the temperature of the APMgLN crystal

Fig. 5
Fig. 5

Temporal profiles of the pump, depleted pump and the primary signal wave from the cascaded OPO.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g(z)=sgn{cos(Δ k OPO z)+Acos[(Δ k DFG +Cz)z]}

Metrics