Abstract

A structured sapphire-derived all-glass optical fiber with an aluminum content in the core of up to 50 mol% was used for fiber Bragg grating inscription. The fiber provided a parabolic refractive index profile. Fiber Bragg gratings were inscribed by means of femtosecond-laser pulses with a wavelength of 400 nm in combination with a two-beam phase mask interferometer. Heating experiments demonstrated the stability of the gratings for temperatures up to 950°C for more than 24 h without degradation in reflectivity.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation

Tino Elsmann, Tobias Habisreuther, Albrecht Graf, Manfred Rothhardt, and Hartmut Bartelt
Opt. Express 21(4) 4591-4597 (2013)

Type I and II Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers

Dan Grobnic, Stephen J. Mihailov, John Ballato, and Peter D. Dragic
Optica 2(4) 313-322 (2015)

Temperature sensing up to 1300°C using suspended-core microstructured optical fibers

Stephen C. Warren-Smith, Linh Viet Nguyen, Catherine Lang, Heike Ebendorff-Heidepriem, and Tanya M. Monro
Opt. Express 24(4) 3714-3719 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Azhari, R. Liang, and E. Toyserkani, “A novel fibre Bragg grating sensor packaging design for ultra-high temperature sensing in harsh environment,” Meas. Sci. Technol. 25(7), 075104 (2014).
    [Crossref]
  2. S. Gao, J. Canning, and K. Cook, “Ultra-high temperature chirped fiber Bragg gratings produced by gradient stretching of viscoelastic silica,” Opt. Lett. 38(24), 5397–5400 (2013).
    [Crossref] [PubMed]
  3. G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high-temperature measurement,” Meas. Sci. Technol. 24(9), 094010 (2013).
    [Crossref]
  4. S. S. Chong, W. Y. Chong, S. W. Harun, and H. Ahmad, “Regenerated fibre Bragg grating fabricated on high germanium concentration photosensitive fibre for sensing at high temperature,” Opt. Laser Technol. 44(4), 821–824 (2012).
    [Crossref]
  5. J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
    [Crossref]
  6. C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings – arrays and single gratings of type II,” Opt. Eng. 44(6), 060503 (2005).
    [Crossref]
  7. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
    [Crossref] [PubMed]
  8. E. Lindner, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17(15), 12523–12531 (2009).
    [Crossref] [PubMed]
  9. S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express 19(2), 1198–1206 (2011).
    [Crossref] [PubMed]
  10. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
    [Crossref]
  11. D. Grobnic, S. Mihailov, C. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
    [Crossref]
  12. T. Elsmann, T. Habisreuther, A. Graf, M. Rothhardt, and H. Bartelt, “Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation,” Opt. Express 21(4), 4591–4597 (2013).
    [Crossref] [PubMed]
  13. M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol. 20(11), 115301 (2009).
    [Crossref]
  14. T. Elsmann, T. Habisreuther, M. W. Rothhardt, and H. Bartelt, “High temperature sensing with fiber Bragg gratings in sapphire fibers,” in Advanced Photonics, OSA Technical Digest Series (Optical Society of America, 2014), paper BTu5B.2.
  15. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
    [Crossref]
  16. D. Grobnic, S. J. Mihailov, J. Ballato, and P. Dragic, “Bragg gratings made with IR femtosecond radiation in high alumina content aluminosilicate optical fibers,”, ” in Advanced Photonics, OSA Technical Digest Series (Optical Society of America, 2014), paper BW2D.4.
  17. S. Unger, J. Dellith, A. Scheffel, and J. Kirchhof, “Diffusion in Yb2O3-Al2O3-SiO2 glass,” Phys.Cham. Glasses: Eur. J. Glass. Sci. Technol. B 52(2), 41–46 (2011).
  18. M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express 16(23), 19169–19178 (2008).
    [Crossref] [PubMed]
  19. T. Grujic, B. T. Kuhlmey, C. M. de Sterke, and C. G. Poulton, “Modelling of photonic crystal fiber based on layered inclusions,” J. Opt. Soc. Am. B 26(10), 1852–1861 (2009).
    [Crossref]
  20. P. D. Dragic, C. Kucera, J. Ballato, D. Litzkendorf, J. Dellith, and K. Schuster, “Brillouin scattering properties of lanthano-aluminosilicate optical fiber,” Appl. Opt. 53(25), 5660–5671 (2014).
    [Crossref]

2014 (2)

A. Azhari, R. Liang, and E. Toyserkani, “A novel fibre Bragg grating sensor packaging design for ultra-high temperature sensing in harsh environment,” Meas. Sci. Technol. 25(7), 075104 (2014).
[Crossref]

P. D. Dragic, C. Kucera, J. Ballato, D. Litzkendorf, J. Dellith, and K. Schuster, “Brillouin scattering properties of lanthano-aluminosilicate optical fiber,” Appl. Opt. 53(25), 5660–5671 (2014).
[Crossref]

2013 (3)

2012 (2)

S. S. Chong, W. Y. Chong, S. W. Harun, and H. Ahmad, “Regenerated fibre Bragg grating fabricated on high germanium concentration photosensitive fibre for sensing at high temperature,” Opt. Laser Technol. 44(4), 821–824 (2012).
[Crossref]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
[Crossref]

2011 (2)

S. Unger, J. Dellith, A. Scheffel, and J. Kirchhof, “Diffusion in Yb2O3-Al2O3-SiO2 glass,” Phys.Cham. Glasses: Eur. J. Glass. Sci. Technol. B 52(2), 41–46 (2011).

S. Bandyopadhyay, J. Canning, P. Biswas, M. Stevenson, and K. Dasgupta, “A study of regenerated gratings produced in germanosilicate fibers by high temperature annealing,” Opt. Express 19(2), 1198–1206 (2011).
[Crossref] [PubMed]

2009 (3)

2008 (3)

2005 (1)

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings – arrays and single gratings of type II,” Opt. Eng. 44(6), 060503 (2005).
[Crossref]

2004 (1)

D. Grobnic, S. Mihailov, C. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
[Crossref]

1993 (1)

J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[Crossref]

Ahmad, H.

S. S. Chong, W. Y. Chong, S. W. Harun, and H. Ahmad, “Regenerated fibre Bragg grating fabricated on high germanium concentration photosensitive fibre for sensing at high temperature,” Opt. Laser Technol. 44(4), 821–824 (2012).
[Crossref]

Archambault, J.-L.

J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[Crossref]

Azhari, A.

A. Azhari, R. Liang, and E. Toyserkani, “A novel fibre Bragg grating sensor packaging design for ultra-high temperature sensing in harsh environment,” Meas. Sci. Technol. 25(7), 075104 (2014).
[Crossref]

Ballato, J.

Bandyopadhyay, S.

Bartelt, H.

Becker, M.

Bergmann, J.

Biswas, P.

Brückner, S.

Busch, M.

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol. 20(11), 115301 (2009).
[Crossref]

Canning, J.

Chojetzki, C.

E. Lindner, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17(15), 12523–12531 (2009).
[Crossref] [PubMed]

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings – arrays and single gratings of type II,” Opt. Eng. 44(6), 060503 (2005).
[Crossref]

Chong, S. S.

S. S. Chong, W. Y. Chong, S. W. Harun, and H. Ahmad, “Regenerated fibre Bragg grating fabricated on high germanium concentration photosensitive fibre for sensing at high temperature,” Opt. Laser Technol. 44(4), 821–824 (2012).
[Crossref]

Chong, W. Y.

S. S. Chong, W. Y. Chong, S. W. Harun, and H. Ahmad, “Regenerated fibre Bragg grating fabricated on high germanium concentration photosensitive fibre for sensing at high temperature,” Opt. Laser Technol. 44(4), 821–824 (2012).
[Crossref]

Cook, K.

Cotillard, R.

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high-temperature measurement,” Meas. Sci. Technol. 24(9), 094010 (2013).
[Crossref]

Dasgupta, K.

de Sterke, C. M.

Dellith, J.

P. D. Dragic, C. Kucera, J. Ballato, D. Litzkendorf, J. Dellith, and K. Schuster, “Brillouin scattering properties of lanthano-aluminosilicate optical fiber,” Appl. Opt. 53(25), 5660–5671 (2014).
[Crossref]

S. Unger, J. Dellith, A. Scheffel, and J. Kirchhof, “Diffusion in Yb2O3-Al2O3-SiO2 glass,” Phys.Cham. Glasses: Eur. J. Glass. Sci. Technol. B 52(2), 41–46 (2011).

Ding, H.

D. Grobnic, S. Mihailov, C. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
[Crossref]

Dragic, P.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
[Crossref]

Dragic, P. D.

Ecke, W.

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol. 20(11), 115301 (2009).
[Crossref]

Elsmann, T.

Ferdinand, P.

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high-temperature measurement,” Meas. Sci. Technol. 24(9), 094010 (2013).
[Crossref]

Fischer, D.

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol. 20(11), 115301 (2009).
[Crossref]

Foy, P.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
[Crossref]

Franke, M.

Gao, S.

Graf, A.

Grobnic, D.

D. Grobnic, S. Mihailov, C. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
[Crossref]

Grujic, T.

Habisreuther, T.

Harun, S. W.

S. S. Chong, W. Y. Chong, S. W. Harun, and H. Ahmad, “Regenerated fibre Bragg grating fabricated on high germanium concentration photosensitive fibre for sensing at high temperature,” Opt. Laser Technol. 44(4), 821–824 (2012).
[Crossref]

Hawkins, T.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
[Crossref]

Kirchhof, J.

S. Unger, J. Dellith, A. Scheffel, and J. Kirchhof, “Diffusion in Yb2O3-Al2O3-SiO2 glass,” Phys.Cham. Glasses: Eur. J. Glass. Sci. Technol. B 52(2), 41–46 (2011).

Kucera, C.

Kuhlmey, B. T.

Laffont, G.

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high-temperature measurement,” Meas. Sci. Technol. 24(9), 094010 (2013).
[Crossref]

Latka, I.

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol. 20(11), 115301 (2009).
[Crossref]

Liang, R.

A. Azhari, R. Liang, and E. Toyserkani, “A novel fibre Bragg grating sensor packaging design for ultra-high temperature sensing in harsh environment,” Meas. Sci. Technol. 25(7), 075104 (2014).
[Crossref]

Lindner, E.

Litzkendorf, D.

Mihailov, S.

D. Grobnic, S. Mihailov, C. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
[Crossref]

Morris, S.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
[Crossref]

Mueller, H.-R.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings – arrays and single gratings of type II,” Opt. Eng. 44(6), 060503 (2005).
[Crossref]

Ommer, J.

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings – arrays and single gratings of type II,” Opt. Eng. 44(6), 060503 (2005).
[Crossref]

Poulton, C. G.

Reekie, L.

J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[Crossref]

Rothhardt, M.

Rothhardt, M. W.

Russell, P. St. J.

J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[Crossref]

Scheffel, A.

S. Unger, J. Dellith, A. Scheffel, and J. Kirchhof, “Diffusion in Yb2O3-Al2O3-SiO2 glass,” Phys.Cham. Glasses: Eur. J. Glass. Sci. Technol. B 52(2), 41–46 (2011).

Schuster, K.

P. D. Dragic, C. Kucera, J. Ballato, D. Litzkendorf, J. Dellith, and K. Schuster, “Brillouin scattering properties of lanthano-aluminosilicate optical fiber,” Appl. Opt. 53(25), 5660–5671 (2014).
[Crossref]

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings – arrays and single gratings of type II,” Opt. Eng. 44(6), 060503 (2005).
[Crossref]

Smelser, C.

D. Grobnic, S. Mihailov, C. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
[Crossref]

Stevenson, M.

Toyserkani, E.

A. Azhari, R. Liang, and E. Toyserkani, “A novel fibre Bragg grating sensor packaging design for ultra-high temperature sensing in harsh environment,” Meas. Sci. Technol. 25(7), 075104 (2014).
[Crossref]

Unger, S.

S. Unger, J. Dellith, A. Scheffel, and J. Kirchhof, “Diffusion in Yb2O3-Al2O3-SiO2 glass,” Phys.Cham. Glasses: Eur. J. Glass. Sci. Technol. B 52(2), 41–46 (2011).

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings – arrays and single gratings of type II,” Opt. Eng. 44(6), 060503 (2005).
[Crossref]

Willsch, R.

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol. 20(11), 115301 (2009).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. Grobnic, S. Mihailov, C. Smelser, and H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16(11), 2505–2507 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (3)

M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, and H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications,” Meas. Sci. Technol. 20(11), 115301 (2009).
[Crossref]

A. Azhari, R. Liang, and E. Toyserkani, “A novel fibre Bragg grating sensor packaging design for ultra-high temperature sensing in harsh environment,” Meas. Sci. Technol. 25(7), 075104 (2014).
[Crossref]

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high-temperature measurement,” Meas. Sci. Technol. 24(9), 094010 (2013).
[Crossref]

Nat. Photonics (1)

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 629–635 (2012).
[Crossref]

Opt. Eng. (1)

C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, and H.-R. Mueller, “High-reflectivity draw-tower fiber Bragg gratings – arrays and single gratings of type II,” Opt. Eng. 44(6), 060503 (2005).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

S. S. Chong, W. Y. Chong, S. W. Harun, and H. Ahmad, “Regenerated fibre Bragg grating fabricated on high germanium concentration photosensitive fibre for sensing at high temperature,” Opt. Laser Technol. 44(4), 821–824 (2012).
[Crossref]

Opt. Lett. (2)

Phys.Cham. Glasses: Eur. J. Glass. Sci. Technol. B (1)

S. Unger, J. Dellith, A. Scheffel, and J. Kirchhof, “Diffusion in Yb2O3-Al2O3-SiO2 glass,” Phys.Cham. Glasses: Eur. J. Glass. Sci. Technol. B 52(2), 41–46 (2011).

Sensors (Basel Switzerland) (1)

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors (Basel Switzerland) 8(10), 6448–6452 (2008).
[Crossref]

Other (2)

D. Grobnic, S. J. Mihailov, J. Ballato, and P. Dragic, “Bragg gratings made with IR femtosecond radiation in high alumina content aluminosilicate optical fibers,”, ” in Advanced Photonics, OSA Technical Digest Series (Optical Society of America, 2014), paper BW2D.4.

T. Elsmann, T. Habisreuther, M. W. Rothhardt, and H. Bartelt, “High temperature sensing with fiber Bragg gratings in sapphire fibers,” in Advanced Photonics, OSA Technical Digest Series (Optical Society of America, 2014), paper BTu5B.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Profile of the aluminosilicate fiber. The aluminum content (red dots) corresponds very well to the refractive index profile (black solid line) of the fiber measured with the IFA-100 Fiber Index Profiler.
Fig. 2
Fig. 2 Loss of the aluminosilicate fiber and microscope image of the cleaved fiber (inset).
Fig. 3
Fig. 3 Reflection spectrum of a FBG. (a) The experimentally measured reflection spectrum (black solid line) is well described by the simulated spectrum (red dashed line). (b) Refractive index profile (black curve) and calculated effective mode indices (gray horizontal lines). Modes are arranged by mode groups (numbered).
Fig. 4
Fig. 4 Spectrum of a FBG at room temperature (light-blue) and at about 700°C (dark-blue).
Fig. 5
Fig. 5 Temperature behavior of a grating at 900°C. (a) The Bragg wavelength is permanently changed within the first 4 h. (b) The reflection amplitude shows no decrease within 29 h at 900°C.
Fig. 6
Fig. 6 Temperature dependency of Bragg wavelength. The measurement (dots) shows a parabolic behavior (fitted lines).
Fig. 7
Fig. 7 Temperature behavior of a grating at 950°C. (a) The Bragg wavelength continuously changes to a permanent level. (b) The reflection amplitude shows no decrease within 23 h at 950°C.
Fig. 8
Fig. 8 Temperature behavior of a grating at 1000°C. (a) Reflection spectrum of a FBG at room temperature after 110 min heating at 1000°C. (b) The reflection amplitude decreases by 20% within almost 2 h.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

m· λ Bragg = ( n forw + n back )· Λ grating

Metrics