Abstract

Enhancements of the continuous-wave four-wave mixing conversion efficiency and bandwidth are accomplished through the application of plasma-assisted photoresist reflow to reduce the sidewall roughness of sub-square-micron-modal area waveguides. Nonlinear AlGaAs optical waveguides with a propagation loss of 0.56 dB/cm demonstrate continuous-wave four-wave mixing conversion efficiency of −7.8 dB. Narrow waveguides that are fabricated with engineered processing produce waveguides with uncoated sidewalls and anti-reflection coatings that show group velocity dispersion of +0.22 ps2/m. Waveguides that are 5-mm long demonstrate broadband four-wave mixing conversion efficiencies with a half-width 3-dB bandwidth of 63.8-nm.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion

Ksenia Dolgaleva, Wing Chau Ng, Li Qian, and J. Stewart Aitchison
Opt. Express 19(13) 12440-12455 (2011)

Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides

Ksenia Dolgaleva, Wing Chau Ng, Li Qian, J. Stewart Aitchison, Maria Carla Camasta, and Marc Sorel
Opt. Lett. 35(24) 4093-4095 (2010)

Low-power continuous-wave four-wave mixing wavelength conversion in AlGaAs-nanowaveguide microresonators

Pisek Kultavewuti, Vincenzo Pusino, Marc Sorel, and J. Stewart Aitchison
Opt. Lett. 40(13) 3029-3032 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
    [Crossref]
  2. X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA,” Electron. Lett. 43, 890–892 (2007).
    [Crossref]
  3. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324–10329 (2007).
    [Crossref]
  4. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
    [Crossref] [PubMed]
  5. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16, 16735–16745 (2008).
    [Crossref] [PubMed]
  6. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. V. Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 20, 4085–4101 (2011).
  7. K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37, 1331–1333 (2012).
    [Crossref] [PubMed]
  8. S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, I. Itoga, T. Ogasawara, R. Takei, K. Kawashima, S. Namiki, M. Mori, T. Hasama, and K. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett. 37, 1382–1384 (2012).
    [Crossref] [PubMed]
  9. P. Apiratikul, W. Astar, G. M. Carter, and T. E. Murphy, “Demonstration of 10-Gb/s wavelength conversion using four-wave mixing in GaAs waveguide,” IEEE Photon. Technol. Lett. 22, 872–874 (2010).
    [Crossref]
  10. K. Dolgaleva, W. C. Ng, L. Qian, and J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express 19, 12440–12455 (2011).
    [Crossref] [PubMed]
  11. B. M. Cannon, T. Mahmood, W. Astar, P. Apiratikul, G. Porkolab, P. Boudra, T. Mohsenin, C. J. K. Richardson, and G. M. Carter, “All-optical amplitude-phase transmultiplexing of RZ-OOK and RZ-BPSK to RZ-QPSK by polarization-insensitive XPM using a nonlinear birefringent AlGaAs waveguide,” Opt. Express 21, 19885–19899 (2013).
    [Crossref] [PubMed]
  12. L. Jia, M. Geng, L. Zhang, L. Yang, P. Chen, Y. Liu, Q. Fang, and M. Yu, “Effects of waveguide length and pump power on the efficiency of wavelength conversion in silicon nanowire waveguides,” Opt. Lett. 34, 3502–3504 (2009).
    [Crossref] [PubMed]
  13. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1987).
    [Crossref]
  14. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2955–2957 (2003).
    [Crossref]
  15. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, and D. N. Christodoulides, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express 14, 9377–9384 (2006).
    [Crossref] [PubMed]
  16. C. Lacava, V. Pusino, P. Minzioni, M. Sorel, and I. Cristiani, “Nonlinear properties of AlGaAs waveguides in continuous wave operation regime,” Opt. Express 22, 5291–5297 (2014).
    [Crossref] [PubMed]
  17. J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express 15, 12755–12762 (2007).
    [Crossref] [PubMed]
  18. G. A. Porkolab, P. Apiratikul, S. H. Guo, and C. J. K. Richardson, “Low propagation loss AlGaAs waveguides fabricated with plasma-assisted photoresist reflow,” Opt. Express 22, 7733–7743 (2014).
    [Crossref] [PubMed]
  19. X. Liu, W. M. J. Green, X. Chen, I. W. Hsieh, J. I. Dadap, Y. A. Vlasov, and R. M. Osgood, “Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires,” Opt. Lett. 33, 2889–2891 (2008).
    [Crossref] [PubMed]
  20. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26, 1423–1431 (2008).
    [Crossref]
  21. E. Kapon and R. Bhat, “Low-loss single-mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50, 1628–1630 (1987).
    [Crossref]
  22. J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient CW four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Technol. Lett. 25, 1699–1702 (2013).
    [Crossref]
  23. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
    [Crossref]
  24. J. J. Wathen, V. R. Pagan, and T. E. Murphy, “Simple method to characterize nonlinear refraction and loss in optical waveguides,” Opt. Lett. 37, 4693–4695 (2012).
    [Crossref] [PubMed]
  25. J. J. Wathen, P. Apiratikul, C. J. K. Richardson, G. A. Porkolab, G. M. Carter, and T. E. Murphy, “Efficient continuous-wave four-wave mixing in bandgap-engineered AlGaAs waveguides,” Opt. Lett. 39, 3161–3164 (2014).
    [Crossref] [PubMed]
  26. A. M. Darwish, E. P. Ippen, H. Q. Le, J. P. Donnelly, and S. H. Groves, “Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss,” Appl. Phys. Lett. 69, 737–739 (1996).
    [Crossref]
  27. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
    [Crossref] [PubMed]
  28. K. Inoue and T. Mukai, “Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier,” Opt. Lett. 26, 10–12 (2001).
    [Crossref]

2014 (3)

2013 (2)

2012 (3)

2011 (2)

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. V. Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 20, 4085–4101 (2011).

K. Dolgaleva, W. C. Ng, L. Qian, and J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express 19, 12440–12455 (2011).
[Crossref] [PubMed]

2010 (1)

P. Apiratikul, W. Astar, G. M. Carter, and T. E. Murphy, “Demonstration of 10-Gb/s wavelength conversion using four-wave mixing in GaAs waveguide,” IEEE Photon. Technol. Lett. 22, 872–874 (2010).
[Crossref]

2009 (1)

2008 (3)

2007 (4)

2006 (2)

2003 (2)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2955–2957 (2003).
[Crossref]

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

2001 (1)

1996 (1)

A. M. Darwish, E. P. Ippen, H. Q. Le, J. P. Donnelly, and S. H. Groves, “Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss,” Appl. Phys. Lett. 69, 737–739 (1996).
[Crossref]

1991 (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

1987 (2)

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1987).
[Crossref]

E. Kapon and R. Bhat, “Low-loss single-mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50, 1628–1630 (1987).
[Crossref]

Aguinaldo, R.

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient CW four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Technol. Lett. 25, 1699–1702 (2013).
[Crossref]

Aitchison, J. S.

Apiratikul, P.

Astar, W.

Baets, R.

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. V. Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 20, 4085–4101 (2011).

Belardi, W.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Bhat, R.

E. Kapon and R. Bhat, “Low-loss single-mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50, 1628–1630 (1987).
[Crossref]

Bogaerts, W.

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. V. Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 20, 4085–4101 (2011).

Boudra, P.

Cannon, B. M.

Carter, G. M.

Chen, P.

Chen, X.

Christodoulides, D. N.

Clemmen, S.

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. V. Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 20, 4085–4101 (2011).

Cristiani, I.

Dadap, J. I.

Darwish, A. M.

A. M. Darwish, E. P. Ippen, H. Q. Le, J. P. Donnelly, and S. H. Groves, “Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss,” Appl. Phys. Lett. 69, 737–739 (1996).
[Crossref]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2955–2957 (2003).
[Crossref]

Dolgaleva, K.

Donnelly, J. P.

A. M. Darwish, E. P. Ippen, H. Q. Le, J. P. Donnelly, and S. H. Groves, “Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss,” Appl. Phys. Lett. 69, 737–739 (1996).
[Crossref]

Eggleton, B. J.

El-Ganainy, R.

Ellis, A. D.

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA,” Electron. Lett. 43, 890–892 (2007).
[Crossref]

Emplit, P.

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. V. Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 20, 4085–4101 (2011).

Fallahkhair, A. B.

Fang, Q.

Foster, A. C.

Foster, M. A.

Fu, L. B.

Furusawa, K.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Gaeta, A. L.

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2955–2957 (2003).
[Crossref]

Geng, M.

Green, W. M. J.

Groves, S. H.

A. M. Darwish, E. P. Ippen, H. Q. Le, J. P. Donnelly, and S. H. Groves, “Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss,” Appl. Phys. Lett. 69, 737–739 (1996).
[Crossref]

Guo, S. H.

Hagan, D. J.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

Hasama, T.

Hsieh, I. W.

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1987).
[Crossref]

Inoue, K.

Ippen, E. P.

A. M. Darwish, E. P. Ippen, H. Q. Le, J. P. Donnelly, and S. H. Groves, “Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss,” Appl. Phys. Lett. 69, 737–739 (1996).
[Crossref]

Ishikawa, K.

Itoga, I.

Iwanow, R.

Jia, L.

Jugessur, A.

Kamei, T.

Kang, J. U.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1987).
[Crossref]

Kapon, E.

E. Kapon and R. Bhat, “Low-loss single-mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50, 1628–1630 (1987).
[Crossref]

Kawashima, K.

Kumar, R.

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient CW four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Technol. Lett. 25, 1699–1702 (2013).
[Crossref]

Kuyken, B.

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. V. Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 20, 4085–4101 (2011).

Lacava, C.

Lamont, M. R. E.

Le, H. Q.

A. M. Darwish, E. P. Ippen, H. Q. Le, J. P. Donnelly, and S. H. Groves, “Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss,” Appl. Phys. Lett. 69, 737–739 (1996).
[Crossref]

Lee, J. H.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Li, K. S.

Lipson, M.

Liu, X.

Liu, Y.

Mägi, E. C.

Mahmood, T.

Manning, R. J.

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA,” Electron. Lett. 43, 890–892 (2007).
[Crossref]

Manolatou, C.

Massar, S.

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. V. Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 20, 4085–4101 (2011).

Mathlouthi, W.

Meier, J.

Minzioni, P.

Mishra, A. K.

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA,” Electron. Lett. 43, 890–892 (2007).
[Crossref]

Mohammed, W. S.

Mohsenin, T.

Mojahedi, M.

Monro, T. M.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Mookherjea, S.

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient CW four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Technol. Lett. 25, 1699–1702 (2013).
[Crossref]

Mori, M.

Mukai, T.

Murphy, T. E.

Nakanishi, K.

Namiki, S.

Ng, W. C.

Nguyen, H. C.

Ogasawara, T.

Ong, J. R.

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient CW four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Technol. Lett. 25, 1699–1702 (2013).
[Crossref]

Osgood, R. M.

Pagan, V. R.

Paniccia, M.

Petropoulos, P.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Porkolab, G.

Porkolab, G. A.

Pusino, V.

Qian, L.

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2955–2957 (2003).
[Crossref]

Richardson, C. J. K.

Richardson, D. J.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Roelkens, G.

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. V. Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 20, 4085–4101 (2011).

Rong, H.

Sakakibara, Y.

Salem, R.

Schmidt, B. S.

Selvaraja, S. K.

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. V. Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 20, 4085–4101 (2011).

Sharping, J. E.

Sheik-Bahae, M.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

Siviloglou, G. A.

Sorel, M.

Stegeman, G. I.

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, and D. N. Christodoulides, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express 14, 9377–9384 (2006).
[Crossref] [PubMed]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1987).
[Crossref]

Suda, S.

Suntsov, S.

Takei, R.

Tanizawa, K.

Thourhout, D. V.

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. V. Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 20, 4085–4101 (2011).

Turner, A. C.

Van Stryland, E. W.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

Villeneuve, A.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1987).
[Crossref]

Vlasov, Y. A.

Wang, K.-Y.

Wathen, J. J.

Webb, R. P.

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA,” Electron. Lett. 43, 890–892 (2007).
[Crossref]

Yang, L.

Yang, X.

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA,” Electron. Lett. 43, 890–892 (2007).
[Crossref]

Yeom, D. I.

Yu, M.

Yusoff, Z.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Zhang, L.

Appl. Phys. Lett. (3)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2955–2957 (2003).
[Crossref]

E. Kapon and R. Bhat, “Low-loss single-mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50, 1628–1630 (1987).
[Crossref]

A. M. Darwish, E. P. Ippen, H. Q. Le, J. P. Donnelly, and S. H. Groves, “Optimization of four-wave mixing conversion efficiency in the presence of nonlinear loss,” Appl. Phys. Lett. 69, 737–739 (1996).
[Crossref]

Electron. Lett. (1)

X. Yang, A. K. Mishra, R. J. Manning, R. P. Webb, and A. D. Ellis, “All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA,” Electron. Lett. 43, 890–892 (2007).
[Crossref]

IEEE J. Quantum Electron. (2)

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1987).
[Crossref]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (3)

J. R. Ong, R. Kumar, R. Aguinaldo, and S. Mookherjea, “Efficient CW four-wave mixing in silicon-on-insulator micro-rings with active carrier removal,” IEEE Photon. Technol. Lett. 25, 1699–1702 (2013).
[Crossref]

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

P. Apiratikul, W. Astar, G. M. Carter, and T. E. Murphy, “Demonstration of 10-Gb/s wavelength conversion using four-wave mixing in GaAs waveguide,” IEEE Photon. Technol. Lett. 22, 872–874 (2010).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (10)

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16, 16735–16745 (2008).
[Crossref] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref] [PubMed]

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, and D. N. Christodoulides, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express 14, 9377–9384 (2006).
[Crossref] [PubMed]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15, 10324–10329 (2007).
[Crossref]

J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express 15, 12755–12762 (2007).
[Crossref] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15, 12949–12958 (2007).
[Crossref] [PubMed]

K. Dolgaleva, W. C. Ng, L. Qian, and J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express 19, 12440–12455 (2011).
[Crossref] [PubMed]

B. M. Cannon, T. Mahmood, W. Astar, P. Apiratikul, G. Porkolab, P. Boudra, T. Mohsenin, C. J. K. Richardson, and G. M. Carter, “All-optical amplitude-phase transmultiplexing of RZ-OOK and RZ-BPSK to RZ-QPSK by polarization-insensitive XPM using a nonlinear birefringent AlGaAs waveguide,” Opt. Express 21, 19885–19899 (2013).
[Crossref] [PubMed]

C. Lacava, V. Pusino, P. Minzioni, M. Sorel, and I. Cristiani, “Nonlinear properties of AlGaAs waveguides in continuous wave operation regime,” Opt. Express 22, 5291–5297 (2014).
[Crossref] [PubMed]

G. A. Porkolab, P. Apiratikul, S. H. Guo, and C. J. K. Richardson, “Low propagation loss AlGaAs waveguides fabricated with plasma-assisted photoresist reflow,” Opt. Express 22, 7733–7743 (2014).
[Crossref] [PubMed]

Opt. Lett. (8)

J. J. Wathen, P. Apiratikul, C. J. K. Richardson, G. A. Porkolab, G. M. Carter, and T. E. Murphy, “Efficient continuous-wave four-wave mixing in bandgap-engineered AlGaAs waveguides,” Opt. Lett. 39, 3161–3164 (2014).
[Crossref] [PubMed]

K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37, 1331–1333 (2012).
[Crossref] [PubMed]

S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, I. Itoga, T. Ogasawara, R. Takei, K. Kawashima, S. Namiki, M. Mori, T. Hasama, and K. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett. 37, 1382–1384 (2012).
[Crossref] [PubMed]

J. J. Wathen, V. R. Pagan, and T. E. Murphy, “Simple method to characterize nonlinear refraction and loss in optical waveguides,” Opt. Lett. 37, 4693–4695 (2012).
[Crossref] [PubMed]

K. Inoue and T. Mukai, “Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier,” Opt. Lett. 26, 10–12 (2001).
[Crossref]

X. Liu, W. M. J. Green, X. Chen, I. W. Hsieh, J. I. Dadap, Y. A. Vlasov, and R. M. Osgood, “Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires,” Opt. Lett. 33, 2889–2891 (2008).
[Crossref] [PubMed]

L. Jia, M. Geng, L. Zhang, L. Yang, P. Chen, Y. Liu, Q. Fang, and M. Yu, “Effects of waveguide length and pump power on the efficiency of wavelength conversion in silicon nanowire waveguides,” Opt. Lett. 34, 3502–3504 (2009).
[Crossref] [PubMed]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. V. Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 20, 4085–4101 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic cross-section superposed by the calculated fundamental TE mode contours of (a) uncoated and (b) coated AlGaAs waveguides. (c) and (d) show cross-sectional scanning electron micrograph of uncoated and coated 0.75-μm wide deep-etch AlGaAs waveguides.

Fig. 2
Fig. 2

Scanning electron micrographs of etched waveguides patterned by (a) as-developed and (b) plasma-assisted reflow photoresist processes. Reduction of the deep-etched sidewall roughness is evident in the plasma-assisted photoresist reflow process without significant relaxation of the waveguide width.

Fig. 3
Fig. 3

Experimental setup for measuring CW-FWM conversion efficiency in AlGaAs waveguides.

Fig. 4
Fig. 4

Comparison of measured TE-polarized CW FWM conversion efficiency as a function of coupled input pump power of 2.5-cm long AlGaAs waveguides patterned by as-developed photoresist and by plasma-assisted reflowed photoresist. The inset shows the FWM output spectrum measured after AlGaAs waveguide fabricated using the plasma-assisted reflow process with a coupled input pump power of 29 dBm.

Fig. 5
Fig. 5

Measured and simulated conversion efficiency as a function of pump-signal wavelength detuning for the fundamental TE mode in a 0.69 μm-wide waveguide before and after the SiNx has been removed from the waveguide sidewalls. After removing the SiNx on the sidewall, the waveguide has a larger bandwidth indicating a lower group velocity dispersion.

Fig. 6
Fig. 6

Measured and simulated group velocity dispersion as a function of waveguide width for the TE and TM waveguide modes of waveguides fabricated with a conformal SiNx coating, and the TE mode of wavegudies without SiNx coating. All waveguides have anti-reflection coatings and are evaluated at a wavelength of 1550 nm.

Tables (1)

Tables Icon

Table 1 Parameters used to calculate the FWM conversion efficiencies shown in Fig. 4

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A eff = [ E ( x , y ) 2 d x d y ] 2 E ( x , y ) 4 d x d y ,
η = P i ( out ) P s ( in ) = exp ( α L ) ( 2 π n 2 λ A eff P p ( in ) L eff ) 2
d P p d z = α P p α 2 A eff ( P p + 2 P s + 2 P i ) P p 4 ω n 2 c A eff P p P s P i sin θ 2 α 2 A eff P p P s P i cos θ
d P s d z = α P s α 2 A eff ( 2 P p + P s + 2 P i ) P s + 2 ω n 2 c A eff P p P s P i sin θ α 2 A eff P p P s P i cos θ
d P i d z = α P i α 2 A eff ( 2 P p + 2 P s + P i ) P i + 2 ω n 2 c A eff P p P s P i sin θ α 2 A eff P p P s P i cos θ
d θ d z = ( k s + k i 2 k p ) + ω n 2 c A eff ( 2 P p P s P i ) + ω n 2 c A eff ( P p P s P i + P p P i P s 4 P s P i ) cos θ + α 2 A eff ( P p P s P i + P p P i P s 4 P s P i ) sin θ

Metrics