Abstract

We demonstrate the data transmission of 10 Gbit/s on-off keying modulated 1550 nm signal through a long-range dielectric-loaded surface plasmon polariton waveguide structure with negligible signal degradation. In the experiment the bit error rate penalties do not exceed 0.6 dB over the 15 nm wavelength range and received optical power between −7 and 3 dBm.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dense WDM transmission at 2  μm enabled by an arrayed waveguide grating

H. Zhang, M. Gleeson, N. Ye, N. Pavarelli, X. Ouyang, J. Zhao, N. Kavanagh, C. Robert, H. Yang, P. E. Morrissey, K. Thomas, A. Gocalinska, Y. Chen, T. Bradley, J. P. Wooler, J. R. Hayes, E. Numkam Fokoua, Z. Li, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson, B. Kelly, J. O’Carroll, R. Phelan, E. Pelucchi, P. O’Brien, F. Peters, B. Corbett, and F. Gunning
Opt. Lett. 40(14) 3308-3311 (2015)

A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel

Jeffrey B. Driscoll, Christine P. Chen, Richard R. Grote, Brian Souhan, Jerry I. Dadap, Aaron Stein, Ming Lu, Keren Bergman, and Richard M. Osgood
Opt. Express 22(15) 18543-18555 (2014)

References

  • View by:
  • |
  • |
  • |

  1. V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728–738 (2012).
    [Crossref]
  2. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
    [Crossref]
  3. D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriezis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48 tb/s (12×40 gb/s) wdm transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express 20, 7655–7662 (2012).
    [Crossref] [PubMed]
  4. J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40 gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
    [Crossref]
  5. V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Directional coupling in channel plasmon-polariton waveguides,” Opt. Express 20, 6124–6134 (2012).
    [Crossref] [PubMed]
  6. A. Melikyan, C. Gaertner, K. Köhnle, A. Muslija, M. Sommer, M. Kohl, C. Koos, W. Freude, and J. Leuthold, “Integrated wire grid polarizer and plasmonic polarization beam splitter,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OW1E.3.
  7. S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett. 98, 161102 (2011).
    [Crossref]
  8. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguidering resonators,” Opt. Express 17, 2968–2975 (2009).
    [Crossref] [PubMed]
  9. A. Krasavin and A. Zayats, “All-optical active components for dielectric-loaded plasmonic waveguides,” Opt. Commun. 283, 1581–1584 (2010).
    [Crossref]
  10. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of cdse quantum dots,” Nat. Photonics 1, 402–406 (2007).
    [Crossref]
  11. A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
    [Crossref] [PubMed]
  12. A. Krasavin, T. Vo, W. Dickson, P. Bolger, and A. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).
    [Crossref] [PubMed]
  13. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
    [Crossref]
  14. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
    [Crossref] [PubMed]
  15. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18, 23009–23015 (2010).
    [Crossref] [PubMed]
  16. J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. Lightwave Technol. 29, 1473–1481 (2011).
    [Crossref]
  17. V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
    [Crossref] [PubMed]
  18. D. Marcuse, “Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers,” J. Lightwave Technol. 8, 1816–1823 (1990).
    [Crossref]
  19. Y. K. Lize, L. C. Christen, S. Nuccio, X. Wu, A. E. Willner, R. Kashyap, and M. Faucher, “Optical error correction using passive optical logic gates demodulators in differential demodulation,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2007), p. CMQ5.
  20. H.-G. Weber and M. Nakazawa, eds., Ultrahigh-Speed Optical Transmission Technology, 1st ed (Optical and Fiber Communications Reports) (Springer, 2007).
    [Crossref]
  21. D. Hood, Gigabit-capable Passive Optical Networks (Wiley, 2012), 1st ed.
    [Crossref]
  22. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
    [Crossref] [PubMed]

2012 (3)

2011 (5)

2010 (2)

A. Krasavin and A. Zayats, “All-optical active components for dielectric-loaded plasmonic waveguides,” Opt. Commun. 283, 1581–1584 (2010).
[Crossref]

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18, 23009–23015 (2010).
[Crossref] [PubMed]

2009 (2)

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguidering resonators,” Opt. Express 17, 2968–2975 (2009).
[Crossref] [PubMed]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (3)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[Crossref]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of cdse quantum dots,” Nat. Photonics 1, 402–406 (2007).
[Crossref]

J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40 gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
[Crossref]

1990 (1)

D. Marcuse, “Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers,” J. Lightwave Technol. 8, 1816–1823 (1990).
[Crossref]

1957 (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[Crossref]

Albrektsen, O.

Apostolopoulos, D.

Atwater, H. A.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of cdse quantum dots,” Nat. Photonics 1, 402–406 (2007).
[Crossref]

Avramopoulos, H.

Baus, M.

Bolger, P.

A. Krasavin, T. Vo, W. Dickson, P. Bolger, and A. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).
[Crossref] [PubMed]

Bouhelier, A.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriezis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48 tb/s (12×40 gb/s) wdm transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express 20, 7655–7662 (2012).
[Crossref] [PubMed]

V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Directional coupling in channel plasmon-polariton waveguides,” Opt. Express 20, 6124–6134 (2012).
[Crossref] [PubMed]

V. S. Volkov, Z. Han, M. G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths,” Opt. Lett. 36, 4278–4280 (2011).
[Crossref] [PubMed]

J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. Lightwave Technol. 29, 1473–1481 (2011).
[Crossref]

S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett. 98, 161102 (2011).
[Crossref]

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18, 23009–23015 (2010).
[Crossref] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguidering resonators,” Opt. Express 17, 2968–2975 (2009).
[Crossref] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[Crossref] [PubMed]

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[Crossref]

Chen, Z.

Christen, L. C.

Y. K. Lize, L. C. Christen, S. Nuccio, X. Wu, A. E. Willner, R. Kashyap, and M. Faucher, “Optical error correction using passive optical logic gates demodulators in differential demodulation,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2007), p. CMQ5.

Dereux, A.

des Francs, G. C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[Crossref] [PubMed]

Devaux, E.

Dickson, W.

A. Krasavin, T. Vo, W. Dickson, P. Bolger, and A. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).
[Crossref] [PubMed]

Ebbesen, T. W.

Faucher, M.

Y. K. Lize, L. C. Christen, S. Nuccio, X. Wu, A. E. Willner, R. Kashyap, and M. Faucher, “Optical error correction using passive optical logic gates demodulators in differential demodulation,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2007), p. CMQ5.

Finot, C.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[Crossref] [PubMed]

Freude, W.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref] [PubMed]

A. Melikyan, C. Gaertner, K. Köhnle, A. Muslija, M. Sommer, M. Kohl, C. Koos, W. Freude, and J. Leuthold, “Integrated wire grid polarizer and plasmonic polarization beam splitter,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OW1E.3.

Gaertner, C.

A. Melikyan, C. Gaertner, K. Köhnle, A. Muslija, M. Sommer, M. Kohl, C. Koos, W. Freude, and J. Leuthold, “Integrated wire grid polarizer and plasmonic polarization beam splitter,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OW1E.3.

Giannoulis, G.

Gosciniak, J.

Grandidier, J.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[Crossref] [PubMed]

Hahn, H.

Han, Z.

Hassan, K.

Holmgaard, T.

Hood, D.

D. Hood, Gigabit-capable Passive Optical Networks (Wiley, 2012), 1st ed.
[Crossref]

Ju, J. J.

J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40 gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
[Crossref]

Kalavrouziotis, D.

Karl, M.

Kashyap, R.

Y. K. Lize, L. C. Christen, S. Nuccio, X. Wu, A. E. Willner, R. Kashyap, and M. Faucher, “Optical error correction using passive optical logic gates demodulators in differential demodulation,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2007), p. CMQ5.

Keshmiri, H.

Kim, J. T.

J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40 gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
[Crossref]

Kim, M.-s.

J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40 gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
[Crossref]

Kohl, M.

A. Melikyan, C. Gaertner, K. Köhnle, A. Muslija, M. Sommer, M. Kohl, C. Koos, W. Freude, and J. Leuthold, “Integrated wire grid polarizer and plasmonic polarization beam splitter,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OW1E.3.

Köhnle, K.

A. Melikyan, C. Gaertner, K. Köhnle, A. Muslija, M. Sommer, M. Kohl, C. Koos, W. Freude, and J. Leuthold, “Integrated wire grid polarizer and plasmonic polarization beam splitter,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OW1E.3.

Koos, C.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref] [PubMed]

A. Melikyan, C. Gaertner, K. Köhnle, A. Muslija, M. Sommer, M. Kohl, C. Koos, W. Freude, and J. Leuthold, “Integrated wire grid polarizer and plasmonic polarization beam splitter,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OW1E.3.

Krasavin, A.

A. Krasavin, T. Vo, W. Dickson, P. Bolger, and A. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).
[Crossref] [PubMed]

A. Krasavin and A. Zayats, “All-optical active components for dielectric-loaded plasmonic waveguides,” Opt. Commun. 283, 1581–1584 (2010).
[Crossref]

Krasavin, A. V.

S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett. 98, 161102 (2011).
[Crossref]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[Crossref] [PubMed]

Kriezis, E. E.

Kumar, A.

Lee, M.-H.

J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40 gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
[Crossref]

Leosson, K.

Leufke, P. M.

Leuthold, J.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref] [PubMed]

A. Melikyan, C. Gaertner, K. Köhnle, A. Muslija, M. Sommer, M. Kohl, C. Koos, W. Freude, and J. Leuthold, “Integrated wire grid polarizer and plasmonic polarization beam splitter,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OW1E.3.

Lezec, H. J.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of cdse quantum dots,” Nat. Photonics 1, 402–406 (2007).
[Crossref]

Lindenmann, N.

Lize, Y. K.

Y. K. Lize, L. C. Christen, S. Nuccio, X. Wu, A. E. Willner, R. Kashyap, and M. Faucher, “Optical error correction using passive optical logic gates demodulators in differential demodulation,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2007), p. CMQ5.

Ma, R.-M.

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728–738 (2012).
[Crossref]

Marcuse, D.

D. Marcuse, “Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers,” J. Lightwave Technol. 8, 1816–1823 (1990).
[Crossref]

Markey, L.

Massenot, S.

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[Crossref] [PubMed]

Melikyan, A.

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref] [PubMed]

A. Melikyan, C. Gaertner, K. Köhnle, A. Muslija, M. Sommer, M. Kohl, C. Koos, W. Freude, and J. Leuthold, “Integrated wire grid polarizer and plasmonic polarization beam splitter,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OW1E.3.

Muslija, A.

A. Melikyan, C. Gaertner, K. Köhnle, A. Muslija, M. Sommer, M. Kohl, C. Koos, W. Freude, and J. Leuthold, “Integrated wire grid polarizer and plasmonic polarization beam splitter,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OW1E.3.

Nielsen, M. G.

Nuccio, S.

Y. K. Lize, L. C. Christen, S. Nuccio, X. Wu, A. E. Willner, R. Kashyap, and M. Faucher, “Optical error correction using passive optical logic gates demodulators in differential demodulation,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2007), p. CMQ5.

Oulton, R. F.

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728–738 (2012).
[Crossref]

Pacifici, D.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of cdse quantum dots,” Nat. Photonics 1, 402–406 (2007).
[Crossref]

Papaioannou, S.

Park, S.

J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40 gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
[Crossref]

Park, S. K.

J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40 gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
[Crossref]

Park, Y. J.

J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40 gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
[Crossref]

Pitilakis, A.

Pleros, N.

Quidant, R.

S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett. 98, 161102 (2011).
[Crossref]

Randhawa, S.

S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett. 98, 161102 (2011).
[Crossref]

Renger, J.

S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett. 98, 161102 (2011).
[Crossref]

Ritchie, R. H.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[Crossref]

Schimmel, T.

Sommer, M.

A. Melikyan, C. Gaertner, K. Köhnle, A. Muslija, M. Sommer, M. Kohl, C. Koos, W. Freude, and J. Leuthold, “Integrated wire grid polarizer and plasmonic polarization beam splitter,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OW1E.3.

Sorger, V. J.

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728–738 (2012).
[Crossref]

Tekin, T.

Tsilipakos, O.

Ulrich, S.

Vincze, P.

Vo, T.

A. Krasavin, T. Vo, W. Dickson, P. Bolger, and A. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).
[Crossref] [PubMed]

Volkov, V. S.

Vyrsokinos, K.

Walheim, S.

Weeber, J.-C.

Willner, A. E.

Y. K. Lize, L. C. Christen, S. Nuccio, X. Wu, A. E. Willner, R. Kashyap, and M. Faucher, “Optical error correction using passive optical logic gates demodulators in differential demodulation,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2007), p. CMQ5.

Wu, X.

Y. K. Lize, L. C. Christen, S. Nuccio, X. Wu, A. E. Willner, R. Kashyap, and M. Faucher, “Optical error correction using passive optical logic gates demodulators in differential demodulation,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2007), p. CMQ5.

Ye, J.

Zayats, A.

A. Krasavin, T. Vo, W. Dickson, P. Bolger, and A. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).
[Crossref] [PubMed]

A. Krasavin and A. Zayats, “All-optical active components for dielectric-loaded plasmonic waveguides,” Opt. Commun. 283, 1581–1584 (2010).
[Crossref]

Zayats, A. V.

S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett. 98, 161102 (2011).
[Crossref]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[Crossref] [PubMed]

Zenin, V. A.

Zhang, X.

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728–738 (2012).
[Crossref]

Appl. Phys. Lett. (2)

J. J. Ju, S. Park, M.-s. Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “40 gbit/s light signal transmission in long-range surface plasmon waveguides,” Appl. Phys. Lett. 91, 171117 (2007).
[Crossref]

S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant, “Experimental demonstration of dielectric-loaded plasmonic waveguide disk resonators at telecom wavelengths,” Appl. Phys. Lett. 98, 161102 (2011).
[Crossref]

J. Lightwave Technol. (2)

J. Gosciniak, T. Holmgaard, and S. I. Bozhevolnyi, “Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides,” J. Lightwave Technol. 29, 1473–1481 (2011).
[Crossref]

D. Marcuse, “Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers,” J. Lightwave Technol. 8, 1816–1823 (1990).
[Crossref]

MRS Bull. (1)

V. J. Sorger, R. F. Oulton, R.-M. Ma, and X. Zhang, “Toward integrated plasmonic circuits,” MRS Bull. 37, 728–738 (2012).
[Crossref]

Nano Lett. (2)

A. Krasavin, T. Vo, W. Dickson, P. Bolger, and A. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11, 2231–2235 (2011).
[Crossref] [PubMed]

J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of cdse quantum dots,” Nat. Photonics 1, 402–406 (2007).
[Crossref]

Opt. Commun. (1)

A. Krasavin and A. Zayats, “All-optical active components for dielectric-loaded plasmonic waveguides,” Opt. Commun. 283, 1581–1584 (2010).
[Crossref]

Opt. Express (6)

D. Kalavrouziotis, S. Papaioannou, G. Giannoulis, D. Apostolopoulos, K. Hassan, L. Markey, J.-C. Weeber, A. Dereux, A. Kumar, S. I. Bozhevolnyi, M. Baus, M. Karl, T. Tekin, O. Tsilipakos, A. Pitilakis, E. E. Kriezis, H. Avramopoulos, K. Vyrsokinos, and N. Pleros, “0.48 tb/s (12×40 gb/s) wdm transmission and high-quality thermo-optic switching in dielectric loaded plasmonics,” Opt. Express 20, 7655–7662 (2012).
[Crossref] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded plasmonic waveguidering resonators,” Opt. Express 17, 2968–2975 (2009).
[Crossref] [PubMed]

V. A. Zenin, V. S. Volkov, Z. Han, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Directional coupling in channel plasmon-polariton waveguides,” Opt. Express 20, 6124–6134 (2012).
[Crossref] [PubMed]

A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
[Crossref] [PubMed]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008).
[Crossref] [PubMed]

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 18, 23009–23015 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[Crossref]

Phys. Rev. B (1)

T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75, 245405 (2007).
[Crossref]

Other (4)

A. Melikyan, C. Gaertner, K. Köhnle, A. Muslija, M. Sommer, M. Kohl, C. Koos, W. Freude, and J. Leuthold, “Integrated wire grid polarizer and plasmonic polarization beam splitter,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OW1E.3.

Y. K. Lize, L. C. Christen, S. Nuccio, X. Wu, A. E. Willner, R. Kashyap, and M. Faucher, “Optical error correction using passive optical logic gates demodulators in differential demodulation,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2007), p. CMQ5.

H.-G. Weber and M. Nakazawa, eds., Ultrahigh-Speed Optical Transmission Technology, 1st ed (Optical and Fiber Communications Reports) (Springer, 2007).
[Crossref]

D. Hood, Gigabit-capable Passive Optical Networks (Wiley, 2012), 1st ed.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Layout of the LR-DLSPP waveguide structure profile and distribution of the supported TM-mode at the wavelength 1550 nm (calculated with COMSOL Multiphysics v4.4).
Fig. 2
Fig. 2 Scheme of the experimental setup for the BER measurements: 1 — pseudorandom bit sequence generator (PRBS); 2 — electrical driver (DRV); 3 — tunable laser source (TLS1,2); 4 — Mach-Zehnder modulator (MZM); 5 — Acousto-optical modulator (AOM); 6 — pattern generator (PG); 7, 11, 13 — erbium-doped fiber amplifiers (EDFA1,2,3); 8 — polarization controller (PC); 9 — device under test (DUT); 10, 16 — motorized variable optical attenuators (VOA); 12 — power meter (VOA); 14 — tunable band-pass filter (BPF); 15 — fiber optic switch (SW); 17 — fast photodetector (PD); 18 — optical spectrum analyzer (OSA); 19 — sampling oscilloscope (OSC).
Fig. 3
Fig. 3 Setup for the light injection into a nanooptical waveguide. 1 — infrared CCD camera; 2 — tube lens; 3 — 10× Mitutoyo infrared objective; 4 — collecting cleaved fiber fixed in a ferrule on a rotating platform; 5 — sample under test; 6 — tapered optical fiber for incoupling clamped in a V-groove; 7, 9 — translation stages; 8 — translation/rotation stage. Insets: photo of optomechanical arrangement for in/out coupling; side view of the waveguide chip and input (lensed) and output (cleaved) fibers, obtained with VIS observation camera.
Fig. 4
Fig. 4 Images from the infrared camera during the alignment of fibers with respect to the waveguide: a) — adjustment of the illumination sources and rough alignment of the tapered fiber (on the right); b) — fine adjustment of the tapered fiber until the strong scattering is observed on the grating (in the orange rectangle); c) — placement of the cleaved collecting fiber (highlighted with the orange circle) above the grating.
Fig. 5
Fig. 5 Estimation of PDF for received logical ones and zeros. Left: the signal waveform is centred, and a histogram acquisition window is specified (blue rectangle). Middle: the OSC collects vertical histogram in the specified region. The middle plot shows the normalized histogram corresponding to the presented waveform. Right: fitting of each semi-histograms with a sum of two Gaussians (right plot). The intersection point of upper and lower fitting functions represents the decision threshold x0
Fig. 6
Fig. 6 BER and penalties for single and double channel transmission at 1549 nm, channel spacing 0.4 nm: B2B – back-to-back measurements, WG – measurements on LR-DLSPPW.
Fig. 7
Fig. 7 BER and penalties for double channel transmission in different wavelength regions, channel spacing 0.4 nm: B2B – back-to-back measurements, WG – measurements on LR-DLSPPW.
Fig. 8
Fig. 8 BER and penalties for double channel transmission at 1541 nm, different interchannel spacing: B2B – back-to-back measurements, WG – measurements on LR-DLSPPW.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n ( x ) = N ( x ) Δ x N ( x ) .
x ˜ 0 = Δ x x n ( x ) .
f ( x ) = 1 2 σ π ( exp [ ( x μ + σ ) 2 σ 2 ] + exp [ ( x μ σ ) 2 σ 2 ] ) ,
f ( x 0 ) f ( x 0 ) = 0 .
BER = x 0 f ( x ) d x + x 0 + f ( x ) d x .
BER = f ( Q ) = 1 2 erfc ( Q 2 ) .
Q fit ( x ) = c 1 x c 2 x n + c 3 + c 4 + c 5 , n = 2 .
PEN = | logBER ( Q fit DUT ) logBER ( Q fit B 2 B ) | .

Metrics