Abstract

We present a simple, fast and accurate technique to characterize intracavity losses in broadband quasi-three-level lasers based on spectroscopic gain analysis. The technique is based on spectral gain measurement and potentially can be used at any laser output power levels, thus allowing a dynamic optimization of laser performance. Successful experimental demonstration was carried out with a diode-pumped Yb:KGW continuous wave oscillator. A comparison with traditional Findlay-Clay analysis and numerical modeling was also made.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Observation of strong cascaded Kerr-lens dynamics in an optimally-coupled cw intracavity frequency-doubled Nd:YLF ring laser

Jean-Jacques Zondy, Fabiola A. Camargo, Thomas Zanon, Valentin Petrov, and Niklaus U. Wetter
Opt. Express 18(5) 4796-4815 (2010)

Passively Q-switched quasi-three-level laser and its intracavity frequency doubling

Chun-Wei Wang, Yi-Lung Weng, Pi-Ling Huang, Huy-Zu Cheng, and Sheng-Lung Huang
Appl. Opt. 41(6) 1075-1081 (2002)

Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers

Takunori Taira, William M. Tulloch, and Robert L. Byer
Appl. Opt. 36(9) 1867-1874 (1997)

References

  • View by:
  • |
  • |
  • |

  1. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
    [Crossref]
  2. T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2(10), 599–604 (2008).
    [Crossref]
  3. C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photon. 7(11), 861–867 (2013).
    [Crossref]
  4. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2(4), 219–225 (2008).
    [Crossref]
  5. C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photon. 7(11), 875–882 (2013).
    [Crossref] [PubMed]
  6. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
    [Crossref]
  7. A. Major, D. Sandkuijl, and V. Barzda, “A diode-pumped continuous-wave Yb:KGW laser with Ng-axis polarized output,” Laser Phys. Lett. 6(11), 779–781 (2009).
    [Crossref]
  8. S. R. Bowman, S. P. O’Connor, and S. Biswal, “Ytterbium laser with reduced thermal loading,” IEEE J. Quantum Electron. 41(12), 1510–1517 (2005).
    [Crossref]
  9. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [Crossref]
  10. T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt. 36(9), 1867–1874 (1997).
    [Crossref] [PubMed]
  11. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2.,” Opt. Lett. 22(17), 1317–1319 (1997).
    [Crossref] [PubMed]
  12. I. D. Lindsay and M. Ebrahimzadeh, “Efficient continuous-wave and Q-switched operation of a 946-nm Nd:YAG laser pumped by an injection-locked broad-area diode laser,” Appl. Opt. 37(18), 3961–3970 (1998).
    [Crossref] [PubMed]
  13. S. Yiou, F. Balembois, and P. Georges, “Numerical modelling of a continuous-wave Yb-doped bulk crystal laser emitting on a three-level laser transition near 980 nm,” J. Opt. Soc. Am. B 22(3), 572–581 (2005).
    [Crossref]
  14. B. Jacobsson, J. E. Hellström, V. Pasiskevicius, and F. Laurell, “Widely tunable Yb:KYW laser with a volume Bragg grating,” Opt. Express 15(3), 1003–1010 (2007).
    [Crossref] [PubMed]

2013 (2)

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photon. 7(11), 861–867 (2013).
[Crossref]

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photon. 7(11), 875–882 (2013).
[Crossref] [PubMed]

2009 (1)

A. Major, D. Sandkuijl, and V. Barzda, “A diode-pumped continuous-wave Yb:KGW laser with Ng-axis polarized output,” Laser Phys. Lett. 6(11), 779–781 (2009).
[Crossref]

2008 (2)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2(4), 219–225 (2008).
[Crossref]

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2(10), 599–604 (2008).
[Crossref]

2007 (1)

2005 (2)

1999 (1)

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

1998 (1)

1997 (2)

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

1966 (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Baer, C. R. E.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2(10), 599–604 (2008).
[Crossref]

Balembois, F.

Barzda, V.

A. Major, D. Sandkuijl, and V. Barzda, “A diode-pumped continuous-wave Yb:KGW laser with Ng-axis polarized output,” Laser Phys. Lett. 6(11), 779–781 (2009).
[Crossref]

Biswal, S.

S. R. Bowman, S. P. O’Connor, and S. Biswal, “Ytterbium laser with reduced thermal loading,” IEEE J. Quantum Electron. 41(12), 1510–1517 (2005).
[Crossref]

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Bowman, S. R.

S. R. Bowman, S. P. O’Connor, and S. Biswal, “Ytterbium laser with reduced thermal loading,” IEEE J. Quantum Electron. 41(12), 1510–1517 (2005).
[Crossref]

Braun, A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Byer, R. L.

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Clay, R. A.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Ebrahimzadeh, M.

Findlay, D.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2(4), 219–225 (2008).
[Crossref]

Georges, P.

Giesen, A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Gingras, G.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2(10), 599–604 (2008).
[Crossref]

Graf, M.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Hashimoto, S.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2(10), 599–604 (2008).
[Crossref]

Hellström, J. E.

Hönninger, C.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Huber, G.

Jacobsson, B.

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photon. 7(11), 861–867 (2013).
[Crossref]

Johannsen, I.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Keller, U.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2(10), 599–604 (2008).
[Crossref]

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Kuleshov, N. V.

Lagatsky, A. A.

Laurell, F.

Limpert, J.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photon. 7(11), 861–867 (2013).
[Crossref]

Lindsay, I. D.

Major, A.

A. Major, D. Sandkuijl, and V. Barzda, “A diode-pumped continuous-wave Yb:KGW laser with Ng-axis polarized output,” Laser Phys. Lett. 6(11), 779–781 (2009).
[Crossref]

Marchese, S. V.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2(10), 599–604 (2008).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2(4), 219–225 (2008).
[Crossref]

Mikhailov, V. P.

Morier-Genoud, F.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Moser, M.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Mourou, G. A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Nees, J.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

O’Connor, S. P.

S. R. Bowman, S. P. O’Connor, and S. Biswal, “Ytterbium laser with reduced thermal loading,” IEEE J. Quantum Electron. 41(12), 1510–1517 (2005).
[Crossref]

Paschotta, R.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Pasiskevicius, V.

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Podlipensky, A. V.

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Sandkuijl, D.

A. Major, D. Sandkuijl, and V. Barzda, “A diode-pumped continuous-wave Yb:KGW laser with Ng-axis polarized output,” Laser Phys. Lett. 6(11), 779–781 (2009).
[Crossref]

Seeber, W.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Südmeyer, T.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2(10), 599–604 (2008).
[Crossref]

Taira, T.

Tulloch, W. M.

Tunnermann, A.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photon. 7(11), 861–867 (2013).
[Crossref]

Wise, F. W.

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photon. 7(11), 875–882 (2013).
[Crossref] [PubMed]

Witzel, B.

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2(10), 599–604 (2008).
[Crossref]

Xu, C.

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photon. 7(11), 875–882 (2013).
[Crossref] [PubMed]

Yiou, S.

Zhang, G.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

IEEE J. Quantum Electron. (2)

S. R. Bowman, S. P. O’Connor, and S. Biswal, “Ytterbium laser with reduced thermal loading,” IEEE J. Quantum Electron. 41(12), 1510–1517 (2005).
[Crossref]

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

A. Major, D. Sandkuijl, and V. Barzda, “A diode-pumped continuous-wave Yb:KGW laser with Ng-axis polarized output,” Laser Phys. Lett. 6(11), 779–781 (2009).
[Crossref]

Nat. Photon. (4)

T. Südmeyer, S. V. Marchese, S. Hashimoto, C. R. E. Baer, G. Gingras, B. Witzel, and U. Keller, “Femtosecond laser oscillators for high-field science,” Nat. Photon. 2(10), 599–604 (2008).
[Crossref]

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photon. 7(11), 861–867 (2013).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2(4), 219–225 (2008).
[Crossref]

C. Xu and F. W. Wise, “Recent advances in fibre lasers for nonlinear microscopy,” Nat. Photon. 7(11), 875–882 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Lett. (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of a continuous wave Yb:KGW laser. AD: achromatic doublet; DM, dichroic mirror; R1, R2, R3: concave mirrors with radii of curvatures of 600 mm, 600 mm and 750 mm; OC: output coupler; HR: highly reflective mirror.

Fig. 2
Fig. 2

The output power as a function of pump power for different output couplers for (a) the Nm-polarization and (b) the Np-polarization.

Fig. 3
Fig. 3

The lasing spectra (blue lines) and the calculated gain spectra (red curves) for different output couplers. (a) for the Nm-polarization and (b) for the Np-polarization. OC, output coupler. As the value of OC was changed, the lasing wavelength has shifted to have the highest gain.

Fig. 4
Fig. 4

The calculated lasing wavelength as a function of the total cavity loss. The shaded areas indicate the ranges of applicable losses which correspond to a single lasing wavelength and well defined peaks in the gain spectra.

Fig. 5
Fig. 5

Findlay-Clay plots for both polarizations, Nm and Np. The intercept of the graph with the horizontal axis defines the intracavity loss.

Fig. 6
Fig. 6

Shift of the lasing wavelength with increase of the pump power. A 3% output coupler was used. As the pump power was increased, the lasing spectrum shifted from short wavelength (high intracavity loss) to long wavelength (low intracavity loss).

Tables (2)

Tables Icon

Table 1 Gain Spectra Parameters and Calculated Intracavity Losses

Tables Icon

Table 2 Lasing Parameters and Intracavity Losses Calculated Through the Numerical Modeling

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R oc (1 L in )exp[g( λ L )]=1
g( λ L )=2 N 0 l c [β( σ em ( λ L )+ σ abs ( λ L )) σ abs ( λ L )]
P th =K( L in ln( R oc )+ δ reabs )
P th = πh υ p ( w ap 2 + w L 2 ) 4τ[ σ em ( λ L )+ σ abs ( λ L )]( f u + f l ) ( T OC + L in + δ reabs ),

Metrics