Abstract

In long-distance, optical continuous-wave frequency transfer via fiber, remote bidirectional Er3+-doped fiber amplifiers are commonly used to mitigate signal attenuation. We demonstrate for the first time the ultrastable transfer of an optical frequency using a remote fiber Brillouin amplifier, placed in a server room along the link. Using it as the only means of remote amplification, on a 660 km loop of installed underground fiber we bridge distances of 250 km and 160 km between amplifications. Over several days of uninterrupted measurement, we find an instability of the frequency transfer (Allan deviation of Λ-weighted data with 1 s gate time) of around 1 × 10−19 and less for averaging times longer than 3000 s. The modified Allan deviation reaches 3 × 10−19 at an averaging time of 100 s. Beyond 100 s it follows the interferometer noise floor, and for averaging times longer than 1000 s the modified Allan deviation is in the 10−20 range. A conservative value of the overall accuracy is 1 × 10−19.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber

O. Terra, G. Grosche, and H. Schnatz
Opt. Express 18(15) 16102-16111 (2010)

Cascaded optical fiber link using the internet network for remote clocks comparison

Nicola Chiodo, Nicolas Quintin, Fabio Stefani, Fabrice Wiotte, Emilie Camisard, Christian Chardonnet, Giorgio Santarelli, Anne Amy-Klein, Paul-Eric Pottie, and Olivier Lopez
Opt. Express 23(26) 33927-33937 (2015)

Optical frequency transfer via 146 km fiber link with 10−19 relative accuracy

G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz
Opt. Lett. 34(15) 2270-2272 (2009)

References

  • View by:
  • |
  • |
  • |

  1. K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
    [Crossref] [PubMed]
  2. O. Lopez, A. Haboucha, B. Chanteau, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Ultra-stable long distance optical frequency distribution using the Internet fiber network,” Opt. Express 20, 23518–23526 (2012).
    [Crossref] [PubMed]
  3. S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
    [Crossref] [PubMed]
  4. D. Calonico, E. K. Bertaccho, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” App. Phys. B, DOI (2014).
    [Crossref]
  5. C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329, 1630–1633 (2010).
    [Crossref] [PubMed]
  6. N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
    [Crossref] [PubMed]
  7. S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, Ch. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and Ch. Lisdat, “A strontium lattice clock with 3 × 10−17 inaccuracy and its frequency,” arXiv 1312.3419 (2013).
  8. I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks with a relative frequency difference of 1 × 10−18,” arXiv 1405.4071v1 (2014).
  9. B. J. Bloom, T. l. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at 10−18 level,” Nature 506, 71–75 (2014).
    [Crossref] [PubMed]
  10. A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavać, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level,” Metrologia 43, 109–120 (2006).
    [Crossref]
  11. A. Bjerhammar, “On a relativistic geodesy,” Bull. Géod. 59, 207–220 (1985).
    [Crossref]
  12. P. Delva and J. Lodewyck, “Atomic clocks: new prospects in metrology and geodesy,” arXiv 1308.6766v1 (2013).
  13. A. Pape, O. Terra, J. Friebe, M. Riedmann, T. Wübbena, E. M. Rasel, K. Predehl, T. Legero, B. Lipphardt, H. Schnatz, and G. Grosche, “Long-distance remote comparison of ultrastable optical frequencies with 10−15 instability in fractions of a second,” Opt. Express 18, 21477–21483 (2010).
    [Crossref] [PubMed]
  14. S. M. F. Raupach and G. Grosche, “Chirped frequency transfer: a tool for synchronization and time transfer,” IEEE Transact. Ultras. Ferroel. Freq. Control 61, 920–929 (2014).
    [Crossref]
  15. P. A. Williams, W. C. Swann, and N. R. Newbury, “High-stability transfer of an optical frequency over long fiber-optic links,” J. Opt. Soc. Am. B 25, 1284–1293 (2008).
    [Crossref]
  16. C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, A. Mura, and A. Godone, “Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network,” Opt. Lett. 39, 1177–1180 (2014).
    [Crossref] [PubMed]
  17. C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, S. Micalizio, A. Mura, and A. Godone, “Beyond the fundamental noise limit in coherent optical fiber links,” arXiv 1405.5895v1 (2014).
  18. C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” IEEE Phot. Tech. Lett. 25, 1711–1714 (2013).
    [Crossref]
  19. O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Expr. 18, 16102–16111 (2010).
    [Crossref]
  20. S. M. F. Raupach, A. Koczwara, G. Grosche, F. Stefani, O. Lopez, A. Amy-Klein, C. Chardonnet, P.-E. Pottie, and G. Santarelli, “Bi-directional optical amplifiers for long-distance fiber links,” Proc. EFTF/IFCS 2013, 883–884 (2013).
  21. D. S. Wu, R. Slavík, G. Marra, and D. J. Richardson, “Direct selection and amplification of individual narrowly spaced optical comb modes via injection locking: design and characterization,” J. Lightwave Technol. 31, 2287–2295 (2013).
    [Crossref]
  22. A. Bercy, F. Stefani, O. Lopez, C. Chardonnet, P.-E. Pottie, and A. Amy-Klein, “Two-way optical frequency comparisons over 100 km telecommunication network fibers,” arXiv 1408.4989v1 (2014).
  23. Ł. Sliwczyński and J. Kołodziej, “Bidirectional optical amplification in long-distance two-way fiber-optic time and frequency transfer systems,” IEEE Trans. Instr. Meas. 62, 253–262 (2013).
    [Crossref]
  24. W. Riley, “Handbook of frequency stability analysis,” NIST Special Publication1065 (2008).
  25. S. T. Dawkins, J. J. McFerran, and A. N. Luiten, “Considerations on the measurement of the stability of oscillators with frequency counters,” IEEE Transact. Ultras. Ferroel. Freq. Control 54, 918–925 (2007).
    [Crossref]
  26. R. W. Boyd, Nonlinear Optics, (Academic Press, 1992).
  27. J. Subías, C. Heras, J. Pelayo, and F. Villuendas, “All in fiber optical frequency metrology by selective Brillouin amplification of single peak in an optical comb,” Opt. Expr. 17, 6753–6758 (2009) (and refs. therein).
    [Crossref]
  28. F. Rohde, E. Benkler, and H. Telle, “High contrast, low noise selection and amplification of an individual optical frequency comb line,” Opt. Lett. 38, 103–105 (2013).
    [Crossref] [PubMed]
  29. G. Kramer and W. Klische, Proc. IEEE Intern. Symp. Time Freq., 144 (2001).
  30. Ł. Sliwczyński and P. Krehlik, “Measurement of acoustic noise in field-deployed fiber optic cables,” Poster at European Frequency and Time Forum, Neuchâtel, 2014.
  31. R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envenlope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
    [Crossref]
  32. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Phot. 6, 687–692 (2012).
    [Crossref]
  33. E. Mai, “Time, atomic clocks, and relativistic geodesy,” PhD. Thesis, München (2013), p. 25.
  34. C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultra-stable laser with average fractional frequency drift rate below 5 × 10−19,” arXiv 1405.1759v1 (2014).

2014 (3)

B. J. Bloom, T. l. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

S. M. F. Raupach and G. Grosche, “Chirped frequency transfer: a tool for synchronization and time transfer,” IEEE Transact. Ultras. Ferroel. Freq. Control 61, 920–929 (2014).
[Crossref]

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, A. Mura, and A. Godone, “Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network,” Opt. Lett. 39, 1177–1180 (2014).
[Crossref] [PubMed]

2013 (6)

C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” IEEE Phot. Tech. Lett. 25, 1711–1714 (2013).
[Crossref]

D. S. Wu, R. Slavík, G. Marra, and D. J. Richardson, “Direct selection and amplification of individual narrowly spaced optical comb modes via injection locking: design and characterization,” J. Lightwave Technol. 31, 2287–2295 (2013).
[Crossref]

Ł. Sliwczyński and J. Kołodziej, “Bidirectional optical amplification in long-distance two-way fiber-optic time and frequency transfer systems,” IEEE Trans. Instr. Meas. 62, 253–262 (2013).
[Crossref]

F. Rohde, E. Benkler, and H. Telle, “High contrast, low noise selection and amplification of an individual optical frequency comb line,” Opt. Lett. 38, 103–105 (2013).
[Crossref] [PubMed]

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

2012 (3)

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref] [PubMed]

O. Lopez, A. Haboucha, B. Chanteau, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Ultra-stable long distance optical frequency distribution using the Internet fiber network,” Opt. Express 20, 23518–23526 (2012).
[Crossref] [PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Phot. 6, 687–692 (2012).
[Crossref]

2010 (3)

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329, 1630–1633 (2010).
[Crossref] [PubMed]

A. Pape, O. Terra, J. Friebe, M. Riedmann, T. Wübbena, E. M. Rasel, K. Predehl, T. Legero, B. Lipphardt, H. Schnatz, and G. Grosche, “Long-distance remote comparison of ultrastable optical frequencies with 10−15 instability in fractions of a second,” Opt. Express 18, 21477–21483 (2010).
[Crossref] [PubMed]

O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Expr. 18, 16102–16111 (2010).
[Crossref]

2009 (1)

J. Subías, C. Heras, J. Pelayo, and F. Villuendas, “All in fiber optical frequency metrology by selective Brillouin amplification of single peak in an optical comb,” Opt. Expr. 17, 6753–6758 (2009) (and refs. therein).
[Crossref]

2008 (1)

2007 (1)

S. T. Dawkins, J. J. McFerran, and A. N. Luiten, “Considerations on the measurement of the stability of oscillators with frequency counters,” IEEE Transact. Ultras. Ferroel. Freq. Control 54, 918–925 (2007).
[Crossref]

2006 (2)

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envenlope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[Crossref]

A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavać, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level,” Metrologia 43, 109–120 (2006).
[Crossref]

1985 (1)

A. Bjerhammar, “On a relativistic geodesy,” Bull. Géod. 59, 207–220 (1985).
[Crossref]

Achkar, J.

A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavać, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level,” Metrologia 43, 109–120 (2006).
[Crossref]

Al-Masoudi, A.

S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, Ch. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and Ch. Lisdat, “A strontium lattice clock with 3 × 10−17 inaccuracy and its frequency,” arXiv 1312.3419 (2013).

Alnis, J.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref] [PubMed]

Amy-Klein, A.

O. Lopez, A. Haboucha, B. Chanteau, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Ultra-stable long distance optical frequency distribution using the Internet fiber network,” Opt. Express 20, 23518–23526 (2012).
[Crossref] [PubMed]

A. Bercy, F. Stefani, O. Lopez, C. Chardonnet, P.-E. Pottie, and A. Amy-Klein, “Two-way optical frequency comparisons over 100 km telecommunication network fibers,” arXiv 1408.4989v1 (2014).

S. M. F. Raupach, A. Koczwara, G. Grosche, F. Stefani, O. Lopez, A. Amy-Klein, C. Chardonnet, P.-E. Pottie, and G. Santarelli, “Bi-directional optical amplifiers for long-distance fiber links,” Proc. EFTF/IFCS 2013, 883–884 (2013).

Bauch, A.

A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavać, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level,” Metrologia 43, 109–120 (2006).
[Crossref]

Beloy, K.

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Benkler, E.

Bercy, A.

A. Bercy, F. Stefani, O. Lopez, C. Chardonnet, P.-E. Pottie, and A. Amy-Klein, “Two-way optical frequency comparisons over 100 km telecommunication network fibers,” arXiv 1408.4989v1 (2014).

Bertaccho, E. K.

D. Calonico, E. K. Bertaccho, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” App. Phys. B, DOI (2014).
[Crossref]

Bertacco, E.

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, A. Mura, and A. Godone, “Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network,” Opt. Lett. 39, 1177–1180 (2014).
[Crossref] [PubMed]

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, S. Micalizio, A. Mura, and A. Godone, “Beyond the fundamental noise limit in coherent optical fiber links,” arXiv 1405.5895v1 (2014).

Bishof, M.

B. J. Bloom, T. l. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

Bize, S.

A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavać, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level,” Metrologia 43, 109–120 (2006).
[Crossref]

Bjerhammar, A.

A. Bjerhammar, “On a relativistic geodesy,” Bull. Géod. 59, 207–220 (1985).
[Crossref]

Bloom, B. J.

B. J. Bloom, T. l. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

Bolognini, G.

C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” IEEE Phot. Tech. Lett. 25, 1711–1714 (2013).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, (Academic Press, 1992).

Bromley, S. L.

B. J. Bloom, T. l. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

Calonico, D.

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, A. Mura, and A. Godone, “Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network,” Opt. Lett. 39, 1177–1180 (2014).
[Crossref] [PubMed]

C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” IEEE Phot. Tech. Lett. 25, 1711–1714 (2013).
[Crossref]

A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavać, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level,” Metrologia 43, 109–120 (2006).
[Crossref]

D. Calonico, E. K. Bertaccho, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” App. Phys. B, DOI (2014).
[Crossref]

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, S. Micalizio, A. Mura, and A. Godone, “Beyond the fundamental noise limit in coherent optical fiber links,” arXiv 1405.5895v1 (2014).

Calosso, C. E.

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, A. Mura, and A. Godone, “Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network,” Opt. Lett. 39, 1177–1180 (2014).
[Crossref] [PubMed]

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, S. Micalizio, A. Mura, and A. Godone, “Beyond the fundamental noise limit in coherent optical fiber links,” arXiv 1405.5895v1 (2014).

D. Calonico, E. K. Bertaccho, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” App. Phys. B, DOI (2014).
[Crossref]

Campbell, S. L.

B. J. Bloom, T. l. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

Chanteau, B.

Chardonnet, C.

S. M. F. Raupach, A. Koczwara, G. Grosche, F. Stefani, O. Lopez, A. Amy-Klein, C. Chardonnet, P.-E. Pottie, and G. Santarelli, “Bi-directional optical amplifiers for long-distance fiber links,” Proc. EFTF/IFCS 2013, 883–884 (2013).

A. Bercy, F. Stefani, O. Lopez, C. Chardonnet, P.-E. Pottie, and A. Amy-Klein, “Two-way optical frequency comparisons over 100 km telecommunication network fibers,” arXiv 1408.4989v1 (2014).

Chardonnet, Ch.

Chen, L.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Phot. 6, 687–692 (2012).
[Crossref]

Chou, C. W.

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329, 1630–1633 (2010).
[Crossref] [PubMed]

Clivati, C.

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, A. Mura, and A. Godone, “Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network,” Opt. Lett. 39, 1177–1180 (2014).
[Crossref] [PubMed]

C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” IEEE Phot. Tech. Lett. 25, 1711–1714 (2013).
[Crossref]

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, S. Micalizio, A. Mura, and A. Godone, “Beyond the fundamental noise limit in coherent optical fiber links,” arXiv 1405.5895v1 (2014).

D. Calonico, E. K. Bertaccho, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” App. Phys. B, DOI (2014).
[Crossref]

Costanzo, G. A.

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, A. Mura, and A. Godone, “Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network,” Opt. Lett. 39, 1177–1180 (2014).
[Crossref] [PubMed]

D. Calonico, E. K. Bertaccho, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” App. Phys. B, DOI (2014).
[Crossref]

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, S. Micalizio, A. Mura, and A. Godone, “Beyond the fundamental noise limit in coherent optical fiber links,” arXiv 1405.5895v1 (2014).

Dach, R.

A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavać, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level,” Metrologia 43, 109–120 (2006).
[Crossref]

Das, M.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks with a relative frequency difference of 1 × 10−18,” arXiv 1405.4071v1 (2014).

Dawkins, S. T.

S. T. Dawkins, J. J. McFerran, and A. N. Luiten, “Considerations on the measurement of the stability of oscillators with frequency counters,” IEEE Transact. Ultras. Ferroel. Freq. Control 54, 918–925 (2007).
[Crossref]

Delva, P.

P. Delva and J. Lodewyck, “Atomic clocks: new prospects in metrology and geodesy,” arXiv 1308.6766v1 (2013).

Droste, S.

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref] [PubMed]

Falke, S.

S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, Ch. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and Ch. Lisdat, “A strontium lattice clock with 3 × 10−17 inaccuracy and its frequency,” arXiv 1312.3419 (2013).

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultra-stable laser with average fractional frequency drift rate below 5 × 10−19,” arXiv 1405.1759v1 (2014).

Faralli, S.

C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” IEEE Phot. Tech. Lett. 25, 1711–1714 (2013).
[Crossref]

Friebe, J.

Frittelli, M.

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, A. Mura, and A. Godone, “Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network,” Opt. Lett. 39, 1177–1180 (2014).
[Crossref] [PubMed]

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, S. Micalizio, A. Mura, and A. Godone, “Beyond the fundamental noise limit in coherent optical fiber links,” arXiv 1405.5895v1 (2014).

D. Calonico, E. K. Bertaccho, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” App. Phys. B, DOI (2014).
[Crossref]

Gerginov, V.

S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, Ch. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and Ch. Lisdat, “A strontium lattice clock with 3 × 10−17 inaccuracy and its frequency,” arXiv 1312.3419 (2013).

Godone, A.

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, A. Mura, and A. Godone, “Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network,” Opt. Lett. 39, 1177–1180 (2014).
[Crossref] [PubMed]

D. Calonico, E. K. Bertaccho, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” App. Phys. B, DOI (2014).
[Crossref]

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, S. Micalizio, A. Mura, and A. Godone, “Beyond the fundamental noise limit in coherent optical fiber links,” arXiv 1405.5895v1 (2014).

Grebing, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Phot. 6, 687–692 (2012).
[Crossref]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultra-stable laser with average fractional frequency drift rate below 5 × 10−19,” arXiv 1405.1759v1 (2014).

S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, Ch. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and Ch. Lisdat, “A strontium lattice clock with 3 × 10−17 inaccuracy and its frequency,” arXiv 1312.3419 (2013).

Grosche, G.

S. M. F. Raupach and G. Grosche, “Chirped frequency transfer: a tool for synchronization and time transfer,” IEEE Transact. Ultras. Ferroel. Freq. Control 61, 920–929 (2014).
[Crossref]

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref] [PubMed]

O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Expr. 18, 16102–16111 (2010).
[Crossref]

A. Pape, O. Terra, J. Friebe, M. Riedmann, T. Wübbena, E. M. Rasel, K. Predehl, T. Legero, B. Lipphardt, H. Schnatz, and G. Grosche, “Long-distance remote comparison of ultrastable optical frequencies with 10−15 instability in fractions of a second,” Opt. Express 18, 21477–21483 (2010).
[Crossref] [PubMed]

S. M. F. Raupach, A. Koczwara, G. Grosche, F. Stefani, O. Lopez, A. Amy-Klein, C. Chardonnet, P.-E. Pottie, and G. Santarelli, “Bi-directional optical amplifiers for long-distance fiber links,” Proc. EFTF/IFCS 2013, 883–884 (2013).

Haboucha, A.

Häfner, S.

S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, Ch. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and Ch. Lisdat, “A strontium lattice clock with 3 × 10−17 inaccuracy and its frequency,” arXiv 1312.3419 (2013).

Hagemann, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Phot. 6, 687–692 (2012).
[Crossref]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultra-stable laser with average fractional frequency drift rate below 5 × 10−19,” arXiv 1405.1759v1 (2014).

Hagemann, Ch.

S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, Ch. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and Ch. Lisdat, “A strontium lattice clock with 3 × 10−17 inaccuracy and its frequency,” arXiv 1312.3419 (2013).

Hänsch, T. W.

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref] [PubMed]

Heras, C.

J. Subías, C. Heras, J. Pelayo, and F. Villuendas, “All in fiber optical frequency metrology by selective Brillouin amplification of single peak in an optical comb,” Opt. Expr. 17, 6753–6758 (2009) (and refs. therein).
[Crossref]

Hinkley, N.

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Hlavac, R.

A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavać, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level,” Metrologia 43, 109–120 (2006).
[Crossref]

Holzwarth, R.

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref] [PubMed]

Hume, D. B.

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329, 1630–1633 (2010).
[Crossref] [PubMed]

Huntemann, N.

S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, Ch. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and Ch. Lisdat, “A strontium lattice clock with 3 × 10−17 inaccuracy and its frequency,” arXiv 1312.3419 (2013).

Katori, H.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks with a relative frequency difference of 1 × 10−18,” arXiv 1405.4071v1 (2014).

Keller, U.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envenlope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[Crossref]

Kessler, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Phot. 6, 687–692 (2012).
[Crossref]

Klische, W.

G. Kramer and W. Klische, Proc. IEEE Intern. Symp. Time Freq., 144 (2001).

Koczwara, A.

S. M. F. Raupach, A. Koczwara, G. Grosche, F. Stefani, O. Lopez, A. Amy-Klein, C. Chardonnet, P.-E. Pottie, and G. Santarelli, “Bi-directional optical amplifiers for long-distance fiber links,” Proc. EFTF/IFCS 2013, 883–884 (2013).

Kolodziej, J.

Ł. Sliwczyński and J. Kołodziej, “Bidirectional optical amplification in long-distance two-way fiber-optic time and frequency transfer systems,” IEEE Trans. Instr. Meas. 62, 253–262 (2013).
[Crossref]

Kramer, G.

G. Kramer and W. Klische, Proc. IEEE Intern. Symp. Time Freq., 144 (2001).

Krehlik, P.

Ł. Sliwczyński and P. Krehlik, “Measurement of acoustic noise in field-deployed fiber optic cables,” Poster at European Frequency and Time Forum, Neuchâtel, 2014.

Legero, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Phot. 6, 687–692 (2012).
[Crossref]

A. Pape, O. Terra, J. Friebe, M. Riedmann, T. Wübbena, E. M. Rasel, K. Predehl, T. Legero, B. Lipphardt, H. Schnatz, and G. Grosche, “Long-distance remote comparison of ultrastable optical frequencies with 10−15 instability in fractions of a second,” Opt. Express 18, 21477–21483 (2010).
[Crossref] [PubMed]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultra-stable laser with average fractional frequency drift rate below 5 × 10−19,” arXiv 1405.1759v1 (2014).

Legero, Th.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref] [PubMed]

Lemke, N.

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, Ch. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and Ch. Lisdat, “A strontium lattice clock with 3 × 10−17 inaccuracy and its frequency,” arXiv 1312.3419 (2013).

Levi, F.

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, A. Mura, and A. Godone, “Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network,” Opt. Lett. 39, 1177–1180 (2014).
[Crossref] [PubMed]

C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” IEEE Phot. Tech. Lett. 25, 1711–1714 (2013).
[Crossref]

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, S. Micalizio, A. Mura, and A. Godone, “Beyond the fundamental noise limit in coherent optical fiber links,” arXiv 1405.5895v1 (2014).

D. Calonico, E. K. Bertaccho, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” App. Phys. B, DOI (2014).
[Crossref]

Lipphardt, B.

A. Pape, O. Terra, J. Friebe, M. Riedmann, T. Wübbena, E. M. Rasel, K. Predehl, T. Legero, B. Lipphardt, H. Schnatz, and G. Grosche, “Long-distance remote comparison of ultrastable optical frequencies with 10−15 instability in fractions of a second,” Opt. Express 18, 21477–21483 (2010).
[Crossref] [PubMed]

S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, Ch. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and Ch. Lisdat, “A strontium lattice clock with 3 × 10−17 inaccuracy and its frequency,” arXiv 1312.3419 (2013).

Lisdat, C.

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultra-stable laser with average fractional frequency drift rate below 5 × 10−19,” arXiv 1405.1759v1 (2014).

Lisdat, Ch.

S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, Ch. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and Ch. Lisdat, “A strontium lattice clock with 3 × 10−17 inaccuracy and its frequency,” arXiv 1312.3419 (2013).

Lodewyck, J.

P. Delva and J. Lodewyck, “Atomic clocks: new prospects in metrology and geodesy,” arXiv 1308.6766v1 (2013).

Lopez, O.

O. Lopez, A. Haboucha, B. Chanteau, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Ultra-stable long distance optical frequency distribution using the Internet fiber network,” Opt. Express 20, 23518–23526 (2012).
[Crossref] [PubMed]

S. M. F. Raupach, A. Koczwara, G. Grosche, F. Stefani, O. Lopez, A. Amy-Klein, C. Chardonnet, P.-E. Pottie, and G. Santarelli, “Bi-directional optical amplifiers for long-distance fiber links,” Proc. EFTF/IFCS 2013, 883–884 (2013).

A. Bercy, F. Stefani, O. Lopez, C. Chardonnet, P.-E. Pottie, and A. Amy-Klein, “Two-way optical frequency comparisons over 100 km telecommunication network fibers,” arXiv 1408.4989v1 (2014).

Lorini, L.

A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavać, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level,” Metrologia 43, 109–120 (2006).
[Crossref]

Ludlow, A. D.

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Luiten, A. N.

S. T. Dawkins, J. J. McFerran, and A. N. Luiten, “Considerations on the measurement of the stability of oscillators with frequency counters,” IEEE Transact. Ultras. Ferroel. Freq. Control 54, 918–925 (2007).
[Crossref]

Mai, E.

E. Mai, “Time, atomic clocks, and relativistic geodesy,” PhD. Thesis, München (2013), p. 25.

Marra, G.

Martin, M. J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Phot. 6, 687–692 (2012).
[Crossref]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultra-stable laser with average fractional frequency drift rate below 5 × 10−19,” arXiv 1405.1759v1 (2014).

McFerran, J. J.

S. T. Dawkins, J. J. McFerran, and A. N. Luiten, “Considerations on the measurement of the stability of oscillators with frequency counters,” IEEE Transact. Ultras. Ferroel. Freq. Control 54, 918–925 (2007).
[Crossref]

Micalizio, S.

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, S. Micalizio, A. Mura, and A. Godone, “Beyond the fundamental noise limit in coherent optical fiber links,” arXiv 1405.5895v1 (2014).

Mura, A.

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, A. Mura, and A. Godone, “Frequency transfer via a two-way optical phase comparison on a multiplexed fiber network,” Opt. Lett. 39, 1177–1180 (2014).
[Crossref] [PubMed]

C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” IEEE Phot. Tech. Lett. 25, 1711–1714 (2013).
[Crossref]

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, S. Micalizio, A. Mura, and A. Godone, “Beyond the fundamental noise limit in coherent optical fiber links,” arXiv 1405.5895v1 (2014).

D. Calonico, E. K. Bertaccho, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” App. Phys. B, DOI (2014).
[Crossref]

Newbury, N. R.

Nicholson, T. l.

B. J. Bloom, T. l. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

Oates, C. W.

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Ohkubo, T.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks with a relative frequency difference of 1 × 10−18,” arXiv 1405.4071v1 (2014).

Ozimek, F.

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

Pape, A.

Parker, T.

A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavać, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level,” Metrologia 43, 109–120 (2006).
[Crossref]

Paschotta, R.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envenlope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[Crossref]

Pelayo, J.

J. Subías, C. Heras, J. Pelayo, and F. Villuendas, “All in fiber optical frequency metrology by selective Brillouin amplification of single peak in an optical comb,” Opt. Expr. 17, 6753–6758 (2009) (and refs. therein).
[Crossref]

Petit, G.

A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavać, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level,” Metrologia 43, 109–120 (2006).
[Crossref]

Phillips, N. B.

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Piester, D.

A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavać, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level,” Metrologia 43, 109–120 (2006).
[Crossref]

Pizzocaro, M.

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Poli, N.

C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” IEEE Phot. Tech. Lett. 25, 1711–1714 (2013).
[Crossref]

D. Calonico, E. K. Bertaccho, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” App. Phys. B, DOI (2014).
[Crossref]

Pottie, P.-E.

S. M. F. Raupach, A. Koczwara, G. Grosche, F. Stefani, O. Lopez, A. Amy-Klein, C. Chardonnet, P.-E. Pottie, and G. Santarelli, “Bi-directional optical amplifiers for long-distance fiber links,” Proc. EFTF/IFCS 2013, 883–884 (2013).

A. Bercy, F. Stefani, O. Lopez, C. Chardonnet, P.-E. Pottie, and A. Amy-Klein, “Two-way optical frequency comparisons over 100 km telecommunication network fibers,” arXiv 1408.4989v1 (2014).

Predehl, K.

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref] [PubMed]

A. Pape, O. Terra, J. Friebe, M. Riedmann, T. Wübbena, E. M. Rasel, K. Predehl, T. Legero, B. Lipphardt, H. Schnatz, and G. Grosche, “Long-distance remote comparison of ultrastable optical frequencies with 10−15 instability in fractions of a second,” Opt. Express 18, 21477–21483 (2010).
[Crossref] [PubMed]

Rasel, E. M.

Raupach, S. M. F.

S. M. F. Raupach and G. Grosche, “Chirped frequency transfer: a tool for synchronization and time transfer,” IEEE Transact. Ultras. Ferroel. Freq. Control 61, 920–929 (2014).
[Crossref]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref] [PubMed]

S. M. F. Raupach, A. Koczwara, G. Grosche, F. Stefani, O. Lopez, A. Amy-Klein, C. Chardonnet, P.-E. Pottie, and G. Santarelli, “Bi-directional optical amplifiers for long-distance fiber links,” Proc. EFTF/IFCS 2013, 883–884 (2013).

Richardson, D. J.

Riedmann, M.

Riehle, F.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Phot. 6, 687–692 (2012).
[Crossref]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultra-stable laser with average fractional frequency drift rate below 5 × 10−19,” arXiv 1405.1759v1 (2014).

Riley, W.

W. Riley, “Handbook of frequency stability analysis,” NIST Special Publication1065 (2008).

Rohde, F.

Rosenband, T.

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329, 1630–1633 (2010).
[Crossref] [PubMed]

Santarelli, G.

O. Lopez, A. Haboucha, B. Chanteau, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Ultra-stable long distance optical frequency distribution using the Internet fiber network,” Opt. Express 20, 23518–23526 (2012).
[Crossref] [PubMed]

S. M. F. Raupach, A. Koczwara, G. Grosche, F. Stefani, O. Lopez, A. Amy-Klein, C. Chardonnet, P.-E. Pottie, and G. Santarelli, “Bi-directional optical amplifiers for long-distance fiber links,” Proc. EFTF/IFCS 2013, 883–884 (2013).

Schioppo, M.

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Schlatter, A.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envenlope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[Crossref]

Schnatz, H.

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref] [PubMed]

O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Expr. 18, 16102–16111 (2010).
[Crossref]

A. Pape, O. Terra, J. Friebe, M. Riedmann, T. Wübbena, E. M. Rasel, K. Predehl, T. Legero, B. Lipphardt, H. Schnatz, and G. Grosche, “Long-distance remote comparison of ultrastable optical frequencies with 10−15 instability in fractions of a second,” Opt. Express 18, 21477–21483 (2010).
[Crossref] [PubMed]

Sherman, J. A.

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Slavík, R.

Sliwczynski, L.

Ł. Sliwczyński and J. Kołodziej, “Bidirectional optical amplification in long-distance two-way fiber-optic time and frequency transfer systems,” IEEE Trans. Instr. Meas. 62, 253–262 (2013).
[Crossref]

Ł. Sliwczyński and P. Krehlik, “Measurement of acoustic noise in field-deployed fiber optic cables,” Poster at European Frequency and Time Forum, Neuchâtel, 2014.

Stefani, F.

A. Bercy, F. Stefani, O. Lopez, C. Chardonnet, P.-E. Pottie, and A. Amy-Klein, “Two-way optical frequency comparisons over 100 km telecommunication network fibers,” arXiv 1408.4989v1 (2014).

S. M. F. Raupach, A. Koczwara, G. Grosche, F. Stefani, O. Lopez, A. Amy-Klein, C. Chardonnet, P.-E. Pottie, and G. Santarelli, “Bi-directional optical amplifiers for long-distance fiber links,” Proc. EFTF/IFCS 2013, 883–884 (2013).

Sterr, U.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Phot. 6, 687–692 (2012).
[Crossref]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultra-stable laser with average fractional frequency drift rate below 5 × 10−19,” arXiv 1405.1759v1 (2014).

S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, Ch. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and Ch. Lisdat, “A strontium lattice clock with 3 × 10−17 inaccuracy and its frequency,” arXiv 1312.3419 (2013).

Subías, J.

J. Subías, C. Heras, J. Pelayo, and F. Villuendas, “All in fiber optical frequency metrology by selective Brillouin amplification of single peak in an optical comb,” Opt. Expr. 17, 6753–6758 (2009) (and refs. therein).
[Crossref]

Sutyrin, D. V.

D. Calonico, E. K. Bertaccho, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” App. Phys. B, DOI (2014).
[Crossref]

Swann, W. C.

Szymaniec, K.

A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavać, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level,” Metrologia 43, 109–120 (2006).
[Crossref]

Takamoto, M.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks with a relative frequency difference of 1 × 10−18,” arXiv 1405.4071v1 (2014).

Telle, H.

Telle, H. R.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envenlope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[Crossref]

Terra, O.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref] [PubMed]

O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Expr. 18, 16102–16111 (2010).
[Crossref]

A. Pape, O. Terra, J. Friebe, M. Riedmann, T. Wübbena, E. M. Rasel, K. Predehl, T. Legero, B. Lipphardt, H. Schnatz, and G. Grosche, “Long-distance remote comparison of ultrastable optical frequencies with 10−15 instability in fractions of a second,” Opt. Express 18, 21477–21483 (2010).
[Crossref] [PubMed]

Tino, G.

D. Calonico, E. K. Bertaccho, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” App. Phys. B, DOI (2014).
[Crossref]

Udem, Th.

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref] [PubMed]

Uhrich, P.

A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavać, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level,” Metrologia 43, 109–120 (2006).
[Crossref]

Ushijima, I.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks with a relative frequency difference of 1 × 10−18,” arXiv 1405.4071v1 (2014).

Villuendas, F.

J. Subías, C. Heras, J. Pelayo, and F. Villuendas, “All in fiber optical frequency metrology by selective Brillouin amplification of single peak in an optical comb,” Opt. Expr. 17, 6753–6758 (2009) (and refs. therein).
[Crossref]

Vogt, S.

S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, Ch. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and Ch. Lisdat, “A strontium lattice clock with 3 × 10−17 inaccuracy and its frequency,” arXiv 1312.3419 (2013).

Weyers, S.

S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, Ch. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and Ch. Lisdat, “A strontium lattice clock with 3 × 10−17 inaccuracy and its frequency,” arXiv 1312.3419 (2013).

Williams, J. R.

B. J. Bloom, T. l. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

Williams, P. A.

Wineland, D. J.

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329, 1630–1633 (2010).
[Crossref] [PubMed]

Wu, D. S.

Wübbena, T.

Ye, J.

B. J. Bloom, T. l. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Phot. 6, 687–692 (2012).
[Crossref]

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultra-stable laser with average fractional frequency drift rate below 5 × 10−19,” arXiv 1405.1759v1 (2014).

Zeller, S. C.

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envenlope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[Crossref]

Zhang, W.

B. J. Bloom, T. l. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

Zhang, X.

B. J. Bloom, T. l. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

Zucco, M. E.

D. Calonico, E. K. Bertaccho, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” App. Phys. B, DOI (2014).
[Crossref]

Appl. Phys. B (1)

R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle, and U. Keller, “Optical phase noise and carrier-envenlope offset noise of mode-locked lasers,” Appl. Phys. B 82, 265–273 (2006).
[Crossref]

Bull. Géod. (1)

A. Bjerhammar, “On a relativistic geodesy,” Bull. Géod. 59, 207–220 (1985).
[Crossref]

IEEE Phot. Tech. Lett. (1)

C. Clivati, G. Bolognini, D. Calonico, S. Faralli, F. Levi, A. Mura, and N. Poli, “Distributed Raman optical amplification in phase coherent transfer of optical frequencies,” IEEE Phot. Tech. Lett. 25, 1711–1714 (2013).
[Crossref]

IEEE Trans. Instr. Meas. (1)

Ł. Sliwczyński and J. Kołodziej, “Bidirectional optical amplification in long-distance two-way fiber-optic time and frequency transfer systems,” IEEE Trans. Instr. Meas. 62, 253–262 (2013).
[Crossref]

IEEE Transact. Ultras. Ferroel. Freq. Control (2)

S. T. Dawkins, J. J. McFerran, and A. N. Luiten, “Considerations on the measurement of the stability of oscillators with frequency counters,” IEEE Transact. Ultras. Ferroel. Freq. Control 54, 918–925 (2007).
[Crossref]

S. M. F. Raupach and G. Grosche, “Chirped frequency transfer: a tool for synchronization and time transfer,” IEEE Transact. Ultras. Ferroel. Freq. Control 61, 920–929 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Metrologia (1)

A. Bauch, J. Achkar, S. Bize, D. Calonico, R. Dach, R. Hlavać, L. Lorini, T. Parker, G. Petit, D. Piester, K. Szymaniec, and P. Uhrich, “Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level,” Metrologia 43, 109–120 (2006).
[Crossref]

Nature (1)

B. J. Bloom, T. l. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at 10−18 level,” Nature 506, 71–75 (2014).
[Crossref] [PubMed]

Nature Phot. (1)

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nature Phot. 6, 687–692 (2012).
[Crossref]

Opt. Expr. (2)

J. Subías, C. Heras, J. Pelayo, and F. Villuendas, “All in fiber optical frequency metrology by selective Brillouin amplification of single peak in an optical comb,” Opt. Expr. 17, 6753–6758 (2009) (and refs. therein).
[Crossref]

O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Expr. 18, 16102–16111 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

S. Droste, F. Ozimek, Th. Udem, K. Predehl, T. W. Hänsch, H. Schnatz, G. Grosche, and R. Holzwarth, “Optical-frequency transfer over a single-span 1840 km fiber link,” Phys. Rev. Lett. 111, 110801 (2013).
[Crossref] [PubMed]

Science (3)

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science 336, 441–444 (2012).
[Crossref] [PubMed]

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329, 1630–1633 (2010).
[Crossref] [PubMed]

N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215–1218 (2013).
[Crossref] [PubMed]

Other (13)

S. Falke, N. Lemke, C. Grebing, B. Lipphardt, S. Weyers, V. Gerginov, N. Huntemann, Ch. Hagemann, A. Al-Masoudi, S. Häfner, S. Vogt, U. Sterr, and Ch. Lisdat, “A strontium lattice clock with 3 × 10−17 inaccuracy and its frequency,” arXiv 1312.3419 (2013).

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks with a relative frequency difference of 1 × 10−18,” arXiv 1405.4071v1 (2014).

D. Calonico, E. K. Bertaccho, C. E. Calosso, C. Clivati, G. A. Costanzo, M. Frittelli, A. Godone, A. Mura, N. Poli, D. V. Sutyrin, G. Tino, M. E. Zucco, and F. Levi, “High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link,” App. Phys. B, DOI (2014).
[Crossref]

C. E. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. A. Costanzo, M. Frittelli, F. Levi, S. Micalizio, A. Mura, and A. Godone, “Beyond the fundamental noise limit in coherent optical fiber links,” arXiv 1405.5895v1 (2014).

P. Delva and J. Lodewyck, “Atomic clocks: new prospects in metrology and geodesy,” arXiv 1308.6766v1 (2013).

G. Kramer and W. Klische, Proc. IEEE Intern. Symp. Time Freq., 144 (2001).

Ł. Sliwczyński and P. Krehlik, “Measurement of acoustic noise in field-deployed fiber optic cables,” Poster at European Frequency and Time Forum, Neuchâtel, 2014.

E. Mai, “Time, atomic clocks, and relativistic geodesy,” PhD. Thesis, München (2013), p. 25.

C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye, “Ultra-stable laser with average fractional frequency drift rate below 5 × 10−19,” arXiv 1405.1759v1 (2014).

S. M. F. Raupach, A. Koczwara, G. Grosche, F. Stefani, O. Lopez, A. Amy-Klein, C. Chardonnet, P.-E. Pottie, and G. Santarelli, “Bi-directional optical amplifiers for long-distance fiber links,” Proc. EFTF/IFCS 2013, 883–884 (2013).

A. Bercy, F. Stefani, O. Lopez, C. Chardonnet, P.-E. Pottie, and A. Amy-Klein, “Two-way optical frequency comparisons over 100 km telecommunication network fibers,” arXiv 1408.4989v1 (2014).

R. W. Boyd, Nonlinear Optics, (Academic Press, 1992).

W. Riley, “Handbook of frequency stability analysis,” NIST Special Publication1065 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic sketch of the 660 km loop setup PTB-PTB, including one remote fiber Brillouin amplifier (FBA); EDFA: Erbium-doped fiber amplifier; FBA: fiber Brillouin amplifier; ω1,2: acousto-optical modulator. The blue arrows indicate the Brillouin pump light injected into the underground fiber.
Fig. 2
Fig. 2 The figure shows the phase noise (panel (a)) of the “remote” beat frequency for the loop being unstabilized and stabilized, respectively, as well as the corresponding short-term instabilities (Allan deviation and modified Allan deviation, panel (b)). The data are obtained using a K&K frequency counter in Π-mode. Also shown is the expected phase noise for the stabilized case as calculated from the phase noise of the unstabilized loop according to [15]. The dashed line is a guide to the eye, while the dotted line is the phase noise corresponding to a laser with 40 mHz linewidth (assuming purely white frequency noise).
Fig. 3
Fig. 3 Shown are the fractional frequency instabilities; all data are taken on a deadtime-free K&K-counter operated in Λ-averaging mode with 1 s gate time. Panel (a) shows two measurements of the noise floor (modified Allan deviation) for the loop being short-cut in the lab; panel (b) and (c) show the frequency instabilities for two measurements of the optical frequency transfer over the 660 km loop; the time between the measurements is several weeks. The measurements (modified Allan deviation) after about 100 s reach the noise floor at around 3 × 10−19. Also shown in panel (b) is the frequency instability of the unstabilized loop as obtained from the correction signal of the stabilization. In panel (c), the dashed line indicates the modified Allan deviation of the inloop beat frequency, where we added a frequency offset of 1 Hz to a single point of the frequency data.

Metrics