Abstract

Microresonator-based frequency comb generation at or near visible wavelengths would enable applications in precise optical clocks, frequency metrology, and biomedical imaging. Comb generation in the visible has been limited by strong material dispersion and loss at short wavelengths, and only very narrowband comb generation has reached below 800 nm. We use the second-order optical nonlinearity in an integrated high-Q silicon nitride ring resonator cavity to convert a near-infrared frequency comb into the visible range. We simultaneously demonstrate parametric frequency comb generation in the near-infrared, second-harmonic generation, and sum-frequency generation. We measure 17 comb lines converted to visible wavelengths extending to 765 nm.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator

Yong Yang, Xuefeng Jiang, Sho Kasumie, Guangming Zhao, Linhua Xu, Jonathan M. Ward, Lan Yang, and Síle Nic Chormaic
Opt. Lett. 41(22) 5266-5269 (2016)

Modelocking and femtosecond pulse generation in chip-based frequency combs

Kasturi Saha, Yoshitomo Okawachi, Bonggu Shim, Jacob S. Levy, Reza Salem, Adrea R. Johnson, Mark A. Foster, Michael R. E. Lamont, Michal Lipson, and Alexander L. Gaeta
Opt. Express 21(1) 1335-1343 (2013)

Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator

Hojoong Jung, Rebecca Stoll, Xiang Guo, Debra Fischer, and Hong X. Tang
Optica 1(6) 396-399 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref] [PubMed]
  2. T. Udem, R. Holzwarth, and T. W. Hnsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref] [PubMed]
  3. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
    [Crossref]
  4. Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at 778 nm using a laser diode stabilized on a hyperfine component of the doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
    [Crossref]
  5. J. Vanier and C. Mandache, “The passive optically pumped rb frequency standard: the laser approach,” in “Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International,” (2007), pp. 1346–1351.
  6. J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
    [Crossref]
  7. E. A. Swanson, D. Huang, C. P. Lin, C. A. Puliafito, M. R. Hee, and J. G. Fujimoto, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
    [Crossref] [PubMed]
  8. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
    [Crossref] [PubMed]
  9. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4, 37–40 (2010).
    [Crossref]
  10. P. DelHaye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
    [Crossref]
  11. Y. Okawachi, M. R. E. Lamont, K. Luke, D. O. Carvalho, M. Yu, M. Lipson, and A. L. Gaeta, “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering,” Opt. Lett. 39, 3535–3538 (2014).
    [Crossref] [PubMed]
  12. K. Saha, Y. Okawachi, J. S. Levy, R. K. W. Lau, K. Luke, M. A. Foster, M. Lipson, and A. L. Gaeta, “Broadband parametric frequency comb generation with a 1-m pump source,” Opt. Express 20, 26935–26941 (2012).
    [Crossref] [PubMed]
  13. K. Luke, Y. Okawachi, D. Orquiza, A. L. Gaeta, and M. Lipson, “Broadband microresonator-based parametric frequency comb generation near visible wavelengths,” in “CLEO: 2014,” (Optical Society of America, 2014).
  14. A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photon. 5, 293–296 (2011).
    [Crossref]
  15. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Vniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
    [Crossref]
  16. T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100, 161902 (2012).
    [Crossref]
  17. J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
    [Crossref] [PubMed]
  18. D. F. Logan, A. B. A. Dow, D. Stepanov, P. Abolghasem, N. P. Kherani, and A. S. Helmy, “Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides,” Appl. Phys. Lett. 102, 061106 (2013).
    [Crossref]
  19. L. Andreani, P. Andrich, M. Galli, D. Gerace, G. Guizzetti, R. Lo Savio, S. Portalupi, L. O’Faolain, C. Reardon, K. Welna, and T. Krauss, “Nonlinear optics in silicon photonic crystal cavities,” in “2011 13th International Conference on Transparent Optical Networks (ICTON),” (2011), pp. 1–4.
  20. T. Ning, H. Pietarinen, O. Hyvrinen, R. Kumar, T. Kaplas, M. Kauranen, and G. Genty, “Efficient second-harmonic generation in silicon nitride resonant waveguide gratings,” Opt. Lett. 37, 4269–4271 (2012).
    [Crossref] [PubMed]
  21. E. F. Pecora, A. Capretti, G. Miano, and L. D. Negro, “Generation of second harmonic radiation from substoichiometric silicon nitride thin films,” Appl. Phys. Lett. 102, 141114 (2013).
    [Crossref]
  22. A. Kitao, K. Imakita, I. Kawamura, and M. Fujii, “An investigation into second harmonic generation by si-rich SiNx thin films deposited by RF sputtering over a wide range of si concentrations,” J. Phys. D: Appl. Phys. 47, 215101 (2014).
    [Crossref]
  23. B. Chmielak, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Waldow, and H. Kurz, “Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides,” Opt. Express 21, 25324–25332 (2013).
    [Crossref] [PubMed]
  24. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high q ring resonator,” Opt. Express 17, 11366–11370 (2009).
    [Crossref] [PubMed]
  25. K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming si3n4 film stress limitations for high quality factor ring resonators,” Opt. Express 21, 22829–22833 (2013).
    [Crossref] [PubMed]
  26. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photon. 7, 597–607 (2013).
    [Crossref]
  27. R. W. Boyd, Nonlinear Optics, Third Edition (Academic Press, 2008), 3rd ed.
  28. S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
    [Crossref]
  29. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photon. 8, 145–152 (2014).
    [Crossref]
  30. B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lonar, “Diamond nonlinear photonics,” Nat. Photon. 8, 369–374 (2014).
    [Crossref]
  31. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013).
    [Crossref] [PubMed]
  32. T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” arXiv:1311.1716 [physics] (2013).
  33. P. DelHaye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
    [Crossref]
  34. J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109, 233901 (2012).
    [Crossref]
  35. A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express 16, 4130–4144 (2008).
    [Crossref] [PubMed]
  36. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
    [Crossref]
  37. P. Londero, J. Levy, A. Slepkov, A. Bhagwat, K. Saha, V. Venkataraman, M. Lipson, and A. Gaeta, “Chip-based optical interactions with rubidium vapor,” in “2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS),” (2010), pp. 1–2.
  38. L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale lightmatter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
    [Crossref]

2014 (4)

A. Kitao, K. Imakita, I. Kawamura, and M. Fujii, “An investigation into second harmonic generation by si-rich SiNx thin films deposited by RF sputtering over a wide range of si concentrations,” J. Phys. D: Appl. Phys. 47, 215101 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photon. 8, 145–152 (2014).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lonar, “Diamond nonlinear photonics,” Nat. Photon. 8, 369–374 (2014).
[Crossref]

Y. Okawachi, M. R. E. Lamont, K. Luke, D. O. Carvalho, M. Yu, M. Lipson, and A. L. Gaeta, “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering,” Opt. Lett. 39, 3535–3538 (2014).
[Crossref] [PubMed]

2013 (7)

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013).
[Crossref] [PubMed]

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming si3n4 film stress limitations for high quality factor ring resonators,” Opt. Express 21, 22829–22833 (2013).
[Crossref] [PubMed]

B. Chmielak, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Waldow, and H. Kurz, “Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides,” Opt. Express 21, 25324–25332 (2013).
[Crossref] [PubMed]

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale lightmatter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photon. 7, 597–607 (2013).
[Crossref]

D. F. Logan, A. B. A. Dow, D. Stepanov, P. Abolghasem, N. P. Kherani, and A. S. Helmy, “Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides,” Appl. Phys. Lett. 102, 061106 (2013).
[Crossref]

E. F. Pecora, A. Capretti, G. Miano, and L. D. Negro, “Generation of second harmonic radiation from substoichiometric silicon nitride thin films,” Appl. Phys. Lett. 102, 141114 (2013).
[Crossref]

2012 (5)

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109, 233901 (2012).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Vniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100, 161902 (2012).
[Crossref]

T. Ning, H. Pietarinen, O. Hyvrinen, R. Kumar, T. Kaplas, M. Kauranen, and G. Genty, “Efficient second-harmonic generation in silicon nitride resonant waveguide gratings,” Opt. Lett. 37, 4269–4271 (2012).
[Crossref] [PubMed]

K. Saha, Y. Okawachi, J. S. Levy, R. K. W. Lau, K. Luke, M. A. Foster, M. Lipson, and A. L. Gaeta, “Broadband parametric frequency comb generation with a 1-m pump source,” Opt. Express 20, 26935–26941 (2012).
[Crossref] [PubMed]

2011 (6)

P. DelHaye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
[Crossref] [PubMed]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photon. 5, 293–296 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
[Crossref]

2010 (1)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4, 37–40 (2010).
[Crossref]

2009 (1)

2008 (2)

A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express 16, 4130–4144 (2008).
[Crossref] [PubMed]

P. DelHaye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

2006 (1)

2005 (1)

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[Crossref]

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[Crossref]

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hnsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

1994 (1)

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at 778 nm using a laser diode stabilized on a hyperfine component of the doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
[Crossref]

1992 (1)

Abolghasem, P.

D. F. Logan, A. B. A. Dow, D. Stepanov, P. Abolghasem, N. P. Kherani, and A. S. Helmy, “Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides,” Appl. Phys. Lett. 102, 061106 (2013).
[Crossref]

Andreani, L.

L. Andreani, P. Andrich, M. Galli, D. Gerace, G. Guizzetti, R. Lo Savio, S. Portalupi, L. O’Faolain, C. Reardon, K. Welna, and T. Krauss, “Nonlinear optics in silicon photonic crystal cavities,” in “2011 13th International Conference on Transparent Optical Networks (ICTON),” (2011), pp. 1–4.

Andrich, P.

L. Andreani, P. Andrich, M. Galli, D. Gerace, G. Guizzetti, R. Lo Savio, S. Portalupi, L. O’Faolain, C. Reardon, K. Welna, and T. Krauss, “Nonlinear optics in silicon photonic crystal cavities,” in “2011 13th International Conference on Transparent Optical Networks (ICTON),” (2011), pp. 1–4.

Arcizet, O.

P. DelHaye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

Bhagwat, A.

P. Londero, J. Levy, A. Slepkov, A. Bhagwat, K. Saha, V. Venkataraman, M. Lipson, and A. Gaeta, “Chip-based optical interactions with rubidium vapor,” in “2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS),” (2010), pp. 1–2.

Bianco, F.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Vniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Biraben, F.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at 778 nm using a laser diode stabilized on a hyperfine component of the doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
[Crossref]

Bolten, J.

Borga, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Vniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, Third Edition (Academic Press, 2008), 3rd ed.

Brasch, V.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photon. 8, 145–152 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” arXiv:1311.1716 [physics] (2013).

Bulu, I.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lonar, “Diamond nonlinear photonics,” Nat. Photon. 8, 369–374 (2014).
[Crossref]

Capretti, A.

E. F. Pecora, A. Capretti, G. Miano, and L. D. Negro, “Generation of second harmonic radiation from substoichiometric silicon nitride thin films,” Appl. Phys. Lett. 102, 141114 (2013).
[Crossref]

Carvalho, D. O.

Cazzanelli, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Vniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Chen, L.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

Chen, T.

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109, 233901 (2012).
[Crossref]

Chmielak, B.

Clairon, A.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at 778 nm using a laser diode stabilized on a hyperfine component of the doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
[Crossref]

de Beauvoir, B.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at 778 nm using a laser diode stabilized on a hyperfine component of the doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
[Crossref]

Degoli, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Vniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

DelHaye, P.

P. DelHaye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

P. DelHaye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

Deotare, P.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lonar, “Diamond nonlinear photonics,” Nat. Photon. 8, 369–374 (2014).
[Crossref]

Desiatov, B.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale lightmatter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref]

Diddams, S. A.

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Dow, A. B. A.

D. F. Logan, A. B. A. Dow, D. Stepanov, P. Abolghasem, N. P. Kherani, and A. S. Helmy, “Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides,” Appl. Phys. Lett. 102, 061106 (2013).
[Crossref]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[Crossref]

Dutt, A.

Felder, R.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at 778 nm using a laser diode stabilized on a hyperfine component of the doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
[Crossref]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[Crossref]

Ferdous, F.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

Foster, M. A.

Fujii, M.

A. Kitao, K. Imakita, I. Kawamura, and M. Fujii, “An investigation into second harmonic generation by si-rich SiNx thin films deposited by RF sputtering over a wide range of si concentrations,” J. Phys. D: Appl. Phys. 47, 215101 (2014).
[Crossref]

Fujimoto, J. G.

Gaeta, A.

P. Londero, J. Levy, A. Slepkov, A. Bhagwat, K. Saha, V. Venkataraman, M. Lipson, and A. Gaeta, “Chip-based optical interactions with rubidium vapor,” in “2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS),” (2010), pp. 1–2.

Gaeta, A. L.

Y. Okawachi, M. R. E. Lamont, K. Luke, D. O. Carvalho, M. Yu, M. Lipson, and A. L. Gaeta, “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering,” Opt. Lett. 39, 3535–3538 (2014).
[Crossref] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photon. 7, 597–607 (2013).
[Crossref]

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013).
[Crossref] [PubMed]

K. Saha, Y. Okawachi, J. S. Levy, R. K. W. Lau, K. Luke, M. A. Foster, M. Lipson, and A. L. Gaeta, “Broadband parametric frequency comb generation with a 1-m pump source,” Opt. Express 20, 26935–26941 (2012).
[Crossref] [PubMed]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4, 37–40 (2010).
[Crossref]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref] [PubMed]

K. Luke, Y. Okawachi, D. Orquiza, A. L. Gaeta, and M. Lipson, “Broadband microresonator-based parametric frequency comb generation near visible wavelengths,” in “CLEO: 2014,” (Optical Society of America, 2014).

Galli, M.

L. Andreani, P. Andrich, M. Galli, D. Gerace, G. Guizzetti, R. Lo Savio, S. Portalupi, L. O’Faolain, C. Reardon, K. Welna, and T. Krauss, “Nonlinear optics in silicon photonic crystal cavities,” in “2011 13th International Conference on Transparent Optical Networks (ICTON),” (2011), pp. 1–4.

Gavartin, E.

P. DelHaye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

Genty, G.

T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100, 161902 (2012).
[Crossref]

T. Ning, H. Pietarinen, O. Hyvrinen, R. Kumar, T. Kaplas, M. Kauranen, and G. Genty, “Efficient second-harmonic generation in silicon nitride resonant waveguide gratings,” Opt. Lett. 37, 4269–4271 (2012).
[Crossref] [PubMed]

Gerace, D.

L. Andreani, P. Andrich, M. Galli, D. Gerace, G. Guizzetti, R. Lo Savio, S. Portalupi, L. O’Faolain, C. Reardon, K. Welna, and T. Krauss, “Nonlinear optics in silicon photonic crystal cavities,” in “2011 13th International Conference on Transparent Optical Networks (ICTON),” (2011), pp. 1–4.

Ghulinyan, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Vniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4, 37–40 (2010).
[Crossref]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[Crossref] [PubMed]

Gorodetsky, M. L.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photon. 8, 145–152 (2014).
[Crossref]

P. DelHaye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” arXiv:1311.1716 [physics] (2013).

Goykhman, I.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale lightmatter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref]

Guizzetti, G.

L. Andreani, P. Andrich, M. Galli, D. Gerace, G. Guizzetti, R. Lo Savio, S. Portalupi, L. O’Faolain, C. Reardon, K. Welna, and T. Krauss, “Nonlinear optics in silicon photonic crystal cavities,” in “2011 13th International Conference on Transparent Optical Networks (ICTON),” (2011), pp. 1–4.

Hausmann, B. J. M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lonar, “Diamond nonlinear photonics,” Nat. Photon. 8, 369–374 (2014).
[Crossref]

Hee, M. R.

Helmy, A. S.

D. F. Logan, A. B. A. Dow, D. Stepanov, P. Abolghasem, N. P. Kherani, and A. S. Helmy, “Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides,” Appl. Phys. Lett. 102, 061106 (2013).
[Crossref]

Herr, T.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photon. 8, 145–152 (2014).
[Crossref]

P. DelHaye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” arXiv:1311.1716 [physics] (2013).

Hilico, L.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at 778 nm using a laser diode stabilized on a hyperfine component of the doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
[Crossref]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[Crossref]

Hnsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hnsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

P. DelHaye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

P. DelHaye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hnsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Huang, D.

Hyvrinen, O.

T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100, 161902 (2012).
[Crossref]

T. Ning, H. Pietarinen, O. Hyvrinen, R. Kumar, T. Kaplas, M. Kauranen, and G. Genty, “Efficient second-harmonic generation in silicon nitride resonant waveguide gratings,” Opt. Lett. 37, 4269–4271 (2012).
[Crossref] [PubMed]

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photon. 5, 293–296 (2011).
[Crossref]

A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express 16, 4130–4144 (2008).
[Crossref] [PubMed]

Imakita, K.

A. Kitao, K. Imakita, I. Kawamura, and M. Fujii, “An investigation into second harmonic generation by si-rich SiNx thin films deposited by RF sputtering over a wide range of si concentrations,” J. Phys. D: Appl. Phys. 47, 215101 (2014).
[Crossref]

Johnson, A. R.

Jost, J. D.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photon. 8, 145–152 (2014).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” arXiv:1311.1716 [physics] (2013).

Kaplas, T.

Kauranen, M.

T. Ning, H. Pietarinen, O. Hyvrinen, R. Kumar, T. Kaplas, M. Kauranen, and G. Genty, “Efficient second-harmonic generation in silicon nitride resonant waveguide gratings,” Opt. Lett. 37, 4269–4271 (2012).
[Crossref] [PubMed]

T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100, 161902 (2012).
[Crossref]

Kawamura, I.

A. Kitao, K. Imakita, I. Kawamura, and M. Fujii, “An investigation into second harmonic generation by si-rich SiNx thin films deposited by RF sputtering over a wide range of si concentrations,” J. Phys. D: Appl. Phys. 47, 215101 (2014).
[Crossref]

Kherani, N. P.

D. F. Logan, A. B. A. Dow, D. Stepanov, P. Abolghasem, N. P. Kherani, and A. S. Helmy, “Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides,” Appl. Phys. Lett. 102, 061106 (2013).
[Crossref]

Kippenberg, T. J.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photon. 8, 145–152 (2014).
[Crossref]

P. DelHaye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

P. DelHaye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” arXiv:1311.1716 [physics] (2013).

Kitao, A.

A. Kitao, K. Imakita, I. Kawamura, and M. Fujii, “An investigation into second harmonic generation by si-rich SiNx thin films deposited by RF sputtering over a wide range of si concentrations,” J. Phys. D: Appl. Phys. 47, 215101 (2014).
[Crossref]

Kondratiev, N. M.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photon. 8, 145–152 (2014).
[Crossref]

Krauss, T.

L. Andreani, P. Andrich, M. Galli, D. Gerace, G. Guizzetti, R. Lo Savio, S. Portalupi, L. O’Faolain, C. Reardon, K. Welna, and T. Krauss, “Nonlinear optics in silicon photonic crystal cavities,” in “2011 13th International Conference on Transparent Optical Networks (ICTON),” (2011), pp. 1–4.

Kumar, R.

Kurz, H.

Lamont, M. R. E.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[Crossref]

Lau, R. K. W.

Leaird, D. E.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

Lee, H.

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109, 233901 (2012).
[Crossref]

Levy, J.

P. Londero, J. Levy, A. Slepkov, A. Bhagwat, K. Saha, V. Venkataraman, M. Lipson, and A. Gaeta, “Chip-based optical interactions with rubidium vapor,” in “2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS),” (2010), pp. 1–2.

Levy, J. S.

Levy, U.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale lightmatter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref]

Li, J.

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109, 233901 (2012).
[Crossref]

Liang, W.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photon. 5, 293–296 (2011).
[Crossref]

Lihachev, G.

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” arXiv:1311.1716 [physics] (2013).

Lin, C. P.

Lipson, M.

Y. Okawachi, M. R. E. Lamont, K. Luke, D. O. Carvalho, M. Yu, M. Lipson, and A. L. Gaeta, “Bandwidth shaping of microresonator-based frequency combs via dispersion engineering,” Opt. Lett. 39, 3535–3538 (2014).
[Crossref] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photon. 7, 597–607 (2013).
[Crossref]

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming si3n4 film stress limitations for high quality factor ring resonators,” Opt. Express 21, 22829–22833 (2013).
[Crossref] [PubMed]

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013).
[Crossref] [PubMed]

K. Saha, Y. Okawachi, J. S. Levy, R. K. W. Lau, K. Luke, M. A. Foster, M. Lipson, and A. L. Gaeta, “Broadband parametric frequency comb generation with a 1-m pump source,” Opt. Express 20, 26935–26941 (2012).
[Crossref] [PubMed]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
[Crossref] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4, 37–40 (2010).
[Crossref]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[Crossref] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref] [PubMed]

K. Luke, Y. Okawachi, D. Orquiza, A. L. Gaeta, and M. Lipson, “Broadband microresonator-based parametric frequency comb generation near visible wavelengths,” in “CLEO: 2014,” (Optical Society of America, 2014).

P. Londero, J. Levy, A. Slepkov, A. Bhagwat, K. Saha, V. Venkataraman, M. Lipson, and A. Gaeta, “Chip-based optical interactions with rubidium vapor,” in “2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS),” (2010), pp. 1–2.

Lo Savio, R.

L. Andreani, P. Andrich, M. Galli, D. Gerace, G. Guizzetti, R. Lo Savio, S. Portalupi, L. O’Faolain, C. Reardon, K. Welna, and T. Krauss, “Nonlinear optics in silicon photonic crystal cavities,” in “2011 13th International Conference on Transparent Optical Networks (ICTON),” (2011), pp. 1–4.

Logan, D. F.

D. F. Logan, A. B. A. Dow, D. Stepanov, P. Abolghasem, N. P. Kherani, and A. S. Helmy, “Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides,” Appl. Phys. Lett. 102, 061106 (2013).
[Crossref]

Lonar, M.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lonar, “Diamond nonlinear photonics,” Nat. Photon. 8, 369–374 (2014).
[Crossref]

Londero, P.

P. Londero, J. Levy, A. Slepkov, A. Bhagwat, K. Saha, V. Venkataraman, M. Lipson, and A. Gaeta, “Chip-based optical interactions with rubidium vapor,” in “2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS),” (2010), pp. 1–2.

Luke, K.

Luppi, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Vniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Maleki, L.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photon. 5, 293–296 (2011).
[Crossref]

A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express 16, 4130–4144 (2008).
[Crossref] [PubMed]

Mandache, C.

J. Vanier and C. Mandache, “The passive optically pumped rb frequency standard: the laser approach,” in “Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International,” (2007), pp. 1346–1351.

Manolatou, C.

Matheisen, C.

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photon. 5, 293–296 (2011).
[Crossref]

A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express 16, 4130–4144 (2008).
[Crossref] [PubMed]

Miano, G.

E. F. Pecora, A. Capretti, G. Miano, and L. D. Negro, “Generation of second harmonic radiation from substoichiometric silicon nitride thin films,” Appl. Phys. Lett. 102, 141114 (2013).
[Crossref]

Miao, H.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

Millerioux, Y.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at 778 nm using a laser diode stabilized on a hyperfine component of the doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
[Crossref]

Mirgorodskiy, I.

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” arXiv:1311.1716 [physics] (2013).

Modotto, D.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Vniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photon. 7, 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photon. 7, 597–607 (2013).
[Crossref]

Negro, L. D.

E. F. Pecora, A. Capretti, G. Miano, and L. D. Negro, “Generation of second harmonic radiation from substoichiometric silicon nitride thin films,” Appl. Phys. Lett. 102, 141114 (2013).
[Crossref]

Ning, T.

T. Ning, H. Pietarinen, O. Hyvrinen, R. Kumar, T. Kaplas, M. Kauranen, and G. Genty, “Efficient second-harmonic generation in silicon nitride resonant waveguide gratings,” Opt. Lett. 37, 4269–4271 (2012).
[Crossref] [PubMed]

T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100, 161902 (2012).
[Crossref]

O’Faolain, L.

L. Andreani, P. Andrich, M. Galli, D. Gerace, G. Guizzetti, R. Lo Savio, S. Portalupi, L. O’Faolain, C. Reardon, K. Welna, and T. Krauss, “Nonlinear optics in silicon photonic crystal cavities,” in “2011 13th International Conference on Transparent Optical Networks (ICTON),” (2011), pp. 1–4.

Okawachi, Y.

Orquiza, D.

K. Luke, Y. Okawachi, D. Orquiza, A. L. Gaeta, and M. Lipson, “Broadband microresonator-based parametric frequency comb generation near visible wavelengths,” in “CLEO: 2014,” (Optical Society of America, 2014).

Ossicini, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Vniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Papp, S. B.

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
[Crossref]

Pavesi, L.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Vniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Pecora, E. F.

E. F. Pecora, A. Capretti, G. Miano, and L. D. Negro, “Generation of second harmonic radiation from substoichiometric silicon nitride thin films,” Appl. Phys. Lett. 102, 141114 (2013).
[Crossref]

Pierobon, R.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Vniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Pietarinen, H.

T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100, 161902 (2012).
[Crossref]

T. Ning, H. Pietarinen, O. Hyvrinen, R. Kumar, T. Kaplas, M. Kauranen, and G. Genty, “Efficient second-harmonic generation in silicon nitride resonant waveguide gratings,” Opt. Lett. 37, 4269–4271 (2012).
[Crossref] [PubMed]

Poitras, C. B.

Portalupi, S.

L. Andreani, P. Andrich, M. Galli, D. Gerace, G. Guizzetti, R. Lo Savio, S. Portalupi, L. O’Faolain, C. Reardon, K. Welna, and T. Krauss, “Nonlinear optics in silicon photonic crystal cavities,” in “2011 13th International Conference on Transparent Optical Networks (ICTON),” (2011), pp. 1–4.

Pucker, G.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Vniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Puliafito, C. A.

Reardon, C.

L. Andreani, P. Andrich, M. Galli, D. Gerace, G. Guizzetti, R. Lo Savio, S. Portalupi, L. O’Faolain, C. Reardon, K. Welna, and T. Krauss, “Nonlinear optics in silicon photonic crystal cavities,” in “2011 13th International Conference on Transparent Optical Networks (ICTON),” (2011), pp. 1–4.

Ripperda, C.

Rubiola, E.

Saha, K.

Salem, R.

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photon. 5, 293–296 (2011).
[Crossref]

A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express 16, 4130–4144 (2008).
[Crossref] [PubMed]

Schliesser, A.

P. DelHaye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

Schmidt, B. S.

Seidel, D.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photon. 5, 293–296 (2011).
[Crossref]

Sharping, J. E.

Shim, B.

Simonen, J.

T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100, 161902 (2012).
[Crossref]

Slepkov, A.

P. Londero, J. Levy, A. Slepkov, A. Bhagwat, K. Saha, V. Venkataraman, M. Lipson, and A. Gaeta, “Chip-based optical interactions with rubidium vapor,” in “2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS),” (2010), pp. 1–2.

Srinivasan, K.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

Stepanov, D.

D. F. Logan, A. B. A. Dow, D. Stepanov, P. Abolghasem, N. P. Kherani, and A. S. Helmy, “Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides,” Appl. Phys. Lett. 102, 061106 (2013).
[Crossref]

Stern, L.

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale lightmatter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref]

Swanson, E. A.

Touahri, D.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at 778 nm using a laser diode stabilized on a hyperfine component of the doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
[Crossref]

Turner, A. C.

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4, 37–40 (2010).
[Crossref]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hnsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Vahala, K. J.

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109, 233901 (2012).
[Crossref]

Vanier, J.

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[Crossref]

J. Vanier and C. Mandache, “The passive optically pumped rb frequency standard: the laser approach,” in “Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International,” (2007), pp. 1346–1351.

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

Venkataraman, V.

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lonar, “Diamond nonlinear photonics,” Nat. Photon. 8, 369–374 (2014).
[Crossref]

P. Londero, J. Levy, A. Slepkov, A. Bhagwat, K. Saha, V. Venkataraman, M. Lipson, and A. Gaeta, “Chip-based optical interactions with rubidium vapor,” in “2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS),” (2010), pp. 1–2.

Vniard, V.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Vniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Wabnitz, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Vniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Wahlbrink, T.

Waldow, M.

Wang, C. Y.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photon. 8, 145–152 (2014).
[Crossref]

Wang, J.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

Weiner, A. M.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

Welna, K.

L. Andreani, P. Andrich, M. Galli, D. Gerace, G. Guizzetti, R. Lo Savio, S. Portalupi, L. O’Faolain, C. Reardon, K. Welna, and T. Krauss, “Nonlinear optics in silicon photonic crystal cavities,” in “2011 13th International Conference on Transparent Optical Networks (ICTON),” (2011), pp. 1–4.

Yu, M.

Appl. Phys. B (1)

J. Vanier, “Atomic clocks based on coherent population trapping: a review,” Appl. Phys. B 81, 421–442 (2005).
[Crossref]

Appl. Phys. Lett. (3)

T. Ning, H. Pietarinen, O. Hyvrinen, J. Simonen, G. Genty, and M. Kauranen, “Strong second-harmonic generation in silicon nitride films,” Appl. Phys. Lett. 100, 161902 (2012).
[Crossref]

D. F. Logan, A. B. A. Dow, D. Stepanov, P. Abolghasem, N. P. Kherani, and A. S. Helmy, “Harnessing second-order optical nonlinearities at interfaces in multilayer silicon-oxy-nitride waveguides,” Appl. Phys. Lett. 102, 061106 (2013).
[Crossref]

E. F. Pecora, A. Capretti, G. Miano, and L. D. Negro, “Generation of second harmonic radiation from substoichiometric silicon nitride thin films,” Appl. Phys. Lett. 102, 141114 (2013).
[Crossref]

J. Phys. D: Appl. Phys. (1)

A. Kitao, K. Imakita, I. Kawamura, and M. Fujii, “An investigation into second harmonic generation by si-rich SiNx thin films deposited by RF sputtering over a wide range of si concentrations,” J. Phys. D: Appl. Phys. 47, 215101 (2014).
[Crossref]

Nat. Commun. (1)

L. Stern, B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale lightmatter interactions in atomic cladding waveguides,” Nat. Commun. 4, 1548 (2013).
[Crossref]

Nat. Mater. (1)

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Vniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Nat. Photon. (6)

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photon. 8, 145–152 (2014).
[Crossref]

B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, and M. Lonar, “Diamond nonlinear photonics,” Nat. Photon. 8, 369–374 (2014).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photon. 7, 597–607 (2013).
[Crossref]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr combs with selectable central frequency,” Nat. Photon. 5, 293–296 (2011).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4, 37–40 (2010).
[Crossref]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photon. 5, 770–776 (2011).
[Crossref]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hnsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at 778 nm using a laser diode stabilized on a hyperfine component of the doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91–96 (1994).
[Crossref]

Opt. Express (8)

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref] [PubMed]

K. Saha, Y. Okawachi, J. S. Levy, R. K. W. Lau, K. Luke, M. A. Foster, M. Lipson, and A. L. Gaeta, “Broadband parametric frequency comb generation with a 1-m pump source,” Opt. Express 20, 26935–26941 (2012).
[Crossref] [PubMed]

J. S. Levy, M. A. Foster, A. L. Gaeta, and M. Lipson, “Harmonic generation in silicon nitride ring resonators,” Opt. Express 19, 11415–11421 (2011).
[Crossref] [PubMed]

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express 21, 1335–1343 (2013).
[Crossref] [PubMed]

B. Chmielak, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Waldow, and H. Kurz, “Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides,” Opt. Express 21, 25324–25332 (2013).
[Crossref] [PubMed]

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high q ring resonator,” Opt. Express 17, 11366–11370 (2009).
[Crossref] [PubMed]

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming si3n4 film stress limitations for high quality factor ring resonators,” Opt. Express 21, 22829–22833 (2013).
[Crossref] [PubMed]

A. A. Savchenkov, E. Rubiola, A. B. Matsko, V. S. Ilchenko, and L. Maleki, “Phase noise of whispering gallery photonic hyper-parametric microwave oscillators,” Opt. Express 16, 4130–4144 (2008).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. A (1)

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
[Crossref]

Phys. Rev. Lett. (3)

P. DelHaye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107, 063901 (2011).
[Crossref]

P. DelHaye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109, 233901 (2012).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[Crossref]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Other (6)

J. Vanier and C. Mandache, “The passive optically pumped rb frequency standard: the laser approach,” in “Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International,” (2007), pp. 1346–1351.

K. Luke, Y. Okawachi, D. Orquiza, A. L. Gaeta, and M. Lipson, “Broadband microresonator-based parametric frequency comb generation near visible wavelengths,” in “CLEO: 2014,” (Optical Society of America, 2014).

R. W. Boyd, Nonlinear Optics, Third Edition (Academic Press, 2008), 3rd ed.

T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, and T. J. Kippenberg, “Mode spectrum and temporal soliton formation in optical microresonators,” arXiv:1311.1716 [physics] (2013).

L. Andreani, P. Andrich, M. Galli, D. Gerace, G. Guizzetti, R. Lo Savio, S. Portalupi, L. O’Faolain, C. Reardon, K. Welna, and T. Krauss, “Nonlinear optics in silicon photonic crystal cavities,” in “2011 13th International Conference on Transparent Optical Networks (ICTON),” (2011), pp. 1–4.

P. Londero, J. Levy, A. Slepkov, A. Bhagwat, K. Saha, V. Venkataraman, M. Lipson, and A. Gaeta, “Chip-based optical interactions with rubidium vapor,” in “2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS),” (2010), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) A single near-IR pump is coupled into a microring cavity and undergoes second-harmonic generation, near-IR frequency comb generation, and sum-frequency generation to generate simultaneous near-IR and visible wavelength frequency comb lines. (b) Nonlinear photon interaction energy conservation for degenerate four-wave mixing optical parametric oscillation taking place in the near-IR. (c) Nonlinear photon interaction energy conservation for sum-frequency generation between one pump photon and one comb line photon generating a comb line in the visible. This process is identical for corresponding comb lines colored red in (a).

Fig. 2
Fig. 2

(a) The effective mode index dispersion of the fundamental TE mode in near IR spectral range and the third-order TE mode in the visible spectral range. One can see that around the pump wavelength of 1540 nm (red X), phase-matching occurs. (b) The group velocity dispersion (GVD) of the fundamental TE mode shown in (a). The low level of anomalous GVD at the pump wavelength of 1540 nm allows for efficient frequency comb generation. (c) Conversion efficiency vs. wavelength for χ(2) SHG and SFG processes, estimated using Eq. (1). Phase-matching bandwidth for SFG is wider than for SHG, allowing for multiple comb lines to be converted into the visible range.

Fig. 3
Fig. 3

(a) Near-IR CW pump laser and frequency comb generation. Several different states of the frequency comb are shown. (b) Visible second-harmonic generation and frequency comb lines for corresponding spectra in (a). The vertical scales have been offset for clarity. Comb spacing is preserved by the SFG process for all states of the frequency comb shown. Inset micrograph shows the visible light generated by the device. These wavelengths fall just outside the normal range of the CCD camera, so the red color that is seen by the naked eye is distorted. A microheater was fabricated on this device for thermal tuning but was not used in this experiment.

Fig. 4
Fig. 4

Seeded SFG experiment. (a) Near-IR pump and signal lasers are coupled into the ring resonator. An additional line is seen symmetric about the pump, resulting from FWM. (b) The visible spectrum shows SHG of the pump wavelength and SFG of pump wavelength mixing with both the signal and FWM idler lines. (c) Conversion efficiency vs. pump power for SFGsignal, showing conversion proportional to the pump power. (d) Conversion efficiency vs. pump power for SFGidler, showing conversion proportional to pump power.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P 3 = 2 d eff 2 ω 3 2 C 1 P 1 C 2 P 2 A 3 n 1 n 2 n 3 ε 0 c 3 A 1 A 2 C 3 f 1 , 2 , 3 L eff 2 sinc 2 ( Δ k L eff 2 ) ,
P th 1.54 ( π 2 ) Q C 2 Q L n eff 2 V n 2 λ 0 Q L 2 ,
1 Q L = 1 Q i + 1 Q C ,

Metrics