Abstract

A narrow bandwidth (2GHz) π-phase-shift flattop fiber Bragg grating (FBG) is proposed to achieve Brillouin optical time-domain analysis (BOTDA) for perfluorinated graded-index polymer optical fibers (GI-POFs) for the first time to best of our knowledge. Using the technique of BOTDA, we explore the evolution of mode coupling in perfluorinated GI-POFs by analyzing the Brillouin frequency shift (BFS) variation along the whole fiber, and compare them with that of silica graded index multimode fibers (GI-MMFs). The characteristics of mode coupling of GI-POFs and GI-MMFs were also investigated in terms of the speckle patterns at the output face of the two fibers. The results show that compared with silica GI-MMFs, GI-POFs exhibit more efficient mode coupling and the excellent ablility of mode scrambling regardless of alignment conditions.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis

Pengbai Xu, Yongkang Dong, Juwang Zhang, Dengwang Zhou, Taofei Jiang, Jinlong Xu, Hongying Zhang, Tao Zhu, Zhiwei Lu, Liang Chen, and Xiaoyi Bao
Opt. Express 23(17) 22714-22722 (2015)

Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber

Neisei Hayashi, Yosuke Mizuno, and Kentaro Nakamura
Opt. Express 20(19) 21101-21106 (2012)

Measurement of nonlinear parameter of an optical fiber based on Brillouin optical time-domain analysis

Hongying Zhang, Shaopeng Zhang, Zhijun Yuan, Ziye Liu, Yongkang Dong, Dengwang Zhou, Wei Gao, and Yuelan Lv
J. Opt. Soc. Am. B 33(4) 630-636 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Loquai, F. Winkler, S. Wabra, E. Hartl, B. Schmauss, and O. Ziemann, “High-speed, large-area POF receivers for fiber characterization and data transmission 10-Gb/s based on MSM-photodetectors,” J. Lightwave Technol. 31(7), 1132–1137 (2013).
    [Crossref]
  2. K. Makino, Y. Akimoto, K. Koike, A. Kondo, A. Inoue, and Y. Koike, “Low loss and high bandwidth polystyrene-based graded index polymer optical fiber,” J. Lightwave Technol. 31(14), 2407–2412 (2013).
    [Crossref]
  3. M. Matsuura, R. Furukawa, Y. Matsumoto, A. Inoue, and Y. Koike, “Evaluation of modal noise in graded-index silica and plastic optical fiber links for radio over multimode fiber systems,” Opt. Express 22(6), 6562–6568 (2014).
    [Crossref] [PubMed]
  4. N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber,” Opt. Express 20(19), 21101–21106 (2012).
    [Crossref] [PubMed]
  5. Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35(23), 3985–3987 (2010).
    [Crossref] [PubMed]
  6. A. Minardo, R. Bernini, and L. Zeni, “Distributed temperature sensing in polymer optical fiber by BOFDA,” IEEE Photon. Technol. Lett. 26(4), 387–390 (2014).
    [Crossref]
  7. Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett. 97(2), 021103 (2010), doi:.
    [Crossref]
  8. Y. Mizuno, N. Hayashi, and K. Nakamura, “Brillouin scattering signal in polymer optical fiber enhanced by exploiting pulsed pump with multimode-fiber-assisted coupling technique,” Opt. Lett. 38(9), 1467–1469 (2013).
    [Crossref] [PubMed]
  9. Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, “Observation of stimulated Brillouin scattering in polymer optical fiber with pump-probe technique,” Opt. Lett. 36(12), 2378–2380 (2011).
    [Crossref] [PubMed]
  10. Y. Mizuno, T. Ishigure, and K. Nakamura, “Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-μm core diameter,” IEEE Photon. Technol. Lett. 23(24), 1863–1865 (2011).
    [Crossref]
  11. N. Hayashi, Y. Mizuno, and K. Nakamura, “Characterization of stimulated Brillouin scattering in polymer optical fibers based on lock-in-free Pump–Probe technique,” J. Lightwave Technol. 31(19), 3162–3166 (2013).
    [Crossref]
  12. Y. Mizuno and K. Nakamura, “Core alignment of butt coupling between single-mode and multimode optical fibers by monitoring Brillouin scattering signal,” J. Lightwave Technol. 29(17), 2616–2620 (2011).
    [Crossref]
  13. R. W. Boyd, Nonlinear Optics (Academic, 2008), Chap. 9.
  14. Y. Chen, Z. Lu, Y. Wang, and W. He, “Phase matching for noncollinear Brillouin amplification based on controlling of frequency shift of Stokes seed,” Opt. Lett. 39(10), 3047–3049 (2014).
    [Crossref] [PubMed]
  15. V. I. Kovalev and R. G. Harrison, “Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27(22), 2022–2024 (2002).
    [Crossref] [PubMed]
  16. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
    [Crossref] [PubMed]
  17. X. Zou, M. Li, W. Pan, L. Yan, J. Azaña, and J. Yao, “All-fiber optical filter with an ultranarrow and rectangular spectral response,” Opt. Lett. 38(16), 3096–3098 (2013).
    [Crossref] [PubMed]
  18. B. M. Trabold, D. Novoa, A. Abdolvand, and P. St. J. Russell, “Selective excitation of higher order modes in hollow-core PCF via prism-coupling,” Opt. Lett. 39(13), 3736–3739 (2014).
    [Crossref] [PubMed]

2014 (4)

2013 (5)

2012 (1)

2011 (4)

2010 (2)

Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett. 97(2), 021103 (2010), doi:.
[Crossref]

Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35(23), 3985–3987 (2010).
[Crossref] [PubMed]

2002 (1)

Abdolvand, A.

Akimoto, Y.

Azaña, J.

Bao, X.

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “Distributed temperature sensing in polymer optical fiber by BOFDA,” IEEE Photon. Technol. Lett. 26(4), 387–390 (2014).
[Crossref]

Chen, L.

Chen, Y.

Dong, Y.

Furukawa, R.

Harrison, R. G.

Hartl, E.

Hayashi, N.

He, W.

Hotate, K.

Inoue, A.

Ishigure, T.

Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, “Observation of stimulated Brillouin scattering in polymer optical fiber with pump-probe technique,” Opt. Lett. 36(12), 2378–2380 (2011).
[Crossref] [PubMed]

Y. Mizuno, T. Ishigure, and K. Nakamura, “Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-μm core diameter,” IEEE Photon. Technol. Lett. 23(24), 1863–1865 (2011).
[Crossref]

Kishi, M.

Koike, K.

Koike, Y.

Kondo, A.

Kovalev, V. I.

Li, M.

Loquai, S.

Lu, Z.

Makino, K.

Matsumoto, Y.

Matsuura, M.

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, “Distributed temperature sensing in polymer optical fiber by BOFDA,” IEEE Photon. Technol. Lett. 26(4), 387–390 (2014).
[Crossref]

Mizuno, Y.

Y. Mizuno, N. Hayashi, and K. Nakamura, “Brillouin scattering signal in polymer optical fiber enhanced by exploiting pulsed pump with multimode-fiber-assisted coupling technique,” Opt. Lett. 38(9), 1467–1469 (2013).
[Crossref] [PubMed]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Characterization of stimulated Brillouin scattering in polymer optical fibers based on lock-in-free Pump–Probe technique,” J. Lightwave Technol. 31(19), 3162–3166 (2013).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber,” Opt. Express 20(19), 21101–21106 (2012).
[Crossref] [PubMed]

Y. Mizuno and K. Nakamura, “Core alignment of butt coupling between single-mode and multimode optical fibers by monitoring Brillouin scattering signal,” J. Lightwave Technol. 29(17), 2616–2620 (2011).
[Crossref]

Y. Mizuno, T. Ishigure, and K. Nakamura, “Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-μm core diameter,” IEEE Photon. Technol. Lett. 23(24), 1863–1865 (2011).
[Crossref]

Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, “Observation of stimulated Brillouin scattering in polymer optical fiber with pump-probe technique,” Opt. Lett. 36(12), 2378–2380 (2011).
[Crossref] [PubMed]

Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35(23), 3985–3987 (2010).
[Crossref] [PubMed]

Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett. 97(2), 021103 (2010), doi:.
[Crossref]

Nakamura, K.

Y. Mizuno, N. Hayashi, and K. Nakamura, “Brillouin scattering signal in polymer optical fiber enhanced by exploiting pulsed pump with multimode-fiber-assisted coupling technique,” Opt. Lett. 38(9), 1467–1469 (2013).
[Crossref] [PubMed]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Characterization of stimulated Brillouin scattering in polymer optical fibers based on lock-in-free Pump–Probe technique,” J. Lightwave Technol. 31(19), 3162–3166 (2013).
[Crossref]

N. Hayashi, Y. Mizuno, and K. Nakamura, “Brillouin gain spectrum dependence on large strain in perfluorinated graded-index polymer optical fiber,” Opt. Express 20(19), 21101–21106 (2012).
[Crossref] [PubMed]

Y. Mizuno and K. Nakamura, “Core alignment of butt coupling between single-mode and multimode optical fibers by monitoring Brillouin scattering signal,” J. Lightwave Technol. 29(17), 2616–2620 (2011).
[Crossref]

Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, “Observation of stimulated Brillouin scattering in polymer optical fiber with pump-probe technique,” Opt. Lett. 36(12), 2378–2380 (2011).
[Crossref] [PubMed]

Y. Mizuno, T. Ishigure, and K. Nakamura, “Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-μm core diameter,” IEEE Photon. Technol. Lett. 23(24), 1863–1865 (2011).
[Crossref]

Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett. 97(2), 021103 (2010), doi:.
[Crossref]

Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35(23), 3985–3987 (2010).
[Crossref] [PubMed]

Novoa, D.

Pan, W.

Russell, P. St. J.

Schmauss, B.

Trabold, B. M.

Wabra, S.

Wang, Y.

Winkler, F.

Yan, L.

Yao, J.

Zeni, L.

A. Minardo, R. Bernini, and L. Zeni, “Distributed temperature sensing in polymer optical fiber by BOFDA,” IEEE Photon. Technol. Lett. 26(4), 387–390 (2014).
[Crossref]

Ziemann, O.

Zou, X.

Appl. Phys. Lett. (1)

Y. Mizuno and K. Nakamura, “Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength,” Appl. Phys. Lett. 97(2), 021103 (2010), doi:.
[Crossref]

IEEE Photon. Technol. Lett. (2)

A. Minardo, R. Bernini, and L. Zeni, “Distributed temperature sensing in polymer optical fiber by BOFDA,” IEEE Photon. Technol. Lett. 26(4), 387–390 (2014).
[Crossref]

Y. Mizuno, T. Ishigure, and K. Nakamura, “Brillouin gain spectrum characterization in perfluorinated graded-index polymer optical fiber with 62.5-μm core diameter,” IEEE Photon. Technol. Lett. 23(24), 1863–1865 (2011).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (2)

Opt. Lett. (8)

Y. Mizuno and K. Nakamura, “Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing,” Opt. Lett. 35(23), 3985–3987 (2010).
[Crossref] [PubMed]

Y. Mizuno, N. Hayashi, and K. Nakamura, “Brillouin scattering signal in polymer optical fiber enhanced by exploiting pulsed pump with multimode-fiber-assisted coupling technique,” Opt. Lett. 38(9), 1467–1469 (2013).
[Crossref] [PubMed]

Y. Mizuno, M. Kishi, K. Hotate, T. Ishigure, and K. Nakamura, “Observation of stimulated Brillouin scattering in polymer optical fiber with pump-probe technique,” Opt. Lett. 36(12), 2378–2380 (2011).
[Crossref] [PubMed]

Y. Chen, Z. Lu, Y. Wang, and W. He, “Phase matching for noncollinear Brillouin amplification based on controlling of frequency shift of Stokes seed,” Opt. Lett. 39(10), 3047–3049 (2014).
[Crossref] [PubMed]

V. I. Kovalev and R. G. Harrison, “Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27(22), 2022–2024 (2002).
[Crossref] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
[Crossref] [PubMed]

X. Zou, M. Li, W. Pan, L. Yan, J. Azaña, and J. Yao, “All-fiber optical filter with an ultranarrow and rectangular spectral response,” Opt. Lett. 38(16), 3096–3098 (2013).
[Crossref] [PubMed]

B. M. Trabold, D. Novoa, A. Abdolvand, and P. St. J. Russell, “Selective excitation of higher order modes in hollow-core PCF via prism-coupling,” Opt. Lett. 39(13), 3736–3739 (2014).
[Crossref] [PubMed]

Other (1)

R. W. Boyd, Nonlinear Optics (Academic, 2008), Chap. 9.

Supplementary Material (2)

» Media 1: MP4 (1625 KB)     
» Media 2: MP4 (307 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The scheme of SBS in the GI-POFs
Fig. 2
Fig. 2 Experimental setup. C, coupler; PC, polarization controller; EOM, electro-optic modulator; DC, direct current; AFG, arbitrary function generator; MG, microwave generator; EDFA, erbium-doped fiber amplifier; PS, polarization scrambler; FUT, fiber under test; FBG, fiber Bragg grating; PD, photo detector; OSC, Oscilloscope.
Fig. 3
Fig. 3 (a) measured BFS, red curve: polymer fiber, blue curve: silica multimode fiber; (b) measured BGS of point A, B and C marked in (a), the solid lines show the Lorentzian fits.
Fig. 4
Fig. 4 10 BFS measurements in (a) a GI-POF (see Media 1) and (b) a GI-MMF (see Media 2).
Fig. 5
Fig. 5 10 BGS measurements of a GI-POF under 25um offset splicing at SMF/MMF interface.
Fig. 6
Fig. 6 (a) Different splicing positions acquired by a fusion splicer. Speckle patterns of (b) GI-MMFs and (c) GI-POFs outputs for different offset positions

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ν B = 2 n V λ cos ( θ 2 )

Metrics