Abstract

We present a double-layer graphene waveguide which can greatly enhance spontaneous emission rate (SER) of electric dipole emitter placed in it. With properly designed parameters, numerical results show that SER enhanced factors as high as 2.127 × 106 and 1.941 × 105 can be achieved for two different dipole moment orientations, respectively. The influences of waveguide thickness, existence of supporting layer and gating electrodes, location offset of the emitter and dipole moment orientation on spontaneous emission enhancement are also studied in this paper. To the best of our knowledge, this is the first numerical study of SER enhanced effect in complicated graphene structure.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced spontaneous emission of quantum emitter in monolayer and double layer black phosphorus

Lu Sun, Guirong Zhang, Shengli Zhang, and Jianhua Ji
Opt. Express 25(13) 14270-14281 (2017)

Spontaneous emission in paired graphene plasmonic waveguide structures

Lei Zhang, Xiuli Fu, Mei Zhang, and Junzhong Yang
Opt. Express 21(7) 7897-7907 (2013)

Quantum optical properties of a dipole emitter coupled to an ɛ-near-zero nanoscale waveguide

Ruzan Sokhoyan and Harry A. Atwater
Opt. Express 21(26) 32279-32290 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  2. V. S. C. M. Rao and S. Hughes, “Numerical study of exact Purcell factors in finite-size planar photonic crystal waveguides,” Opt. Lett. 33(14), 1587–1589 (2008).
    [Crossref] [PubMed]
  3. M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10(5), 1537–1541 (2010).
    [Crossref] [PubMed]
  4. H. Iwase, D. Englund, and J. Vucković, “Analysis of the Purcell effect in photonic and plasmonic crystals with losses,” Opt. Express 18(16), 16546–16560 (2010).
    [Crossref] [PubMed]
  5. M. Jablan, H. Buljan, and M. Soljačić, “Plamonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
    [Crossref]
  6. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
    [Crossref] [PubMed]
  7. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
    [Crossref] [PubMed]
  8. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  9. P. A. Huidobro, A. Yu. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
    [Crossref]
  10. A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B 84(19), 195446 (2011).
    [Crossref]
  11. L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).
  12. R. F. Oulton, D. F. P. Pile, Y. Liu, and X. Zhang, “Scattering of surface plasmon polaritons at abrupt surface interfaces: Implications for nanoscale cavities,” Phys. Rev. B 76(3), 035408 (2007).
    [Crossref]
  13. L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129(1), 012004 (2008).
    [Crossref]
  14. M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University, 2012).
  15. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
    [Crossref] [PubMed]
  16. S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
    [Crossref] [PubMed]
  17. G. W. Hanson, E. Forati, W. Linz, and A. B. Yakovlev, “Excitation of terahertz surface plasmons on graphene surfaces by an elementary dipole and quantum emitter: Strong electrodynamic effect of dielectric support,” Phys. Rev. B 86(23), 235440 (2012).
    [Crossref]
  18. A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
    [Crossref]
  19. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
    [Crossref] [PubMed]
  20. B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
    [Crossref]
  21. T. M. Sweeney, S. G. Carter, A. S. Bracker, M. Kim, C. S. Kim, L. Yang, P. M. Vora, P. G. Brereton, E. R. Cleveland, and D. Gammon, “Cavity-stimulated Raman emission from a single quantum dot spin,” Nat. Photonics 8, 442–447 (2014).
  22. D. P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics (Dover, 1998).
  23. A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, and J. Kong, “Transferring and identification of single- and few-Layer graphene on arbitrary substrates,” J. Phys. Chem. C 112(46), 17741–17744 (2008).
    [Crossref]
  24. M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
    [Crossref] [PubMed]
  25. P. Meystre and M. Sargent, Elements of Quantum Optics, 4th ed. (Springer, 2007).

2014 (2)

T. M. Sweeney, S. G. Carter, A. S. Bracker, M. Kim, C. S. Kim, L. Yang, P. M. Vora, P. G. Brereton, E. R. Cleveland, and D. Gammon, “Cavity-stimulated Raman emission from a single quantum dot spin,” Nat. Photonics 8, 442–447 (2014).

M. Mohsin, D. Schall, M. Otto, A. Noculak, D. Neumaier, and H. Kurz, “Graphene based low insertion loss electro-absorption modulator on SOI waveguide,” Opt. Express 22(12), 15292–15297 (2014).
[Crossref] [PubMed]

2012 (5)

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

G. W. Hanson, E. Forati, W. Linz, and A. B. Yakovlev, “Excitation of terahertz surface plasmons on graphene surfaces by an elementary dipole and quantum emitter: Strong electrodynamic effect of dielectric support,” Phys. Rev. B 86(23), 235440 (2012).
[Crossref]

P. A. Huidobro, A. Yu. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

2011 (5)

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B 84(19), 195446 (2011).
[Crossref]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

2010 (2)

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10(5), 1537–1541 (2010).
[Crossref] [PubMed]

H. Iwase, D. Englund, and J. Vucković, “Analysis of the Purcell effect in photonic and plasmonic crystals with losses,” Opt. Express 18(16), 16546–16560 (2010).
[Crossref] [PubMed]

2009 (1)

M. Jablan, H. Buljan, and M. Soljačić, “Plamonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

2008 (3)

V. S. C. M. Rao and S. Hughes, “Numerical study of exact Purcell factors in finite-size planar photonic crystal waveguides,” Opt. Lett. 33(14), 1587–1589 (2008).
[Crossref] [PubMed]

A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, and J. Kong, “Transferring and identification of single- and few-Layer graphene on arbitrary substrates,” J. Phys. Chem. C 112(46), 17741–17744 (2008).
[Crossref]

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129(1), 012004 (2008).
[Crossref]

2007 (2)

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

R. F. Oulton, D. F. P. Pile, Y. Liu, and X. Zhang, “Scattering of surface plasmon polaritons at abrupt surface interfaces: Implications for nanoscale cavities,” Phys. Rev. B 76(3), 035408 (2007).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Bracker, A. S.

T. M. Sweeney, S. G. Carter, A. S. Bracker, M. Kim, C. S. Kim, L. Yang, P. M. Vora, P. G. Brereton, E. R. Cleveland, and D. Gammon, “Cavity-stimulated Raman emission from a single quantum dot spin,” Nat. Photonics 8, 442–447 (2014).

Brereton, P. G.

T. M. Sweeney, S. G. Carter, A. S. Bracker, M. Kim, C. S. Kim, L. Yang, P. M. Vora, P. G. Brereton, E. R. Cleveland, and D. Gammon, “Cavity-stimulated Raman emission from a single quantum dot spin,” Nat. Photonics 8, 442–447 (2014).

Buljan, H.

M. Jablan, H. Buljan, and M. Soljačić, “Plamonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Carter, S. G.

T. M. Sweeney, S. G. Carter, A. S. Bracker, M. Kim, C. S. Kim, L. Yang, P. M. Vora, P. G. Brereton, E. R. Cleveland, and D. Gammon, “Cavity-stimulated Raman emission from a single quantum dot spin,” Nat. Photonics 8, 442–447 (2014).

Chang, D. E.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Christensen, J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Cleveland, E. R.

T. M. Sweeney, S. G. Carter, A. S. Bracker, M. Kim, C. S. Kim, L. Yang, P. M. Vora, P. G. Brereton, E. R. Cleveland, and D. Gammon, “Cavity-stimulated Raman emission from a single quantum dot spin,” Nat. Photonics 8, 442–447 (2014).

Dresselhaus, M. S.

A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, and J. Kong, “Transferring and identification of single- and few-Layer graphene on arbitrary substrates,” J. Phys. Chem. C 112(46), 17741–17744 (2008).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Englund, D.

Falkovsky, L. A.

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129(1), 012004 (2008).
[Crossref]

Fan, B.

A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, and J. Kong, “Transferring and identification of single- and few-Layer graphene on arbitrary substrates,” J. Phys. Chem. C 112(46), 17741–17744 (2008).
[Crossref]

Forati, E.

G. W. Hanson, E. Forati, W. Linz, and A. B. Yakovlev, “Excitation of terahertz surface plasmons on graphene surfaces by an elementary dipole and quantum emitter: Strong electrodynamic effect of dielectric support,” Phys. Rev. B 86(23), 235440 (2012).
[Crossref]

Gammon, D.

T. M. Sweeney, S. G. Carter, A. S. Bracker, M. Kim, C. S. Kim, L. Yang, P. M. Vora, P. G. Brereton, E. R. Cleveland, and D. Gammon, “Cavity-stimulated Raman emission from a single quantum dot spin,” Nat. Photonics 8, 442–447 (2014).

Gao, W.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

García de Abajo, F. J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10(5), 1537–1541 (2010).
[Crossref] [PubMed]

García-Vidal, F. J.

P. A. Huidobro, A. Yu. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B 84(19), 195446 (2011).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

González-Ballestero, C.

P. A. Huidobro, A. Yu. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

Guinea, F.

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B 84(19), 195446 (2011).
[Crossref]

Hanson, G. W.

G. W. Hanson, E. Forati, W. Linz, and A. B. Yakovlev, “Excitation of terahertz surface plasmons on graphene surfaces by an elementary dipole and quantum emitter: Strong electrodynamic effect of dielectric support,” Phys. Rev. B 86(23), 235440 (2012).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Hughes, S.

Huidobro, P. A.

P. A. Huidobro, A. Yu. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

Iwase, H.

Jablan, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plamonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Jiao, L.

A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, and J. Kong, “Transferring and identification of single- and few-Layer graphene on arbitrary substrates,” J. Phys. Chem. C 112(46), 17741–17744 (2008).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Kim, C. S.

T. M. Sweeney, S. G. Carter, A. S. Bracker, M. Kim, C. S. Kim, L. Yang, P. M. Vora, P. G. Brereton, E. R. Cleveland, and D. Gammon, “Cavity-stimulated Raman emission from a single quantum dot spin,” Nat. Photonics 8, 442–447 (2014).

Kim, M.

T. M. Sweeney, S. G. Carter, A. S. Bracker, M. Kim, C. S. Kim, L. Yang, P. M. Vora, P. G. Brereton, E. R. Cleveland, and D. Gammon, “Cavity-stimulated Raman emission from a single quantum dot spin,” Nat. Photonics 8, 442–447 (2014).

Kong, J.

A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, and J. Kong, “Transferring and identification of single- and few-Layer graphene on arbitrary substrates,” J. Phys. Chem. C 112(46), 17741–17744 (2008).
[Crossref]

Koppens, F. H. L.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Kurz, H.

Kuttge, M.

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10(5), 1537–1541 (2010).
[Crossref] [PubMed]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Linz, W.

G. W. Hanson, E. Forati, W. Linz, and A. B. Yakovlev, “Excitation of terahertz surface plasmons on graphene surfaces by an elementary dipole and quantum emitter: Strong electrodynamic effect of dielectric support,” Phys. Rev. B 86(23), 235440 (2012).
[Crossref]

Liu, Y.

R. F. Oulton, D. F. P. Pile, Y. Liu, and X. Zhang, “Scattering of surface plasmon polaritons at abrupt surface interfaces: Implications for nanoscale cavities,” Phys. Rev. B 76(3), 035408 (2007).
[Crossref]

Liu, Z.

A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, and J. Kong, “Transferring and identification of single- and few-Layer graphene on arbitrary substrates,” J. Phys. Chem. C 112(46), 17741–17744 (2008).
[Crossref]

Manjavacas, A.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Martín-Moreno, L.

P. A. Huidobro, A. Yu. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B 84(19), 195446 (2011).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Mikhailov, S. A.

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

Mohsin, M.

Neumaier, D.

Nikitin, A. Yu.

P. A. Huidobro, A. Yu. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B 84(19), 195446 (2011).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

Noculak, A.

Otto, M.

Oulton, R. F.

R. F. Oulton, D. F. P. Pile, Y. Liu, and X. Zhang, “Scattering of surface plasmon polaritons at abrupt surface interfaces: Implications for nanoscale cavities,” Phys. Rev. B 76(3), 035408 (2007).
[Crossref]

Pile, D. F. P.

R. F. Oulton, D. F. P. Pile, Y. Liu, and X. Zhang, “Scattering of surface plasmon polaritons at abrupt surface interfaces: Implications for nanoscale cavities,” Phys. Rev. B 76(3), 035408 (2007).
[Crossref]

Polman, A.

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10(5), 1537–1541 (2010).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Qiu, C.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Rao, V. S. C. M.

Reina, A.

A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, and J. Kong, “Transferring and identification of single- and few-Layer graphene on arbitrary substrates,” J. Phys. Chem. C 112(46), 17741–17744 (2008).
[Crossref]

Schall, D.

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Shu, J.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plamonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

Son, H.

A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, and J. Kong, “Transferring and identification of single- and few-Layer graphene on arbitrary substrates,” J. Phys. Chem. C 112(46), 17741–17744 (2008).
[Crossref]

Sweeney, T. M.

T. M. Sweeney, S. G. Carter, A. S. Bracker, M. Kim, C. S. Kim, L. Yang, P. M. Vora, P. G. Brereton, E. R. Cleveland, and D. Gammon, “Cavity-stimulated Raman emission from a single quantum dot spin,” Nat. Photonics 8, 442–447 (2014).

Teng, J.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
[Crossref]

Thongrattanasiri, S.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Vora, P. M.

T. M. Sweeney, S. G. Carter, A. S. Bracker, M. Kim, C. S. Kim, L. Yang, P. M. Vora, P. G. Brereton, E. R. Cleveland, and D. Gammon, “Cavity-stimulated Raman emission from a single quantum dot spin,” Nat. Photonics 8, 442–447 (2014).

Vuckovic, J.

Wang, B.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Xu, Q.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

Yakovlev, A. B.

G. W. Hanson, E. Forati, W. Linz, and A. B. Yakovlev, “Excitation of terahertz surface plasmons on graphene surfaces by an elementary dipole and quantum emitter: Strong electrodynamic effect of dielectric support,” Phys. Rev. B 86(23), 235440 (2012).
[Crossref]

Yang, L.

T. M. Sweeney, S. G. Carter, A. S. Bracker, M. Kim, C. S. Kim, L. Yang, P. M. Vora, P. G. Brereton, E. R. Cleveland, and D. Gammon, “Cavity-stimulated Raman emission from a single quantum dot spin,” Nat. Photonics 8, 442–447 (2014).

Yuan, X.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
[Crossref]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Zhang, X.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
[Crossref]

R. F. Oulton, D. F. P. Pile, Y. Liu, and X. Zhang, “Scattering of surface plasmon polaritons at abrupt surface interfaces: Implications for nanoscale cavities,” Phys. Rev. B 76(3), 035408 (2007).
[Crossref]

Ziegler, K.

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

ACS Nano (2)

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6(9), 7806–7813 (2012).
[Crossref] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100(13), 131111 (2012).
[Crossref]

J. Phys. Chem. C (1)

A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, and J. Kong, “Transferring and identification of single- and few-Layer graphene on arbitrary substrates,” J. Phys. Chem. C 112(46), 17741–17744 (2008).
[Crossref]

J. Phys. Conf. Ser. (1)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129(1), 012004 (2008).
[Crossref]

Nano Lett. (2)

M. Kuttge, F. J. García de Abajo, and A. Polman, “Ultrasmall mode volume plasmonic nanodisk resonators,” Nano Lett. 10(5), 1537–1541 (2010).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6(10), 630–634 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

T. M. Sweeney, S. G. Carter, A. S. Bracker, M. Kim, C. S. Kim, L. Yang, P. M. Vora, P. G. Brereton, E. R. Cleveland, and D. Gammon, “Cavity-stimulated Raman emission from a single quantum dot spin,” Nat. Photonics 8, 442–447 (2014).

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (6)

M. Jablan, H. Buljan, and M. Soljačić, “Plamonics in graphene at infrared frequencies,” Phys. Rev. B 80(24), 245435 (2009).
[Crossref]

P. A. Huidobro, A. Yu. Nikitin, C. González-Ballestero, L. Martín-Moreno, and F. J. García-Vidal, “Superradiance mediated by graphene surface plasmons,” Phys. Rev. B 85(15), 155438 (2012).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Fields radiated by a nanoemitter in a graphene sheet,” Phys. Rev. B 84(19), 195446 (2011).
[Crossref]

G. W. Hanson, E. Forati, W. Linz, and A. B. Yakovlev, “Excitation of terahertz surface plasmons on graphene surfaces by an elementary dipole and quantum emitter: Strong electrodynamic effect of dielectric support,” Phys. Rev. B 86(23), 235440 (2012).
[Crossref]

A. Yu. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84(16), 161407 (2011).
[Crossref]

R. F. Oulton, D. F. P. Pile, Y. Liu, and X. Zhang, “Scattering of surface plasmon polaritons at abrupt surface interfaces: Implications for nanoscale cavities,” Phys. Rev. B 76(3), 035408 (2007).
[Crossref]

Phys. Rev. Lett. (1)

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Other (4)

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).

M. I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University, 2012).

D. P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics (Dover, 1998).

P. Meystre and M. Sargent, Elements of Quantum Optics, 4th ed. (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Three-dimensional view of an electric dipole emitter embedded in a double-layer graphene waveguide. (b) Cross section in XOZ plane of the same structure. The separation distance between layers is d. Central region of width W is built up by applying gate voltages.
Fig. 2
Fig. 2 Conductivity of graphene with chemical potential (a) μc1 = 0.64 eV and (b) μc2 = 0.32 eV. Wavelengths in MIR regime (3000 ~6000 nm) are of interest in the study.
Fig. 3
Fig. 3 Hx component in (a) graphene layer 1 and (b) graphene layer 2 of double-layer waveguide with separation distance between layers d = 20 nm, central region width W = 100 nm and dipole moment orientated in z direction. (c) SER enhanced factor of perpendicular dipole near double-layer waveguide (blue solid line), single-layer sheet (red dashed line) and single-layer nanoribbon (green dash-dotted line) of 100 nm in width.
Fig. 4
Fig. 4 Hx component in (a) graphene layer 1 and (b) graphene layer 2 of double-layer waveguide with separation distance between layers d = 20 nm, central region width W = 100 nm and dipole moment orientated in x direction. (c) SER enhanced factor of parallel dipole near double-layer waveguide (blue solid line), single-layer sheet (red dashed line) and single-layer nanoribbon (green dash-dotted line) of 100 nm in width.
Fig. 5
Fig. 5 Dispersion relation of the lowest four modes in double-layer graphene waveguide. They are anti-symmetric monopole mode (red curve), symmetric monopole mode (blue curve), anti-symmetric dipole mode (green curve) and symmetric dipole mode (purple curve).
Fig. 6
Fig. 6 SER enhanced factors for various waveguide thicknesses of 20 nm (red line), 30 nm (green line), 40 nm (blue line) and 50 nm (purple line). Other parameters are kept the same as in Fig. 3.
Fig. 7
Fig. 7 (a) Cross section in XOZ plane of a realistic device with supporting layer and gating electrodes. (b) SER enhanced factors for various dielectric supporting layers (between graphene layer 1 and layer 2) with permittivity εr = 1.5 (red solid line), 2 (green dashed line) and 2.5 (blue dash-dotted line). Other parameters are kept the same as in Fig. 3.
Fig. 8
Fig. 8 (a) Cross section in XOZ plane of double-layer graphene waveguide with separation distance between layers d = 30 nm, central region width W = 100 nm. Other parameters are kept the same as in Fig. 3. (b) SER enhanced factors for dipole emitter location offset of 0 nm (red dashed line), 5 nm (green dash-dotted line) and 10 nm (blue solid line).
Fig. 9
Fig. 9 SER enhanced factor of double-layer graphene waveguide with dipole moment rotating in XOZ plane. Polar angle is the angle between dipole orientation and z axis.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

γ γ 0 =1+ n p Im[ G s ( r 0 , r 0 ,ω)] n p n p Im[ G 0 ( r 0 , r 0 ,ω)] n p
σ g = i μ c e 2 π 2 ( ω + i τ 1 )

Metrics