Abstract

We investigate in detail the optical response of dense split ring resonator (SRR) arrays as a function of their thickness, for normally impinging light in the VIS-NIR spectral range. We find that, for sufficiently tall SRRs, several vertical Fabry-Perot resonances can be excited, which may interact with the well-known horizontal SRR resonant paths. Furthermore, we analyze the possibility to exploit these nanostructures to detect bio-chemical quantities. In particular, we find that the coexistence of vertical and horizontal resonances yields an increased sensitivity. Well ordered, large arrays of thick SRRs are obtained by exploiting a fabrication process based on X-Ray Lithography. A very good agreement is found between numerical and measured transmittances. A preliminary detection test evidences the potential of this geometry as a sensing platform.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear properties of split-ring resonators

Bingnan Wang, Jiangfeng Zhou, Thomas Koschny, and Costas M. Soukoulis
Opt. Express 16(20) 16058-16063 (2008)

Enhancement of higher-order plasmonic modes in a dense array of split-ring resonators

Dalius Seliuta, Gediminas Šlekas, Andrius Vaitkūnas, Žilvinas Kancleris, and Gintaras Valušis
Opt. Express 25(21) 25113-25124 (2017)

Optical plasmonic resonances in split-ring resonator structures: an improved LC model

T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf
Opt. Express 16(24) 19850-19864 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. Ramakrishna and T. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, 2009).
  2. T. J. Cui, D. R. Smith, and R. Liu, eds., Metamaterials Theory, Design and Applications (Springer, 2010).
  3. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1(1), 41–48 (2007).
    [Crossref]
  4. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
    [Crossref] [PubMed]
  5. N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
    [Crossref] [PubMed]
  6. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  7. I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
    [Crossref] [PubMed]
  8. E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
    [Crossref]
  9. B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
    [Crossref] [PubMed]
  10. A. W. Clark, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors,” J. Am. Chem. Soc. 131(48), 17615–17619 (2009).
    [Crossref] [PubMed]
  11. J. Naqui, M. Durán-Sindreu, and F. Martín, “Novel sensors based on the symmetry properties of split ring resonators (SRRs),” Sensors 11(12), 7545–7553 (2011).
    [Crossref] [PubMed]
  12. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
    [Crossref] [PubMed]
  13. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
    [Crossref] [PubMed]
  14. T. D. Corrigan, P. W. Kolb, A. B. Sushkov, H. D. Drew, D. C. Schmadel, and R. J. Phaneuf, “Optical plasmonic resonances in split-ring resonator structures: an improved LC model,” Opt. Express 16(24), 19850–19864 (2008).
    [Crossref] [PubMed]
  15. S. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
    [Crossref]
  16. S. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97(19), 191906 (2010).
    [Crossref]
  17. F. Romanato, L. Businaro, L. Vaccari, S. Cabrini, P. Candeloro, M. De Vittorio, A. Passaseo, M. T. Todaro, R. Cingolani, E. Cattaruzza, M. Galli, C. Andreani, and E. Di Fabrizio, “Fabrication of 3D metallic photonic crystals by X-ray lithography,” Microelectron. Eng. 68, 479–486 (2003).
    [Crossref]
  18. S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21(29), 295303 (2010).
    [Crossref] [PubMed]
  19. W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J. 1(2), 99–118 (2009).
    [Crossref]
  20. H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
    [Crossref] [PubMed]
  21. B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90(25), 254106 (2007).
    [Crossref]
  22. C. Y. Chen, S. C. Wu, and T. J. Yen, “Experimental verification of standing-wave plasmonic resonances in split-ring resonators,” Appl. Phys. Lett. 93(3), 034110 (2008).
    [Crossref]
  23. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
    [Crossref] [PubMed]
  24. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  25. L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. A Math. Phys. Eng. Sci. 79, 399–416 (1907).
  26. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  27. X. F. Ang, F. Y. Li, W. L. Tan, Z. Chen, C. C. Wong, and J. Wei, “Self-assembled monolayer for reduced temperature direct metal thermocompression bonding,” Appl. Phys. Lett. 91(6), 061913 (2007).
    [Crossref]

2011 (4)

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

J. Naqui, M. Durán-Sindreu, and F. Martín, “Novel sensors based on the symmetry properties of split ring resonators (SRRs),” Sensors 11(12), 7545–7553 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (4)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

S. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97(19), 191906 (2010).
[Crossref]

S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21(29), 295303 (2010).
[Crossref] [PubMed]

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
[Crossref] [PubMed]

2009 (4)

A. W. Clark, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors,” J. Am. Chem. Soc. 131(48), 17615–17619 (2009).
[Crossref] [PubMed]

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J. 1(2), 99–118 (2009).
[Crossref]

S. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[Crossref]

2008 (3)

2007 (3)

X. F. Ang, F. Y. Li, W. L. Tan, Z. Chen, C. C. Wong, and J. Wei, “Self-assembled monolayer for reduced temperature direct metal thermocompression bonding,” Appl. Phys. Lett. 91(6), 061913 (2007).
[Crossref]

B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90(25), 254106 (2007).
[Crossref]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1(1), 41–48 (2007).
[Crossref]

2006 (1)

2005 (2)

H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

2004 (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

2003 (1)

F. Romanato, L. Businaro, L. Vaccari, S. Cabrini, P. Candeloro, M. De Vittorio, A. Passaseo, M. T. Todaro, R. Cingolani, E. Cattaruzza, M. Galli, C. Andreani, and E. Di Fabrizio, “Fabrication of 3D metallic photonic crystals by X-ray lithography,” Microelectron. Eng. 68, 479–486 (2003).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

1907 (1)

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. A Math. Phys. Eng. Sci. 79, 399–416 (1907).

Abbott, D.

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J. 1(2), 99–118 (2009).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Andreani, C.

F. Romanato, L. Businaro, L. Vaccari, S. Cabrini, P. Candeloro, M. De Vittorio, A. Passaseo, M. T. Todaro, R. Cingolani, E. Cattaruzza, M. Galli, C. Andreani, and E. Di Fabrizio, “Fabrication of 3D metallic photonic crystals by X-ray lithography,” Microelectron. Eng. 68, 479–486 (2003).
[Crossref]

Ang, X. F.

X. F. Ang, F. Y. Li, W. L. Tan, Z. Chen, C. C. Wong, and J. Wei, “Self-assembled monolayer for reduced temperature direct metal thermocompression bonding,” Appl. Phys. Lett. 91(6), 061913 (2007).
[Crossref]

Atwater, H. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Aydin, K.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Bahou, M.

B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90(25), 254106 (2007).
[Crossref]

Bartal, G.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Bettiol, A.

S. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[Crossref]

Bettiol, A. A.

S. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97(19), 191906 (2010).
[Crossref]

Brener, I.

Büchi, L.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Businaro, L.

F. Romanato, L. Businaro, L. Vaccari, S. Cabrini, P. Candeloro, M. De Vittorio, A. Passaseo, M. T. Todaro, R. Cingolani, E. Cattaruzza, M. Galli, C. Andreani, and E. Di Fabrizio, “Fabrication of 3D metallic photonic crystals by X-ray lithography,” Microelectron. Eng. 68, 479–486 (2003).
[Crossref]

Cabrini, S.

F. Romanato, L. Businaro, L. Vaccari, S. Cabrini, P. Candeloro, M. De Vittorio, A. Passaseo, M. T. Todaro, R. Cingolani, E. Cattaruzza, M. Galli, C. Andreani, and E. Di Fabrizio, “Fabrication of 3D metallic photonic crystals by X-ray lithography,” Microelectron. Eng. 68, 479–486 (2003).
[Crossref]

Candeloro, P.

F. Romanato, L. Businaro, L. Vaccari, S. Cabrini, P. Candeloro, M. De Vittorio, A. Passaseo, M. T. Todaro, R. Cingolani, E. Cattaruzza, M. Galli, C. Andreani, and E. Di Fabrizio, “Fabrication of 3D metallic photonic crystals by X-ray lithography,” Microelectron. Eng. 68, 479–486 (2003).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Casse, B. D. F.

B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90(25), 254106 (2007).
[Crossref]

H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[Crossref] [PubMed]

Cattaruzza, E.

F. Romanato, L. Businaro, L. Vaccari, S. Cabrini, P. Candeloro, M. De Vittorio, A. Passaseo, M. T. Todaro, R. Cingolani, E. Cattaruzza, M. Galli, C. Andreani, and E. Di Fabrizio, “Fabrication of 3D metallic photonic crystals by X-ray lithography,” Microelectron. Eng. 68, 479–486 (2003).
[Crossref]

Chen, C. Y.

C. Y. Chen, S. C. Wu, and T. J. Yen, “Experimental verification of standing-wave plasmonic resonances in split-ring resonators,” Appl. Phys. Lett. 93(3), 034110 (2008).
[Crossref]

Chen, Z.

X. F. Ang, F. Y. Li, W. L. Tan, Z. Chen, C. C. Wong, and J. Wei, “Self-assembled monolayer for reduced temperature direct metal thermocompression bonding,” Appl. Phys. Lett. 91(6), 061913 (2007).
[Crossref]

Chiam, S.

S. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97(19), 191906 (2010).
[Crossref]

S. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Cingolani, R.

F. Romanato, L. Businaro, L. Vaccari, S. Cabrini, P. Candeloro, M. De Vittorio, A. Passaseo, M. T. Todaro, R. Cingolani, E. Cattaruzza, M. Galli, C. Andreani, and E. Di Fabrizio, “Fabrication of 3D metallic photonic crystals by X-ray lithography,” Microelectron. Eng. 68, 479–486 (2003).
[Crossref]

Clark, A. W.

A. W. Clark, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors,” J. Am. Chem. Soc. 131(48), 17615–17619 (2009).
[Crossref] [PubMed]

Cooper, J. M.

A. W. Clark, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors,” J. Am. Chem. Soc. 131(48), 17615–17619 (2009).
[Crossref] [PubMed]

Corrigan, T. D.

Cubukcu, E.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Cumming, D. R. S.

A. W. Clark, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors,” J. Am. Chem. Soc. 131(48), 17615–17619 (2009).
[Crossref] [PubMed]

David, C.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21(29), 295303 (2010).
[Crossref] [PubMed]

De Vittorio, M.

F. Romanato, L. Businaro, L. Vaccari, S. Cabrini, P. Candeloro, M. De Vittorio, A. Passaseo, M. T. Todaro, R. Cingolani, E. Cattaruzza, M. Galli, C. Andreani, and E. Di Fabrizio, “Fabrication of 3D metallic photonic crystals by X-ray lithography,” Microelectron. Eng. 68, 479–486 (2003).
[Crossref]

Di Fabrizio, E.

F. Romanato, L. Businaro, L. Vaccari, S. Cabrini, P. Candeloro, M. De Vittorio, A. Passaseo, M. T. Todaro, R. Cingolani, E. Cattaruzza, M. Galli, C. Andreani, and E. Di Fabrizio, “Fabrication of 3D metallic photonic crystals by X-ray lithography,” Microelectron. Eng. 68, 479–486 (2003).
[Crossref]

Drew, H. D.

Durán-Sindreu, M.

J. Naqui, M. Durán-Sindreu, and F. Martín, “Novel sensors based on the symmetry properties of split ring resonators (SRRs),” Sensors 11(12), 7545–7553 (2011).
[Crossref] [PubMed]

Ekinci, Y.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Etrich, C.

Feurer, T.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Galli, M.

F. Romanato, L. Businaro, L. Vaccari, S. Cabrini, P. Candeloro, M. De Vittorio, A. Passaseo, M. T. Todaro, R. Cingolani, E. Cattaruzza, M. Galli, C. Andreani, and E. Di Fabrizio, “Fabrication of 3D metallic photonic crystals by X-ray lithography,” Microelectron. Eng. 68, 479–486 (2003).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Giannini, R.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

Giessen, H.

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14(19), 8827–8836 (2006).
[Crossref] [PubMed]

Glidle, A.

A. W. Clark, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors,” J. Am. Chem. Soc. 131(48), 17615–17619 (2009).
[Crossref] [PubMed]

Gorelick, S.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21(29), 295303 (2010).
[Crossref] [PubMed]

Gu, J.

S. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[Crossref]

Guzenko, V. A.

S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21(29), 295303 (2010).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Han, J.

S. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[Crossref]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[Crossref] [PubMed]

Inglis, S.

B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90(25), 254106 (2007).
[Crossref]

Jian, L. K.

B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90(25), 254106 (2007).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kelaita, Y. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Kolb, P. W.

Koschny, T.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Kuhl, J.

Lederer, F.

Lee, J. W.

B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90(25), 254106 (2007).
[Crossref]

Li, F. Y.

X. F. Ang, F. Y. Li, W. L. Tan, Z. Chen, C. C. Wong, and J. Wei, “Self-assembled monolayer for reduced temperature direct metal thermocompression bonding,” Appl. Phys. Lett. 91(6), 061913 (2007).
[Crossref]

Linden, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Liu, N.

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
[Crossref] [PubMed]

Löffler, J. F.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Martín, F.

J. Naqui, M. Durán-Sindreu, and F. Martín, “Novel sensors based on the symmetry properties of split ring resonators (SRRs),” Sensors 11(12), 7545–7553 (2011).
[Crossref] [PubMed]

Merbold, H.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

Moser, H. O.

B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90(25), 254106 (2007).
[Crossref]

H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[Crossref] [PubMed]

Naqui, J.

J. Naqui, M. Durán-Sindreu, and F. Martín, “Novel sensors based on the symmetry properties of split ring resonators (SRRs),” Sensors 11(12), 7545–7553 (2011).
[Crossref] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

O’Hara, J. F.

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Päivänranta, B.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

Park, Y. S.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Passaseo, A.

F. Romanato, L. Businaro, L. Vaccari, S. Cabrini, P. Candeloro, M. De Vittorio, A. Passaseo, M. T. Todaro, R. Cingolani, E. Cattaruzza, M. Galli, C. Andreani, and E. Di Fabrizio, “Fabrication of 3D metallic photonic crystals by X-ray lithography,” Microelectron. Eng. 68, 479–486 (2003).
[Crossref]

Phaneuf, R. J.

Pryce, I. M.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

Rayleigh, L.

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. A Math. Phys. Eng. Sci. 79, 399–416 (1907).

Rockstuhl, C.

Romanato, F.

F. Romanato, L. Businaro, L. Vaccari, S. Cabrini, P. Candeloro, M. De Vittorio, A. Passaseo, M. T. Todaro, R. Cingolani, E. Cattaruzza, M. Galli, C. Andreani, and E. Di Fabrizio, “Fabrication of 3D metallic photonic crystals by X-ray lithography,” Microelectron. Eng. 68, 479–486 (2003).
[Crossref]

Saw, B. T.

H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[Crossref] [PubMed]

Schmadel, D. C.

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1(1), 41–48 (2007).
[Crossref]

Singh, R.

S. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97(19), 191906 (2010).
[Crossref]

S. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[Crossref]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[Crossref] [PubMed]

Smirnova, E.

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Soukoulis, C. M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Sushkov, A. B.

Tan, W. L.

X. F. Ang, F. Y. Li, W. L. Tan, Z. Chen, C. C. Wong, and J. Wei, “Self-assembled monolayer for reduced temperature direct metal thermocompression bonding,” Appl. Phys. Lett. 91(6), 061913 (2007).
[Crossref]

Taylor, A. J.

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Todaro, M. T.

F. Romanato, L. Businaro, L. Vaccari, S. Cabrini, P. Candeloro, M. De Vittorio, A. Passaseo, M. T. Todaro, R. Cingolani, E. Cattaruzza, M. Galli, C. Andreani, and E. Di Fabrizio, “Fabrication of 3D metallic photonic crystals by X-ray lithography,” Microelectron. Eng. 68, 479–486 (2003).
[Crossref]

Vaccari, L.

F. Romanato, L. Businaro, L. Vaccari, S. Cabrini, P. Candeloro, M. De Vittorio, A. Passaseo, M. T. Todaro, R. Cingolani, E. Cattaruzza, M. Galli, C. Andreani, and E. Di Fabrizio, “Fabrication of 3D metallic photonic crystals by X-ray lithography,” Microelectron. Eng. 68, 479–486 (2003).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Vila-Comamala, J.

S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21(29), 295303 (2010).
[Crossref] [PubMed]

Wegener, M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Wei, J.

X. F. Ang, F. Y. Li, W. L. Tan, Z. Chen, C. C. Wong, and J. Wei, “Self-assembled monolayer for reduced temperature direct metal thermocompression bonding,” Appl. Phys. Lett. 91(6), 061913 (2007).
[Crossref]

Wilhelmi, O.

H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[Crossref] [PubMed]

Withayachumnankul, W.

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J. 1(2), 99–118 (2009).
[Crossref]

Wong, C. C.

X. F. Ang, F. Y. Li, W. L. Tan, Z. Chen, C. C. Wong, and J. Wei, “Self-assembled monolayer for reduced temperature direct metal thermocompression bonding,” Appl. Phys. Lett. 91(6), 061913 (2007).
[Crossref]

Wu, S. C.

C. Y. Chen, S. C. Wu, and T. J. Yen, “Experimental verification of standing-wave plasmonic resonances in split-ring resonators,” Appl. Phys. Lett. 93(3), 034110 (2008).
[Crossref]

Yen, T. J.

C. Y. Chen, S. C. Wu, and T. J. Yen, “Experimental verification of standing-wave plasmonic resonances in split-ring resonators,” Appl. Phys. Lett. 93(3), 034110 (2008).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Zentgraf, T.

Zhang, S.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Zhang, W.

S. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97(19), 191906 (2010).
[Crossref]

S. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[Crossref]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[Crossref] [PubMed]

Zhang, X.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

ACS Nano (2)

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011).
[Crossref] [PubMed]

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

N. Liu and H. Giessen, “Coupling effects in optical metamaterials,” Angew. Chem. Int. Ed. Engl. 49(51), 9838–9852 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009).
[Crossref]

S. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[Crossref]

S. Chiam, R. Singh, W. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97(19), 191906 (2010).
[Crossref]

B. D. F. Casse, H. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90(25), 254106 (2007).
[Crossref]

C. Y. Chen, S. C. Wu, and T. J. Yen, “Experimental verification of standing-wave plasmonic resonances in split-ring resonators,” Appl. Phys. Lett. 93(3), 034110 (2008).
[Crossref]

X. F. Ang, F. Y. Li, W. L. Tan, Z. Chen, C. C. Wong, and J. Wei, “Self-assembled monolayer for reduced temperature direct metal thermocompression bonding,” Appl. Phys. Lett. 91(6), 061913 (2007).
[Crossref]

IEEE Photon. J. (1)

W. Withayachumnankul and D. Abbott, “Metamaterials in the terahertz regime,” IEEE Photon. J. 1(2), 99–118 (2009).
[Crossref]

J. Am. Chem. Soc. (1)

A. W. Clark, A. Glidle, D. R. S. Cumming, and J. M. Cooper, “Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors,” J. Am. Chem. Soc. 131(48), 17615–17619 (2009).
[Crossref] [PubMed]

Microelectron. Eng. (1)

F. Romanato, L. Businaro, L. Vaccari, S. Cabrini, P. Candeloro, M. De Vittorio, A. Passaseo, M. T. Todaro, R. Cingolani, E. Cattaruzza, M. Galli, C. Andreani, and E. Di Fabrizio, “Fabrication of 3D metallic photonic crystals by X-ray lithography,” Microelectron. Eng. 68, 479–486 (2003).
[Crossref]

Nanotechnology (1)

S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, “Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating,” Nanotechnology 21(29), 295303 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nat. Photon. (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1(1), 41–48 (2007).
[Crossref]

Opt. Express (3)

Phys. Rev. Lett. (3)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial,” Phys. Rev. Lett. 94(6), 063901 (2005).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Proc. R. Soc. A Math. Phys. Eng. Sci. (1)

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. A Math. Phys. Eng. Sci. 79, 399–416 (1907).

Science (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004).
[Crossref] [PubMed]

Sensors (1)

J. Naqui, M. Durán-Sindreu, and F. Martín, “Novel sensors based on the symmetry properties of split ring resonators (SRRs),” Sensors 11(12), 7545–7553 (2011).
[Crossref] [PubMed]

Other (2)

S. Ramakrishna and T. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, 2009).

T. J. Cui, D. R. Smith, and R. Liu, eds., Metamaterials Theory, Design and Applications (Springer, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Scheme of the gold SRR array on ITO covered glass; inset: top view of the unitary cell of the SRR array.
Fig. 2
Fig. 2 (a) Reflectance (green), absorptance (purple) and maximum field enhancement, max(|E|), (pink) spectra as a function of wavelength, in the case of SRR thickness of 40nm, for x- (left) and y-polarization (right). Insets: |E| field maps. Reflectance (left, (a) and (c)) and absorptance (right, (b) and (d)) maps as a function of SRR thickness and wavelength for normally impinging light, polarized orthogonal (above, (a) and (b)) and parallel (below, (c) and (d)) to the gap bearing side. Superimposed lines mark the Fabry-Perot resonances of the corresponding modes, reported in Fig. 4.
Fig. 3
Fig. 3 (a) Eingenmodes field norm profiles at λ = 800nm. (b) Effective index (Neff) of SRR optical modes propagating along the z axis. (c) Reflection phases of the modes.
Fig. 4
Fig. 4 SRR array transmittance (left, (a) and (c)) and transmittance variation ΔT = |T1.000 -T1.001| (right, (b) and (d)) as a function of the thickness and wavelength, for x-polarized (above, (a) and (b)) and y-polarized (below, (c) and (d)) impinging light.
Fig. 5
Fig. 5 Top (a) and tilted (b) views SEM micrographs of positive tone gold SRRs on ITO covered glass, fabricated by XRL and electrochemical gold growth. SRR features: period a = 460nm, side l = 390nm, width w = 120nm, gap d = 60nm, height h = 360nm. The height of the structure was measured on a defect of the array (b), normally present due to the lithographic process and not affecting the optical measurements.
Fig. 6
Fig. 6 Transmittance spectra for SRR with thickness 250 (blue), 300 (red) and 350nm (green) for x-polarized (a) and y-polarized (b, c, d) light. Thick and thin solid lines mark respectively experimental and simulated spectra.
Fig. 7
Fig. 7 Above: Transmittance spectra for SRR with thickness 250 (black), 280 (blue), 300 (red) and 360nm (green) for x-polarized (a) and y-polarized (b) light. Solid and dotted lines mark respectively before and after functionalization spectra. Below: Transmittance variation for SRR with thickness 250 (black), 280 (blue), 300 (red) and 360nm (green) for x-polarized (a) and y-polarized (b) light.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n SPP k 0 L+ϕ=πm
2h k 0 N i + ϕ i air + ϕ i ITO =2mπ
S ii = port ( E tot,i - E i ) E i * ds port E i E i * ds = port E i R i exp(i2H k 0 N i ) E i * ds port E i E i * ds = R i exp(i2H k 0 N i ) port E i E i * ds port E i E i * ds = R i ×exp(i2H k 0 N i )
R i = ρ i exp(i ϕ i )
ϕ i =arg[ S ii exp(2iH k 0 N i ) ]

Metrics