Abstract

A novel method of converting binary-level electrical pulses into multi-level optical pulses using only a conventional traveling-wave optical modulator is presented. The method provides low inter-pulse interference due to the counter-propagating pulses, low amplitude noise, and a timing jitter determined chiefly by the quality of the optical pulse source. The method only requires one electrical drive per modulator and provides low-jitter variable-amplitude optical pulses that are suitable for shaping into a wide variety of modulation formats using a programmable optical filter.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer and R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
    [Crossref]
  2. R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
    [Crossref]
  3. W. Shieh, X. Yi, and Y. Tang, “Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fibre,” Electron. Lett. 43(3), 183–184 (2007).
    [Crossref]
  4. B. Enning, “Signal processing in a Mach-Zehnder intensity modulator for coherent and incoherent light using copropagating and counterpropagating electrical signals,” IEEE Photon. Technol. Lett. 17(11), 2424–2426 (2005).
    [Crossref]
  5. B. Enning, “Signal shaping for optical wideband transmission systems using the inherent lowpass behaviour of counterpropagating optical and electrical signals in a LiNbO3 Mach-Zehnder modulator,” J. Opt. Commun. 23(1), 35–38 (2002).
    [Crossref]
  6. J. B. Schröder, L. B. Du, M. M. Morshed, B. Eggleton, and A. J. Lowery, “Colorless flexible signal generator for elastic networks and rapid prototyping,” in Optical Fiber Communication Conference (Optical Society of America, Anaheim, California, 2013), p. JW2A.44.
    [Crossref]
  7. A. J. Lowery, “Electro-optical DAC using counter-propagating pulses,” in OECC/ACOFT (Melbourne, Australia, 2014), pp. THPDP2–3.
  8. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
    [Crossref]
  9. N. Kikuchi, “Optoelectronic components for higher order modulation formats,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, Anaheim, CA, 2013), p. OW1G.1.
    [Crossref]
  10. K. Cho and D. Yoon, “On the general expression of one- and two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
    [Crossref]
  11. Y. Hong, A. J. Lowery, and E. Viterbo, “Sensitivity improvement and carrier power reduction in direct-detection optical OFDM systems by subcarrier pairing,” Opt. Express 20(2), 1635–1648 (2012).
    [Crossref] [PubMed]
  12. A. J. Lowery, J. Schröder, and L. B. Du, “Flexible all-optical frequency allocation of OFDM subcarriers,” Opt. Express 22(1), 1045–1057 (2014).
    [Crossref] [PubMed]
  13. K. Prosyk, A. Ait-Ouali, C. Bornholdt, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, K. Velthaus, and I. Woods, “High performance 40GHz InP Mach-Zehnder modulator,” in Optical Fiber Commun. Conf. (OFC) (Los Angeles, CA, 2012), p. OW4F.7.
  14. P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurements of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67(7), 881–883 (1995).
    [Crossref]
  15. P. Watts, R. Waegemans, M. Glick, P. Bayvel, and R. Killey, “An FPGA-based optical transmitter design using real-time DSP for advanced signal formats and electronic predistortion,” J. Lightwave Technol. 25(10), 3089–3099 (2007).
    [Crossref]

2014 (1)

2012 (1)

2007 (2)

W. Shieh, X. Yi, and Y. Tang, “Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fibre,” Electron. Lett. 43(3), 183–184 (2007).
[Crossref]

P. Watts, R. Waegemans, M. Glick, P. Bayvel, and R. Killey, “An FPGA-based optical transmitter design using real-time DSP for advanced signal formats and electronic predistortion,” J. Lightwave Technol. 25(10), 3089–3099 (2007).
[Crossref]

2006 (1)

P. J. Winzer and R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

2005 (2)

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

B. Enning, “Signal processing in a Mach-Zehnder intensity modulator for coherent and incoherent light using copropagating and counterpropagating electrical signals,” IEEE Photon. Technol. Lett. 17(11), 2424–2426 (2005).
[Crossref]

2002 (2)

B. Enning, “Signal shaping for optical wideband transmission systems using the inherent lowpass behaviour of counterpropagating optical and electrical signals in a LiNbO3 Mach-Zehnder modulator,” J. Opt. Commun. 23(1), 35–38 (2002).
[Crossref]

K. Cho and D. Yoon, “On the general expression of one- and two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
[Crossref]

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

1995 (1)

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurements of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67(7), 881–883 (1995).
[Crossref]

Ait-Ouali, A.

K. Prosyk, A. Ait-Ouali, C. Bornholdt, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, K. Velthaus, and I. Woods, “High performance 40GHz InP Mach-Zehnder modulator,” in Optical Fiber Commun. Conf. (OFC) (Los Angeles, CA, 2012), p. OW4F.7.

Alibert, C.

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurements of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67(7), 881–883 (1995).
[Crossref]

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Bayvel, P.

P. Watts, R. Waegemans, M. Glick, P. Bayvel, and R. Killey, “An FPGA-based optical transmitter design using real-time DSP for advanced signal formats and electronic predistortion,” J. Lightwave Technol. 25(10), 3089–3099 (2007).
[Crossref]

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Bissessur, H.

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurements of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67(7), 881–883 (1995).
[Crossref]

Bornholdt, C.

K. Prosyk, A. Ait-Ouali, C. Bornholdt, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, K. Velthaus, and I. Woods, “High performance 40GHz InP Mach-Zehnder modulator,” in Optical Fiber Commun. Conf. (OFC) (Los Angeles, CA, 2012), p. OW4F.7.

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Brast, T.

K. Prosyk, A. Ait-Ouali, C. Bornholdt, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, K. Velthaus, and I. Woods, “High performance 40GHz InP Mach-Zehnder modulator,” in Optical Fiber Commun. Conf. (OFC) (Los Angeles, CA, 2012), p. OW4F.7.

Cho, K.

K. Cho and D. Yoon, “On the general expression of one- and two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
[Crossref]

Chusseau, L.

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurements of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67(7), 881–883 (1995).
[Crossref]

Du, L. B.

Enning, B.

B. Enning, “Signal processing in a Mach-Zehnder intensity modulator for coherent and incoherent light using copropagating and counterpropagating electrical signals,” IEEE Photon. Technol. Lett. 17(11), 2424–2426 (2005).
[Crossref]

B. Enning, “Signal shaping for optical wideband transmission systems using the inherent lowpass behaviour of counterpropagating optical and electrical signals in a LiNbO3 Mach-Zehnder modulator,” J. Opt. Commun. 23(1), 35–38 (2002).
[Crossref]

Essiambre, R. J.

P. J. Winzer and R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Glick, M.

P. Watts, R. Waegemans, M. Glick, P. Bayvel, and R. Killey, “An FPGA-based optical transmitter design using real-time DSP for advanced signal formats and electronic predistortion,” J. Lightwave Technol. 25(10), 3089–3099 (2007).
[Crossref]

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Gruner, M.

K. Prosyk, A. Ait-Ouali, C. Bornholdt, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, K. Velthaus, and I. Woods, “High performance 40GHz InP Mach-Zehnder modulator,” in Optical Fiber Commun. Conf. (OFC) (Los Angeles, CA, 2012), p. OW4F.7.

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Hamacher, M.

K. Prosyk, A. Ait-Ouali, C. Bornholdt, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, K. Velthaus, and I. Woods, “High performance 40GHz InP Mach-Zehnder modulator,” in Optical Fiber Commun. Conf. (OFC) (Los Angeles, CA, 2012), p. OW4F.7.

Hoffmann, D.

K. Prosyk, A. Ait-Ouali, C. Bornholdt, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, K. Velthaus, and I. Woods, “High performance 40GHz InP Mach-Zehnder modulator,” in Optical Fiber Commun. Conf. (OFC) (Los Angeles, CA, 2012), p. OW4F.7.

Hong, Y.

Kaiser, R.

K. Prosyk, A. Ait-Ouali, C. Bornholdt, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, K. Velthaus, and I. Woods, “High performance 40GHz InP Mach-Zehnder modulator,” in Optical Fiber Commun. Conf. (OFC) (Los Angeles, CA, 2012), p. OW4F.7.

Killey, R.

Killey, R. I.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Lowery, A. J.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Martin, P.

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurements of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67(7), 881–883 (1995).
[Crossref]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Mikhailov, V.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Millett, R.

K. Prosyk, A. Ait-Ouali, C. Bornholdt, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, K. Velthaus, and I. Woods, “High performance 40GHz InP Mach-Zehnder modulator,” in Optical Fiber Commun. Conf. (OFC) (Los Angeles, CA, 2012), p. OW4F.7.

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Prosyk, K.

K. Prosyk, A. Ait-Ouali, C. Bornholdt, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, K. Velthaus, and I. Woods, “High performance 40GHz InP Mach-Zehnder modulator,” in Optical Fiber Commun. Conf. (OFC) (Los Angeles, CA, 2012), p. OW4F.7.

Schröder, J.

Shieh, W.

W. Shieh, X. Yi, and Y. Tang, “Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fibre,” Electron. Lett. 43(3), 183–184 (2007).
[Crossref]

Skouri, E. M.

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurements of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67(7), 881–883 (1995).
[Crossref]

Tang, Y.

W. Shieh, X. Yi, and Y. Tang, “Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fibre,” Electron. Lett. 43(3), 183–184 (2007).
[Crossref]

Velthaus, K.

K. Prosyk, A. Ait-Ouali, C. Bornholdt, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, K. Velthaus, and I. Woods, “High performance 40GHz InP Mach-Zehnder modulator,” in Optical Fiber Commun. Conf. (OFC) (Los Angeles, CA, 2012), p. OW4F.7.

Viterbo, E.

Waegemans, R.

Watts, P.

Watts, P. M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Winzer, P. J.

P. J. Winzer and R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

Woods, I.

K. Prosyk, A. Ait-Ouali, C. Bornholdt, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, K. Velthaus, and I. Woods, “High performance 40GHz InP Mach-Zehnder modulator,” in Optical Fiber Commun. Conf. (OFC) (Los Angeles, CA, 2012), p. OW4F.7.

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Yi, X.

W. Shieh, X. Yi, and Y. Tang, “Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fibre,” Electron. Lett. 43(3), 183–184 (2007).
[Crossref]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Yoon, D.

K. Cho and D. Yoon, “On the general expression of one- and two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
[Crossref]

Appl. Phys. Lett. (1)

P. Martin, E. M. Skouri, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurements of doped and undoped InP by a grating coupling technique,” Appl. Phys. Lett. 67(7), 881–883 (1995).
[Crossref]

Electron. Lett. (1)

W. Shieh, X. Yi, and Y. Tang, “Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fibre,” Electron. Lett. 43(3), 183–184 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (2)

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

B. Enning, “Signal processing in a Mach-Zehnder intensity modulator for coherent and incoherent light using copropagating and counterpropagating electrical signals,” IEEE Photon. Technol. Lett. 17(11), 2424–2426 (2005).
[Crossref]

IEEE Trans. Commun. (1)

K. Cho and D. Yoon, “On the general expression of one- and two-dimensional amplitude modulations,” IEEE Trans. Commun. 50(7), 1074–1080 (2002).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Commun. (1)

B. Enning, “Signal shaping for optical wideband transmission systems using the inherent lowpass behaviour of counterpropagating optical and electrical signals in a LiNbO3 Mach-Zehnder modulator,” J. Opt. Commun. 23(1), 35–38 (2002).
[Crossref]

Opt. Express (2)

Proc. IEEE (1)

P. J. Winzer and R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

Other (4)

N. Kikuchi, “Optoelectronic components for higher order modulation formats,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, Anaheim, CA, 2013), p. OW1G.1.
[Crossref]

J. B. Schröder, L. B. Du, M. M. Morshed, B. Eggleton, and A. J. Lowery, “Colorless flexible signal generator for elastic networks and rapid prototyping,” in Optical Fiber Communication Conference (Optical Society of America, Anaheim, California, 2013), p. JW2A.44.
[Crossref]

A. J. Lowery, “Electro-optical DAC using counter-propagating pulses,” in OECC/ACOFT (Melbourne, Australia, 2014), pp. THPDP2–3.

K. Prosyk, A. Ait-Ouali, C. Bornholdt, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, K. Velthaus, and I. Woods, “High performance 40GHz InP Mach-Zehnder modulator,” in Optical Fiber Commun. Conf. (OFC) (Los Angeles, CA, 2012), p. OW4F.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Application example showing pulse source, counter-propagating optical modulators, and a Reconfigurable Optical Switch (ROS) to create signals of any modulation format by appropriately filtering the modulated inputs to the ROS. For example, for OFDM, each filter generates a subcarrier by converting each modulated pulse into an integer number of cycles occupying an OFDM symbol.

Fig. 2
Fig. 2

Side view of one arm of the optical an optical modulator (top). Overlap of the counter-propagating electrical and optical pulses (bottom).

Fig. 3
Fig. 3

Experimental setup.

Fig. 4
Fig. 4

Sampling oscilloscope traces of: (top) the electrical drive to the Reverse TW modulator, (bottom) the detected optical pulses. The timebase is 400 ps per division.

Fig. 5
Fig. 5

Color-graded eye diagram of 5-PAM pulses. Horizontal scale 50ps/division. Note the ghost pulses at 100-ps intervals due to the imperfect performance of the pulse carver.

Fig. 6
Fig. 6

Color-graded oscilloscope trace of a 5-PAM eye. Horizontal scale 10ps/division. Vertical scale is 22 mV/division. The vertical histogram plots are shown on the left hand vertical axis. The statistics for these are in Table 1.

Fig. 7
Fig. 7

Measurement of the relative jitter of the optical pulses (yellow) and the RF reference clock from the RF signal generator (pink). The oscilloscope was triggered from the optical pulses, because this allows the highest optical pulse to be selected. The histogram measures the zero crossing jitter of the RF signal. The oscilloscope calculates the jitter as 350.84 fs r.m.s.

Tables (1)

Tables Icon

Table 1 Statistics of the Pulses in Fig. 6 Including Estimated BERs

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δθ= π 2 T SP V π 0 2 T SP v in ( t ) dt
q n = ( μ ave ) 2 σ n
BE R n erfc( q n 2 )
σ jitter = ( noise slew rate ) 2 + ( 100 fs ) 2

Metrics