Abstract

A simple and efficient compensation method for the full correction of both the anisotropic and isotropic nonuniformity of the light phase retardance in a liquid crystal (LC) layer is presented. This is achieved by accurate measurement of the spatial variation of the LC layer’s thickness with the help of a calibrated liquid crystal wedge, rather than solely relying on the light intensity profile recorded using two crossed polarizers. Local phase retardance as a function of the applied voltage is calculated with its LC thickness and a set of reference data measured from the intensity of the reflected light using two crossed polarizers. Compensation of the corresponding phase nonuniformity is realized by applying adjusted local voltage signals for different grey levels. To demonstrate its effectiveness, the proposed method is applied to improve the performance of a phase-only liquid crystal on silicon (LCOS) spatial light modulator (SLM). The power of the first diffraction order measured with the binary phase gratings compensated by this method is compared with that compensated by the conventional crossed-polarizer method. The results show that the phase compensation method proposed here can increase the dynamic range of the first order diffraction power significantly from 15~21 dB to over 38 dB, while the crossed-polarizer method can only increase it to 23 dB.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Diffraction based phase compensation method for phase-only liquid crystal on silicon devices in operation

Zichen Zhang, Haining Yang, Brian Robertson, Maura Redmond, Mike Pivnenko, Neil Collings, William A. Crossland, and Daping Chu
Appl. Opt. 51(17) 3837-3846 (2012)

Improved method to fully compensate the spatial phase nonuniformity of LCoS devices with a Fizeau interferometer

Qiang Lu, Lei Sheng, Fei Zeng, Shijie Gao, and Yanfeng Qiao
Appl. Opt. 55(28) 7796-7802 (2016)

Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays

Joaquín Otón, Pierre Ambs, María S. Millán, and Elisabet Pérez-Cabré
Appl. Opt. 46(23) 5667-5679 (2007)

References

  • View by:
  • |
  • |
  • |

  1. I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. H. Birch, W. A. Crossland, A. P. Sparks, and S. G. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1991).
    [Crossref]
  2. N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, and I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28(22), 4740–4747 (1989).
    [Crossref] [PubMed]
  3. N. Collings, T. Davey, J. Christmas, D. Chu, and W. A. Crossland, “The applications and technology of phase-only liquid crystal on silicon devices,” J. Disp. Technol. 7(3), 112–119 (2011).
    [Crossref]
  4. A. A. Cameron, “Optical waveguide technology and its application in head mounted displays,” Proc. SPIE 8383, 83830E (2012).
    [Crossref]
  5. A. Hermerschmidt, S. Krüger, T. Haist, S. Zwick, M. Warber, and W. Osten, “Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm,” Proc. SPIE 6905, 690508 (2008).
    [Crossref]
  6. H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
    [Crossref] [PubMed]
  7. N. Wolffer, B. Vinouze, and P. Gravey, “Holographic switching between single mode fibres based on electrically addressed nematic liquid crystal gratings with high deflection accuracy,” Proc. SPIE 3490, 297–300 (1998).
    [Crossref]
  8. W. A. Crossland, I. G. Manolis, M. M. Redmond, K. L. Tan, T. D. Wilkinson, M. J. Holmes, T. R. Parker, H. H. Chu, J. Croucher, V. A. Handerek, S. T. Warr, B. Robertson, I. G. Bonas, R. Franklin, C. Stace, H. J. White, R. A. Woolley, and G. Henshall, “Holographic optical switching: the ‘ROSES’ demonstrator,” J. Lightwave Technol. 18(12), 1845–1854 (2000).
    [Crossref]
  9. B. Robertson, H. Yang, M. M. Redmond, N. Collings, J. R. Moore, J. Liu, A. M. Jeziorska-Chapman, M. Pivnenko, S. Lee, A. Wonfor, I. H. White, W. A. Crossland, and D. P. Chu, “Demonstration of multi-casting in a 1 × 9 LCOS wavelength selective switch,” J. Lightwave Technol. 32(3), 402–410 (2014).
    [Crossref]
  10. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006), Chap. 2.
  11. J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58–67 (2004).
    [Crossref]
  12. J. Otón, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt. 46(23), 5667–5679 (2007).
    [Crossref] [PubMed]
  13. X. Xun and R. W. Cohn, “Phase calibration of spatially nonuniform spatial light modulators,” Appl. Opt. 43(35), 6400–6406 (2004).
    [Crossref] [PubMed]
  14. Z. Zhang, H. Yang, B. Robertson, M. Redmond, M. Pivnenko, N. Collings, W. A. Crossland, and D. Chu, “Diffraction based phase compensation method for phase-only liquid crystal on silicon devices in operation,” Appl. Opt. 51(17), 3837–3846 (2012).
    [Crossref] [PubMed]
  15. Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. A. Crossland, D. P. Chu, and W. I. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7(3), 120–126 (2011).
    [Crossref]
  16. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22(21), 3406–3410 (1983).
    [Crossref] [PubMed]

2014 (1)

2012 (3)

2011 (2)

N. Collings, T. Davey, J. Christmas, D. Chu, and W. A. Crossland, “The applications and technology of phase-only liquid crystal on silicon devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. A. Crossland, D. P. Chu, and W. I. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7(3), 120–126 (2011).
[Crossref]

2008 (1)

A. Hermerschmidt, S. Krüger, T. Haist, S. Zwick, M. Warber, and W. Osten, “Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm,” Proc. SPIE 6905, 690508 (2008).
[Crossref]

2007 (1)

2004 (2)

X. Xun and R. W. Cohn, “Phase calibration of spatially nonuniform spatial light modulators,” Appl. Opt. 43(35), 6400–6406 (2004).
[Crossref] [PubMed]

J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58–67 (2004).
[Crossref]

2000 (1)

1998 (1)

N. Wolffer, B. Vinouze, and P. Gravey, “Holographic switching between single mode fibres based on electrically addressed nematic liquid crystal gratings with high deflection accuracy,” Proc. SPIE 3490, 297–300 (1998).
[Crossref]

1991 (1)

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. H. Birch, W. A. Crossland, A. P. Sparks, and S. G. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1991).
[Crossref]

1989 (1)

1983 (1)

Al-Chalabi, A. O.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. H. Birch, W. A. Crossland, A. P. Sparks, and S. G. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1991).
[Crossref]

Ambs, P.

Ayliffe, P. J.

Birch, M. J. H.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. H. Birch, W. A. Crossland, A. P. Sparks, and S. G. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1991).
[Crossref]

Bonas, I. G.

Bradford, G.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. H. Birch, W. A. Crossland, A. P. Sparks, and S. G. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1991).
[Crossref]

Cameron, A. A.

A. A. Cameron, “Optical waveguide technology and its application in head mounted displays,” Proc. SPIE 8383, 83830E (2012).
[Crossref]

Chen, M. S.

Christmas, J.

N. Collings, T. Davey, J. Christmas, D. Chu, and W. A. Crossland, “The applications and technology of phase-only liquid crystal on silicon devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

Chu, D.

Z. Zhang, H. Yang, B. Robertson, M. Redmond, M. Pivnenko, N. Collings, W. A. Crossland, and D. Chu, “Diffraction based phase compensation method for phase-only liquid crystal on silicon devices in operation,” Appl. Opt. 51(17), 3837–3846 (2012).
[Crossref] [PubMed]

N. Collings, T. Davey, J. Christmas, D. Chu, and W. A. Crossland, “The applications and technology of phase-only liquid crystal on silicon devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

Chu, D. P.

B. Robertson, H. Yang, M. M. Redmond, N. Collings, J. R. Moore, J. Liu, A. M. Jeziorska-Chapman, M. Pivnenko, S. Lee, A. Wonfor, I. H. White, W. A. Crossland, and D. P. Chu, “Demonstration of multi-casting in a 1 × 9 LCOS wavelength selective switch,” J. Lightwave Technol. 32(3), 402–410 (2014).
[Crossref]

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. A. Crossland, D. P. Chu, and W. I. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7(3), 120–126 (2011).
[Crossref]

Chu, H. H.

Cohn, R. W.

Collings, N.

Crossland, W. A.

B. Robertson, H. Yang, M. M. Redmond, N. Collings, J. R. Moore, J. Liu, A. M. Jeziorska-Chapman, M. Pivnenko, S. Lee, A. Wonfor, I. H. White, W. A. Crossland, and D. P. Chu, “Demonstration of multi-casting in a 1 × 9 LCOS wavelength selective switch,” J. Lightwave Technol. 32(3), 402–410 (2014).
[Crossref]

Z. Zhang, H. Yang, B. Robertson, M. Redmond, M. Pivnenko, N. Collings, W. A. Crossland, and D. Chu, “Diffraction based phase compensation method for phase-only liquid crystal on silicon devices in operation,” Appl. Opt. 51(17), 3837–3846 (2012).
[Crossref] [PubMed]

N. Collings, T. Davey, J. Christmas, D. Chu, and W. A. Crossland, “The applications and technology of phase-only liquid crystal on silicon devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. A. Crossland, D. P. Chu, and W. I. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7(3), 120–126 (2011).
[Crossref]

W. A. Crossland, I. G. Manolis, M. M. Redmond, K. L. Tan, T. D. Wilkinson, M. J. Holmes, T. R. Parker, H. H. Chu, J. Croucher, V. A. Handerek, S. T. Warr, B. Robertson, I. G. Bonas, R. Franklin, C. Stace, H. J. White, R. A. Woolley, and G. Henshall, “Holographic optical switching: the ‘ROSES’ demonstrator,” J. Lightwave Technol. 18(12), 1845–1854 (2000).
[Crossref]

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. H. Birch, W. A. Crossland, A. P. Sparks, and S. G. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1991).
[Crossref]

N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, and I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28(22), 4740–4747 (1989).
[Crossref] [PubMed]

Croucher, J.

Davey, T.

N. Collings, T. Davey, J. Christmas, D. Chu, and W. A. Crossland, “The applications and technology of phase-only liquid crystal on silicon devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

Fancey, N. E.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. H. Birch, W. A. Crossland, A. P. Sparks, and S. G. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1991).
[Crossref]

Franklin, R.

Garetz, B. A.

Gravey, P.

N. Wolffer, B. Vinouze, and P. Gravey, “Holographic switching between single mode fibres based on electrically addressed nematic liquid crystal gratings with high deflection accuracy,” Proc. SPIE 3490, 297–300 (1998).
[Crossref]

Haist, T.

A. Hermerschmidt, S. Krüger, T. Haist, S. Zwick, M. Warber, and W. Osten, “Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm,” Proc. SPIE 6905, 690508 (2008).
[Crossref]

Handerek, V. A.

Harriman, J. L.

J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58–67 (2004).
[Crossref]

Henshall, G.

Hermerschmidt, A.

A. Hermerschmidt, S. Krüger, T. Haist, S. Zwick, M. Warber, and W. Osten, “Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm,” Proc. SPIE 6905, 690508 (2008).
[Crossref]

Holmes, M. J.

Jeziorska-Chapman, A. M.

B. Robertson, H. Yang, M. M. Redmond, N. Collings, J. R. Moore, J. Liu, A. M. Jeziorska-Chapman, M. Pivnenko, S. Lee, A. Wonfor, I. H. White, W. A. Crossland, and D. P. Chu, “Demonstration of multi-casting in a 1 × 9 LCOS wavelength selective switch,” J. Lightwave Technol. 32(3), 402–410 (2014).
[Crossref]

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. A. Crossland, D. P. Chu, and W. I. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7(3), 120–126 (2011).
[Crossref]

Khosrofian, J. M.

Krüger, S.

A. Hermerschmidt, S. Krüger, T. Haist, S. Zwick, M. Warber, and W. Osten, “Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm,” Proc. SPIE 6905, 690508 (2008).
[Crossref]

Latham, S. G.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. H. Birch, W. A. Crossland, A. P. Sparks, and S. G. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1991).
[Crossref]

Lee, S.

Lin, H. C.

Lin, Y. H.

Linnenberger, A.

J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58–67 (2004).
[Crossref]

Liu, J.

Manolis, I. G.

Millán, M. S.

Milne, W. I.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. A. Crossland, D. P. Chu, and W. I. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7(3), 120–126 (2011).
[Crossref]

Moore, J.

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. A. Crossland, D. P. Chu, and W. I. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7(3), 120–126 (2011).
[Crossref]

Moore, J. R.

Osten, W.

A. Hermerschmidt, S. Krüger, T. Haist, S. Zwick, M. Warber, and W. Osten, “Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm,” Proc. SPIE 6905, 690508 (2008).
[Crossref]

Otón, J.

Parker, T. R.

Pérez-Cabré, E.

Pivnenko, M.

Redmond, M.

Redmond, M. M.

Robertson, B.

Serati, S. A.

J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58–67 (2004).
[Crossref]

Sillitto, R. M.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. H. Birch, W. A. Crossland, A. P. Sparks, and S. G. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1991).
[Crossref]

Sparks, A. P.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. H. Birch, W. A. Crossland, A. P. Sparks, and S. G. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1991).
[Crossref]

Stace, C.

Tan, K. L.

Underwood, I.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. H. Birch, W. A. Crossland, A. P. Sparks, and S. G. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1991).
[Crossref]

N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, and I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28(22), 4740–4747 (1989).
[Crossref] [PubMed]

Vass, D. G.

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. H. Birch, W. A. Crossland, A. P. Sparks, and S. G. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1991).
[Crossref]

N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, and I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28(22), 4740–4747 (1989).
[Crossref] [PubMed]

Vinouze, B.

N. Wolffer, B. Vinouze, and P. Gravey, “Holographic switching between single mode fibres based on electrically addressed nematic liquid crystal gratings with high deflection accuracy,” Proc. SPIE 3490, 297–300 (1998).
[Crossref]

Warber, M.

A. Hermerschmidt, S. Krüger, T. Haist, S. Zwick, M. Warber, and W. Osten, “Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm,” Proc. SPIE 6905, 690508 (2008).
[Crossref]

Warr, S. T.

White, H. J.

White, I. H.

Wilkinson, T. D.

Wolffer, N.

N. Wolffer, B. Vinouze, and P. Gravey, “Holographic switching between single mode fibres based on electrically addressed nematic liquid crystal gratings with high deflection accuracy,” Proc. SPIE 3490, 297–300 (1998).
[Crossref]

Wonfor, A.

Woolley, R. A.

Xun, X.

Yang, H.

Zhang, Z.

Z. Zhang, H. Yang, B. Robertson, M. Redmond, M. Pivnenko, N. Collings, W. A. Crossland, and D. Chu, “Diffraction based phase compensation method for phase-only liquid crystal on silicon devices in operation,” Appl. Opt. 51(17), 3837–3846 (2012).
[Crossref] [PubMed]

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. A. Crossland, D. P. Chu, and W. I. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7(3), 120–126 (2011).
[Crossref]

Zwick, S.

A. Hermerschmidt, S. Krüger, T. Haist, S. Zwick, M. Warber, and W. Osten, “Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm,” Proc. SPIE 6905, 690508 (2008).
[Crossref]

Appl. Opt. (5)

J. Disp. Technol. (2)

Z. Zhang, A. M. Jeziorska-Chapman, N. Collings, M. Pivnenko, J. Moore, W. A. Crossland, D. P. Chu, and W. I. Milne, “High quality assembly of phase-only liquid crystal on silicon (LCOS) devices,” J. Disp. Technol. 7(3), 120–126 (2011).
[Crossref]

N. Collings, T. Davey, J. Christmas, D. Chu, and W. A. Crossland, “The applications and technology of phase-only liquid crystal on silicon devices,” J. Disp. Technol. 7(3), 112–119 (2011).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (1)

Proc. SPIE (5)

J. L. Harriman, A. Linnenberger, and S. A. Serati, “Improving spatial light modulator performance through phase compensation,” Proc. SPIE 5553, 58–67 (2004).
[Crossref]

A. A. Cameron, “Optical waveguide technology and its application in head mounted displays,” Proc. SPIE 8383, 83830E (2012).
[Crossref]

A. Hermerschmidt, S. Krüger, T. Haist, S. Zwick, M. Warber, and W. Osten, “Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm,” Proc. SPIE 6905, 690508 (2008).
[Crossref]

I. Underwood, D. G. Vass, R. M. Sillitto, G. Bradford, N. E. Fancey, A. O. Al-Chalabi, M. J. H. Birch, W. A. Crossland, A. P. Sparks, and S. G. Latham, “A high performance spatial light modulator,” Proc. SPIE 1562, 107–115 (1991).
[Crossref]

N. Wolffer, B. Vinouze, and P. Gravey, “Holographic switching between single mode fibres based on electrically addressed nematic liquid crystal gratings with high deflection accuracy,” Proc. SPIE 3490, 297–300 (1998).
[Crossref]

Other (1)

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Normalized reflected intensity measured with the C-P setup. (b) C-P phase retardance (ΔΦLC) of a pixel on the SLM when the grey level changes from 0 to 255.

Fig. 2
Fig. 2

(a) The birefringence photograph of LCOS SLM with the crossed-polarizer setup and a white light source. (b) Contour of the LC layer thickness distribution.

Fig. 3
Fig. 3

Illustration of the principles of different compensation methods in the view of the light wavefront.

Fig. 4
Fig. 4

(a) C-P and (b) S-P phase retardance curves of three pixels with different LC layer thicknesses.

Fig. 5
Fig. 5

An adjusted grey level distribution generated by the S-P compensation method, which can be load onto the LCOS SLM to generate a planar wavefront.

Fig. 6
Fig. 6

Schematic of the test setup for diffraction measurement, with a 532nm laser diode (1), circular aperture (2), polarizer (3), lens of magnification system (4 and 5), beam splitter (6), LCOS SLM (7), reference photodiode (8), mirror (9), focus lens (10), adjustable aperture (11), imaging lens (12), and CCD camera (13).

Fig. 7
Fig. 7

The optical power in dBm of the + 1st diffraction order for 0π (black) and 1π (red) phase depth were recorded while the aperture window was set to a series of sizes. The aperture area percentage is referenced to the area of the largest aperture during the calibration process. The dynamic range is plotted with blue triangles and lines.

Fig. 8
Fig. 8

Normalized power responses of the original uncompensated (dash line), C-P method compensated (dot dash line) and S-P method compensated (solid line) binary phase gratings.

Tables (1)

Tables Icon

Table 1 Power Response of the First Diffraction Order with the Binary Phase Gratings in Three Difference Scenarios

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

V= V min + V max V min g max g min ×g
I nor = sin 2 Δ Φ LC 2
Δ Φ LC =2arcsin I nor
Δ Φ LC (V)=2π 2 d LC Δn(V) λ
Φ LC (V)=2π 2 d LC n(V) λ
Φ LC (V)Δ Φ LC (V)= Φ 0 =2π 2 d LC n 0 λ
P ±1 (Φ(V))= P max 4 π 2 sin 2 ( Φ(V) 2 )
Φ(V)=2arcsin( π 2 P ±1 P max )

Metrics