Abstract

We demonstrate broadband (20 THz), high electric field, terahertz generation using large area interdigitated antennas fabricated on semi-insulating GaAs. The bandwidth is characterized as a function of incident pulse duration (15-35 fs) and pump energy (2-30 nJ). Broadband spectroscopy of PTFE is shown. Numerical Drude-Lorentz simulations of the generated THz pulses are performed as a function of the excitation pulse duration, showing good agreement with the experimental data.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28(1), 1–66 (2004).
    [Crossref]
  3. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging,” Laser & Photonics Reviews 5(1), 124–166 (2011).
    [Crossref]
  4. D. A. Usanov, A. P. Krenitskiy, A. V. Mayborodin, V. D. Tupikin, A. D. Usanov, and A. P. Rytik, “Terahertz waves and perspectives of terahertz biomedical technologies development,” in IEEE Conference on Microwaves, Radar and Wireless Communications (IEEE, 2008), pp. 1–10.
  5. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [Crossref]
  6. H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE 95(8), 8 (2007).
    [Crossref]
  7. Q. Wu and X. C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70(14), 1784 (1997).
    [Crossref]
  8. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” JOSA B 13(11), 2424 (1996).
    [Crossref]
  9. T. A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. L. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
    [Crossref]
  10. K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
    [Crossref]
  11. P. Maraghechi and A. Y. Elezzabi, “Enhanced THz radiation emission from plasmonic complementary Sierpinski fractal emitters,” Opt. Express 18(26), 27336–27345 (2010).
    [Crossref] [PubMed]
  12. Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83(15), 13 (2003).
    [Crossref]
  13. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
    [Crossref]
  14. Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85(2), 164–166 (2004).
    [Crossref]
  15. J. Madéo, N. Jukam, D. Oustinov, M. Rosticher, R. Rungsawang, J. Tignon, and S. S. Dhillon, “Frequency tunable terahertz interdigitated photoconductive antennas,” Elec. Lett. 46(9), 611 (2010).
    [Crossref]
  16. P. C. Upadhya, W. Fan, A. Burnett, J. Cunningham, A. G. Davies, E. H. Linfield, J. Lloyd-Hughes, E. Castro-Camus, M. B. Johnston, and H. Beere, “Excitation-density-dependent generation of broadband terahertz radiation in an asymmetrically excited photoconductive antenna,” Opt. Lett. 32(16), 2297–2299 (2007).
    [Crossref] [PubMed]
  17. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76(22), 3191 (2000).
    [Crossref]
  18. S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104 (2000).
    [Crossref]
  19. B. Clough, J. Dai, and X. C. Zhang, “Laser air photonics: beyond the terahertz gap,” Mater. Today 15(1-2), 50–58 (2012).
    [Crossref]
  20. L. Tze-An, T. Masahiko, N. Makoto, H. Masanori, and P. Ci-Ling, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
    [Crossref]
  21. P. C. M. Planken, H. K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” Opt. Soc. Am. B 18(3), 313 (2001).
    [Crossref]
  22. F. D’Angelo, Z. Mics, M. Bonn, and D. Turchinovich, “Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics,” Opt. Express 22(10), 12475–12485 (2014).
    [PubMed]
  23. G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, and F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer (Guildf.) 15(2), 69–73 (1974).
    [Crossref]
  24. P. Dannetun, M. Schott, and M. R. Vilar, “High-resolution electron energy loss spectroscopy of thin crystalline highly oriented films of poly(tetrafluoroethylene),” Thin Solid Films 286(1–2), 321–329 (1996).
    [Crossref]
  25. J. B. D. Soole and H. Schumacher, “Transit-time limited frequency response of InGaAs MSM photodetectors,” Trans. Electron Devices 37(11), 2285–2291 (1990).
    [Crossref]
  26. S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE Sel. Top. In Quantun Electronics 14(2), 449–457 (2008)
  27. J. S. Melinger, Y. Yang, M. Mandehgar, and D. Grischkowsky, “THz detection of small molecule vapors in the atmospheric transmission windows,” Opt. Express 20(6), 6788–6807 (2012).
    [Crossref] [PubMed]
  28. K.-T. Tsen, “Ultrafast phenomena in semiconductors,” Springer (2001)

2014 (1)

2012 (2)

2011 (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging,” Laser & Photonics Reviews 5(1), 124–166 (2011).
[Crossref]

2010 (2)

P. Maraghechi and A. Y. Elezzabi, “Enhanced THz radiation emission from plasmonic complementary Sierpinski fractal emitters,” Opt. Express 18(26), 27336–27345 (2010).
[Crossref] [PubMed]

J. Madéo, N. Jukam, D. Oustinov, M. Rosticher, R. Rungsawang, J. Tignon, and S. S. Dhillon, “Frequency tunable terahertz interdigitated photoconductive antennas,” Elec. Lett. 46(9), 611 (2010).
[Crossref]

2007 (4)

P. C. Upadhya, W. Fan, A. Burnett, J. Cunningham, A. G. Davies, E. H. Linfield, J. Lloyd-Hughes, E. Castro-Camus, M. B. Johnston, and H. Beere, “Excitation-density-dependent generation of broadband terahertz radiation in an asymmetrically excited photoconductive antenna,” Opt. Lett. 32(16), 2297–2299 (2007).
[Crossref] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE 95(8), 8 (2007).
[Crossref]

K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

2005 (2)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

2004 (2)

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85(2), 164–166 (2004).
[Crossref]

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28(1), 1–66 (2004).
[Crossref]

2003 (3)

T. A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. L. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83(15), 13 (2003).
[Crossref]

L. Tze-An, T. Masahiko, N. Makoto, H. Masanori, and P. Ci-Ling, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

2001 (1)

P. C. M. Planken, H. K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” Opt. Soc. Am. B 18(3), 313 (2001).
[Crossref]

2000 (2)

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76(22), 3191 (2000).
[Crossref]

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104 (2000).
[Crossref]

1997 (1)

Q. Wu and X. C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70(14), 1784 (1997).
[Crossref]

1996 (2)

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” JOSA B 13(11), 2424 (1996).
[Crossref]

P. Dannetun, M. Schott, and M. R. Vilar, “High-resolution electron energy loss spectroscopy of thin crystalline highly oriented films of poly(tetrafluoroethylene),” Thin Solid Films 286(1–2), 321–329 (1996).
[Crossref]

1990 (1)

J. B. D. Soole and H. Schumacher, “Transit-time limited frequency response of InGaAs MSM photodetectors,” Trans. Electron Devices 37(11), 2285–2291 (1990).
[Crossref]

1974 (1)

G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, and F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer (Guildf.) 15(2), 69–73 (1974).
[Crossref]

Baker, C.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85(2), 164–166 (2004).
[Crossref]

Bakker, H. J.

P. C. M. Planken, H. K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” Opt. Soc. Am. B 18(3), 313 (2001).
[Crossref]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Beere, H.

Beere, H. E.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85(2), 164–166 (2004).
[Crossref]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83(15), 13 (2003).
[Crossref]

Boerio, F. J.

G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, and F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer (Guildf.) 15(2), 69–73 (1974).
[Crossref]

Bonn, M.

Brodschelm, A.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76(22), 3191 (2000).
[Crossref]

Burnett, A.

Castro-Camus, E.

Chantry, G. W.

G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, and F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer (Guildf.) 15(2), 69–73 (1974).
[Crossref]

Chen, Y.

H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE 95(8), 8 (2007).
[Crossref]

Ci-Ling, P.

L. Tze-An, T. Masahiko, N. Makoto, H. Masanori, and P. Ci-Ling, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Clough, B.

B. Clough, J. Dai, and X. C. Zhang, “Laser air photonics: beyond the terahertz gap,” Mater. Today 15(1-2), 50–58 (2012).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging,” Laser & Photonics Reviews 5(1), 124–166 (2011).
[Crossref]

Cudby, M. E. A.

G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, and F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer (Guildf.) 15(2), 69–73 (1974).
[Crossref]

Cunningham, J.

D’Angelo, F.

Dai, J.

B. Clough, J. Dai, and X. C. Zhang, “Laser air photonics: beyond the terahertz gap,” Mater. Today 15(1-2), 50–58 (2012).
[Crossref]

Dannetun, P.

P. Dannetun, M. Schott, and M. R. Vilar, “High-resolution electron energy loss spectroscopy of thin crystalline highly oriented films of poly(tetrafluoroethylene),” Thin Solid Films 286(1–2), 321–329 (1996).
[Crossref]

Davies, A. G.

P. C. Upadhya, W. Fan, A. Burnett, J. Cunningham, A. G. Davies, E. H. Linfield, J. Lloyd-Hughes, E. Castro-Camus, M. B. Johnston, and H. Beere, “Excitation-density-dependent generation of broadband terahertz radiation in an asymmetrically excited photoconductive antenna,” Opt. Lett. 32(16), 2297–2299 (2007).
[Crossref] [PubMed]

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85(2), 164–166 (2004).
[Crossref]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83(15), 13 (2003).
[Crossref]

Dekorsy, T.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Dhillon, S. S.

J. Madéo, N. Jukam, D. Oustinov, M. Rosticher, R. Rungsawang, J. Tignon, and S. S. Dhillon, “Frequency tunable terahertz interdigitated photoconductive antennas,” Elec. Lett. 46(9), 611 (2010).
[Crossref]

Dragoman, D.

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28(1), 1–66 (2004).
[Crossref]

Dragoman, M.

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28(1), 1–66 (2004).
[Crossref]

Dreyhaupt, A.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Elezzabi, A. Y.

Evans, M. J.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85(2), 164–166 (2004).
[Crossref]

Fan, W.

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Fleming, J. W.

G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, and F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer (Guildf.) 15(2), 69–73 (1974).
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Gregory, I. S.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85(2), 164–166 (2004).
[Crossref]

Grischkowsky, D.

Gu, P.

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104 (2000).
[Crossref]

Hangyo, M.

T. A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. L. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Hebling, J.

K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

Helm, M.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Hoffmann, M. C.

K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Huber, R.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76(22), 3191 (2000).
[Crossref]

Jacobsen, R. H.

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” JOSA B 13(11), 2424 (1996).
[Crossref]

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging,” Laser & Photonics Reviews 5(1), 124–166 (2011).
[Crossref]

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” JOSA B 13(11), 2424 (1996).
[Crossref]

Johnston, M. B.

Jukam, N.

J. Madéo, N. Jukam, D. Oustinov, M. Rosticher, R. Rungsawang, J. Tignon, and S. S. Dhillon, “Frequency tunable terahertz interdigitated photoconductive antennas,” Elec. Lett. 46(9), 611 (2010).
[Crossref]

Karpowicz, N.

H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE 95(8), 8 (2007).
[Crossref]

Keiding, S. R.

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” JOSA B 13(11), 2424 (1996).
[Crossref]

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging,” Laser & Photonics Reviews 5(1), 124–166 (2011).
[Crossref]

Kono, S.

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104 (2000).
[Crossref]

Leitenstorfer, A.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76(22), 3191 (2000).
[Crossref]

Linfield, E. H.

P. C. Upadhya, W. Fan, A. Burnett, J. Cunningham, A. G. Davies, E. H. Linfield, J. Lloyd-Hughes, E. Castro-Camus, M. B. Johnston, and H. Beere, “Excitation-density-dependent generation of broadband terahertz radiation in an asymmetrically excited photoconductive antenna,” Opt. Lett. 32(16), 2297–2299 (2007).
[Crossref] [PubMed]

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85(2), 164–166 (2004).
[Crossref]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83(15), 13 (2003).
[Crossref]

Liu, H. B.

H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE 95(8), 8 (2007).
[Crossref]

Liu, T. A.

T. A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. L. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Lloyd-Hughes, J.

Madéo, J.

J. Madéo, N. Jukam, D. Oustinov, M. Rosticher, R. Rungsawang, J. Tignon, and S. S. Dhillon, “Frequency tunable terahertz interdigitated photoconductive antennas,” Elec. Lett. 46(9), 611 (2010).
[Crossref]

Makoto, N.

L. Tze-An, T. Masahiko, N. Makoto, H. Masanori, and P. Ci-Ling, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Mandehgar, M.

Maraghechi, P.

Masahiko, T.

L. Tze-An, T. Masahiko, N. Makoto, H. Masanori, and P. Ci-Ling, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Masanori, H.

L. Tze-An, T. Masahiko, N. Makoto, H. Masanori, and P. Ci-Ling, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Melinger, J. S.

Mics, Z.

Nakajima, M.

T. A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. L. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Nelson, K. A.

K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

Nicol, E. A.

G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, and F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer (Guildf.) 15(2), 69–73 (1974).
[Crossref]

Nienhuys, H. K.

P. C. M. Planken, H. K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” Opt. Soc. Am. B 18(3), 313 (2001).
[Crossref]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Oustinov, D.

J. Madéo, N. Jukam, D. Oustinov, M. Rosticher, R. Rungsawang, J. Tignon, and S. S. Dhillon, “Frequency tunable terahertz interdigitated photoconductive antennas,” Elec. Lett. 46(9), 611 (2010).
[Crossref]

Pan, C. L.

T. A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. L. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Planken, P. C. M.

P. C. M. Planken, H. K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” Opt. Soc. Am. B 18(3), 313 (2001).
[Crossref]

Rosticher, M.

J. Madéo, N. Jukam, D. Oustinov, M. Rosticher, R. Rungsawang, J. Tignon, and S. S. Dhillon, “Frequency tunable terahertz interdigitated photoconductive antennas,” Elec. Lett. 46(9), 611 (2010).
[Crossref]

Rungsawang, R.

J. Madéo, N. Jukam, D. Oustinov, M. Rosticher, R. Rungsawang, J. Tignon, and S. S. Dhillon, “Frequency tunable terahertz interdigitated photoconductive antennas,” Elec. Lett. 46(9), 611 (2010).
[Crossref]

Sakai, K.

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104 (2000).
[Crossref]

Schott, M.

P. Dannetun, M. Schott, and M. R. Vilar, “High-resolution electron energy loss spectroscopy of thin crystalline highly oriented films of poly(tetrafluoroethylene),” Thin Solid Films 286(1–2), 321–329 (1996).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Schumacher, H.

J. B. D. Soole and H. Schumacher, “Transit-time limited frequency response of InGaAs MSM photodetectors,” Trans. Electron Devices 37(11), 2285–2291 (1990).
[Crossref]

Shen, Y. C.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85(2), 164–166 (2004).
[Crossref]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83(15), 13 (2003).
[Crossref]

Soole, J. B. D.

J. B. D. Soole and H. Schumacher, “Transit-time limited frequency response of InGaAs MSM photodetectors,” Trans. Electron Devices 37(11), 2285–2291 (1990).
[Crossref]

Tani, M.

T. A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. L. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104 (2000).
[Crossref]

Tauser, F.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76(22), 3191 (2000).
[Crossref]

Tignon, J.

J. Madéo, N. Jukam, D. Oustinov, M. Rosticher, R. Rungsawang, J. Tignon, and S. S. Dhillon, “Frequency tunable terahertz interdigitated photoconductive antennas,” Elec. Lett. 46(9), 611 (2010).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tribe, W. R.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85(2), 164–166 (2004).
[Crossref]

Turchinovich, D.

Tze-An, L.

L. Tze-An, T. Masahiko, N. Makoto, H. Masanori, and P. Ci-Ling, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Upadhya, P. C.

P. C. Upadhya, W. Fan, A. Burnett, J. Cunningham, A. G. Davies, E. H. Linfield, J. Lloyd-Hughes, E. Castro-Camus, M. B. Johnston, and H. Beere, “Excitation-density-dependent generation of broadband terahertz radiation in an asymmetrically excited photoconductive antenna,” Opt. Lett. 32(16), 2297–2299 (2007).
[Crossref] [PubMed]

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85(2), 164–166 (2004).
[Crossref]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83(15), 13 (2003).
[Crossref]

Vilar, M. R.

P. Dannetun, M. Schott, and M. R. Vilar, “High-resolution electron energy loss spectroscopy of thin crystalline highly oriented films of poly(tetrafluoroethylene),” Thin Solid Films 286(1–2), 321–329 (1996).
[Crossref]

Wenckebach, T.

P. C. M. Planken, H. K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” Opt. Soc. Am. B 18(3), 313 (2001).
[Crossref]

Willis, H. A.

G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, and F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer (Guildf.) 15(2), 69–73 (1974).
[Crossref]

Winnerl, S.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Wu, Q.

Q. Wu and X. C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70(14), 1784 (1997).
[Crossref]

Yang, Y.

Yeh, K. L.

K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

Zhang, X. C.

B. Clough, J. Dai, and X. C. Zhang, “Laser air photonics: beyond the terahertz gap,” Mater. Today 15(1-2), 50–58 (2012).
[Crossref]

H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE 95(8), 8 (2007).
[Crossref]

Q. Wu and X. C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70(14), 1784 (1997).
[Crossref]

Zhong, H.

H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE 95(8), 8 (2007).
[Crossref]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Appl. Phys. Lett. (9)

Q. Wu and X. C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70(14), 1784 (1997).
[Crossref]

Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, “Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters,” Appl. Phys. Lett. 83(15), 13 (2003).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, “Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers,” Appl. Phys. Lett. 85(2), 164–166 (2004).
[Crossref]

T. A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C. L. Pan, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76(22), 3191 (2000).
[Crossref]

S. Kono, M. Tani, P. Gu, and K. Sakai, “Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses,” Appl. Phys. Lett. 77(25), 4104 (2000).
[Crossref]

L. Tze-An, T. Masahiko, N. Makoto, H. Masanori, and P. Ci-Ling, “Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs,” Appl. Phys. Lett. 83(7), 1322 (2003).
[Crossref]

Elec. Lett. (1)

J. Madéo, N. Jukam, D. Oustinov, M. Rosticher, R. Rungsawang, J. Tignon, and S. S. Dhillon, “Frequency tunable terahertz interdigitated photoconductive antennas,” Elec. Lett. 46(9), 611 (2010).
[Crossref]

JOSA B (1)

P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” JOSA B 13(11), 2424 (1996).
[Crossref]

Laser & Photonics Reviews (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging,” Laser & Photonics Reviews 5(1), 124–166 (2011).
[Crossref]

Mater. Today (1)

B. Clough, J. Dai, and X. C. Zhang, “Laser air photonics: beyond the terahertz gap,” Mater. Today 15(1-2), 50–58 (2012).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Soc. Am. B (1)

P. C. M. Planken, H. K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” Opt. Soc. Am. B 18(3), 313 (2001).
[Crossref]

Polymer (Guildf.) (1)

G. W. Chantry, J. W. Fleming, E. A. Nicol, H. A. Willis, M. E. A. Cudby, and F. J. Boerio, “The far infra-red spectrum of crystalline polytetrafluoroethylene,” Polymer (Guildf.) 15(2), 69–73 (1974).
[Crossref]

Proc. IEEE (1)

H. B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X. C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE 95(8), 8 (2007).
[Crossref]

Prog. Quantum Electron. (1)

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28(1), 1–66 (2004).
[Crossref]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications – explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Thin Solid Films (1)

P. Dannetun, M. Schott, and M. R. Vilar, “High-resolution electron energy loss spectroscopy of thin crystalline highly oriented films of poly(tetrafluoroethylene),” Thin Solid Films 286(1–2), 321–329 (1996).
[Crossref]

Trans. Electron Devices (1)

J. B. D. Soole and H. Schumacher, “Transit-time limited frequency response of InGaAs MSM photodetectors,” Trans. Electron Devices 37(11), 2285–2291 (1990).
[Crossref]

Other (3)

S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, “Generation of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes,” IEEE Sel. Top. In Quantun Electronics 14(2), 449–457 (2008)

K.-T. Tsen, “Ultrafast phenomena in semiconductors,” Springer (2001)

D. A. Usanov, A. P. Krenitskiy, A. V. Mayborodin, V. D. Tupikin, A. D. Usanov, and A. P. Rytik, “Terahertz waves and perspectives of terahertz biomedical technologies development,” in IEEE Conference on Microwaves, Radar and Wireless Communications (IEEE, 2008), pp. 1–10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Side view (a) and top view (b) schematic of the interdigitated photoconductive antenna structure. The first two protective gold stripes in (b) are not shown to illustrate the underlying interdigitated structure. (c) Schematic of the THz-TDS setup for generating broadband THz radiation.

Fig. 2
Fig. 2

(a) Temporal plot from the THz-TDS with 27.5 nJ incident onto the antenna. Inset: Zoomed-in view of the pulse. (b) FFT amplitude as a function of frequency, showing a bandwidth approaching 20 THz.

Fig. 3
Fig. 3

(a) Fourier transform amplitude of the broadband pulses, as a function of frequency, measured with varying input power onto the interdigitated antenna. The pulse width is maintained at 15 fs with an ultrafast beamsplitter in the generation path, used to modulate the power onto the antenna. (b) Fourier transform amplitude, as a function of frequency, for varying pulse widths. The pulse energy is maintained at 27.5 nJ.

Fig. 4
Fig. 4

Absorption, as a function of frequency, for a 75 µm sample of PTFE tape. Measurements performed using the broadband THz-TDS (red) and room-temperature FTIR (black) are shown. The phonon resonances within the THz-TDS are highlighted in grey. The absorption peaks of PTFE at 6.1, 15.1, 15.6 and 16.6 THz are readily observed. The FTIR trace is offset in the y-axis for clarity.

Fig. 5
Fig. 5

Normalised Drude-Lorentz simulations of the idealized frequency output for interdigitated antennas fabricated on GaAs. The incident pulse width is varied from 100 fs (green) to 50 fs (red), 15 fs (blue) and 10 fs (black). The solid lines represent SI-GaAs (recombination time = 100 ps) and the dashed lines correspond to low temperature grown GaAs (recombination time = 800 fs).

Metrics