Abstract

We report on quantum cascade lasers (QCLs) with a tilted facet utilizing their polarization property. Contrary to diode lasers, QCLs generate purely TM polarized light due to the intersubband selection rules. This property enables the utilization of reflectivity in terms of only TM polarized light (TM reflectivity). The TM reflectivity is reduced by tilting the front facet, resulting in enhanced light output power from the tilted facet. The peak output power of a QCL with a facet angle of 12° are increased by 31 %. The slope efficiency of a QCL with a facet angle of 17° are increased by 43 %. Additionally, a peculiar property of TM reflectivity, the Brewster angle, is investigated by using COMSOL simulations to find its availability in QCLs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced light output power of quantum cascade lasers from a tilted front facet

Sangil Ahn, Clemens Schwarzer, Tobias Zederbauer, Hermann Detz, Aaron M. Andrews, Werner Schrenk, and Gottfried Strasser
Opt. Express 21(13) 15869-15877 (2013)

Quantum cascade lasers with integrated plasmonic antenna-array collimators

Nanfang Yu, Romain Blanchard, Jonathan Fan, Qi Jie Wang, Christian Pflügl, Laurent Diehl, Tadataka Edamura, Masamichi Yamanishi, Hirofumi Kan, and Federico Capasso
Opt. Express 16(24) 19447-19461 (2008)

Quantum cascade laser gain enhancement by front facet illumination

Gang Chen, Clyde G. Bethea, and Rainer Martini
Opt. Express 17(26) 24282-24287 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
    [Crossref] [PubMed]
  2. Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photon. 6, 432 (2013).
    [Crossref]
  3. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
    [Crossref]
  4. B. Schwarz, P. Reininger, D. Ristanic, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
    [Crossref] [PubMed]
  5. C. F. Lin, “Superluminescent diodes with angled facet etched by chemically assisted ion beam etching, ” Electron. Lett. 27, 968–980 (1991).
    [Crossref]
  6. M. Ettenberg, H. S. Sommers, H. Kressel, and H. F. Lockwood, “Control of facet damage in GaAs laser diodes,” Appl. Phys. Lett. 18, 571 (1971).
    [Crossref]
  7. S. Ahn, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Enhanced light output power of quantum cascade lasers from a tilted front facet,” Opt. Express 21, 15869–15877 (2013).
    [Crossref] [PubMed]
  8. K. Iga, K. Wakao, and T. Kunikane, “Mode reflectivity of tilted mirrors in semiconductor lasers with etched facets,” Appl. Opt. 20, 2367–2371 (1981).
    [Crossref] [PubMed]
  9. D. Marcuse, “Reflection loss of laser mode from tilted end mirror,” J. Lightwave Technol. 7, 336–339 (1989).
    [Crossref]
  10. P. Kaczmarski, R. Baets, G. Franssens, and P. E. Lagasse, “Extension of bidirectional beam propagation method to TM polarisation and application to laser facet reflectivity,” Electron. Lett. 25, 716–717 (1989).
    [Crossref]
  11. P. A. Besse, J. S. Gu, and H. Melchior, “Reflectivity minimization of semiconductor laser amplifiers with coated and angled facets considering two-dimensional beam profiles,” IEEE J. Quantum Electron. 27, 1830–1836 (1991).
    [Crossref]
  12. M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103 (2002).
    [Crossref]
  13. H. Liu, M. Buchanan, and Z. Wasilewski, “How good is the polarization selection rule for intersubband transitions?” Appl. Phys. Lett. 72, 1682 (1998).
    [Crossref]
  14. S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 151101 (2014).
    [Crossref]
  15. A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE J. Quantum Electron. 44, 36–40 (2008).
    [Crossref]
  16. Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photon. Technol. Lett. 18, 1347–1349 (2006).
    [Crossref]
  17. N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for laser beam shaping,” IEEE Trans. Nanotech. 9, 11–29 (2010).
    [Crossref]
  18. M. Brandstetter, M. Krall, C. Deutsch, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Influence of the facet type on the performance of terahertz quantum cascade lasers with double-metal waveguides,” Appl. Phys. Lett. 102, 231121 (2013).
    [Crossref]
  19. S. Kalchmair, R. Gansch, S. I. Ahn, A. M. Andrews, H. Detz, T. Zederbauer, E. Mujagic, P. Reininger, G. Lasser, W. Schrenk, and G. Strasser, “Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator,” Opt. Express, 20, 5622–5628 (2012).
    [Crossref] [PubMed]

2014 (2)

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 151101 (2014).
[Crossref]

B. Schwarz, P. Reininger, D. Ristanic, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
[Crossref] [PubMed]

2013 (3)

M. Brandstetter, M. Krall, C. Deutsch, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Influence of the facet type on the performance of terahertz quantum cascade lasers with double-metal waveguides,” Appl. Phys. Lett. 102, 231121 (2013).
[Crossref]

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photon. 6, 432 (2013).
[Crossref]

S. Ahn, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Enhanced light output power of quantum cascade lasers from a tilted front facet,” Opt. Express 21, 15869–15877 (2013).
[Crossref] [PubMed]

2012 (1)

2010 (2)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for laser beam shaping,” IEEE Trans. Nanotech. 9, 11–29 (2010).
[Crossref]

2008 (1)

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE J. Quantum Electron. 44, 36–40 (2008).
[Crossref]

2006 (1)

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photon. Technol. Lett. 18, 1347–1349 (2006).
[Crossref]

2002 (1)

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103 (2002).
[Crossref]

1998 (1)

H. Liu, M. Buchanan, and Z. Wasilewski, “How good is the polarization selection rule for intersubband transitions?” Appl. Phys. Lett. 72, 1682 (1998).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

1991 (2)

C. F. Lin, “Superluminescent diodes with angled facet etched by chemically assisted ion beam etching, ” Electron. Lett. 27, 968–980 (1991).
[Crossref]

P. A. Besse, J. S. Gu, and H. Melchior, “Reflectivity minimization of semiconductor laser amplifiers with coated and angled facets considering two-dimensional beam profiles,” IEEE J. Quantum Electron. 27, 1830–1836 (1991).
[Crossref]

1989 (2)

D. Marcuse, “Reflection loss of laser mode from tilted end mirror,” J. Lightwave Technol. 7, 336–339 (1989).
[Crossref]

P. Kaczmarski, R. Baets, G. Franssens, and P. E. Lagasse, “Extension of bidirectional beam propagation method to TM polarisation and application to laser facet reflectivity,” Electron. Lett. 25, 716–717 (1989).
[Crossref]

1981 (1)

1971 (1)

M. Ettenberg, H. S. Sommers, H. Kressel, and H. F. Lockwood, “Control of facet damage in GaAs laser diodes,” Appl. Phys. Lett. 18, 571 (1971).
[Crossref]

Ahn, S.

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 151101 (2014).
[Crossref]

S. Ahn, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Enhanced light output power of quantum cascade lasers from a tilted front facet,” Opt. Express 21, 15869–15877 (2013).
[Crossref] [PubMed]

Ahn, S. I.

Andrews, A. M.

B. Schwarz, P. Reininger, D. Ristanic, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
[Crossref] [PubMed]

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 151101 (2014).
[Crossref]

S. Ahn, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Enhanced light output power of quantum cascade lasers from a tilted front facet,” Opt. Express 21, 15869–15877 (2013).
[Crossref] [PubMed]

M. Brandstetter, M. Krall, C. Deutsch, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Influence of the facet type on the performance of terahertz quantum cascade lasers with double-metal waveguides,” Appl. Phys. Lett. 102, 231121 (2013).
[Crossref]

S. Kalchmair, R. Gansch, S. I. Ahn, A. M. Andrews, H. Detz, T. Zederbauer, E. Mujagic, P. Reininger, G. Lasser, W. Schrenk, and G. Strasser, “Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator,” Opt. Express, 20, 5622–5628 (2012).
[Crossref] [PubMed]

Baets, R.

P. Kaczmarski, R. Baets, G. Franssens, and P. E. Lagasse, “Extension of bidirectional beam propagation method to TM polarisation and application to laser facet reflectivity,” Electron. Lett. 25, 716–717 (1989).
[Crossref]

Besse, P. A.

P. A. Besse, J. S. Gu, and H. Melchior, “Reflectivity minimization of semiconductor laser amplifiers with coated and angled facets considering two-dimensional beam profiles,” IEEE J. Quantum Electron. 27, 1830–1836 (1991).
[Crossref]

Blanchard, R.

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for laser beam shaping,” IEEE Trans. Nanotech. 9, 11–29 (2010).
[Crossref]

Brandstetter, M.

M. Brandstetter, M. Krall, C. Deutsch, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Influence of the facet type on the performance of terahertz quantum cascade lasers with double-metal waveguides,” Appl. Phys. Lett. 102, 231121 (2013).
[Crossref]

Buchanan, M.

H. Liu, M. Buchanan, and Z. Wasilewski, “How good is the polarization selection rule for intersubband transitions?” Appl. Phys. Lett. 72, 1682 (1998).
[Crossref]

Capasso, F.

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for laser beam shaping,” IEEE Trans. Nanotech. 9, 11–29 (2010).
[Crossref]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103 (2002).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Cheng, L.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photon. Technol. Lett. 18, 1347–1349 (2006).
[Crossref]

Cho, A. Y.

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103 (2002).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Choa, F. S.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photon. Technol. Lett. 18, 1347–1349 (2006).
[Crossref]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

Detz, H.

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 151101 (2014).
[Crossref]

B. Schwarz, P. Reininger, D. Ristanic, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
[Crossref] [PubMed]

S. Ahn, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Enhanced light output power of quantum cascade lasers from a tilted front facet,” Opt. Express 21, 15869–15877 (2013).
[Crossref] [PubMed]

M. Brandstetter, M. Krall, C. Deutsch, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Influence of the facet type on the performance of terahertz quantum cascade lasers with double-metal waveguides,” Appl. Phys. Lett. 102, 231121 (2013).
[Crossref]

S. Kalchmair, R. Gansch, S. I. Ahn, A. M. Andrews, H. Detz, T. Zederbauer, E. Mujagic, P. Reininger, G. Lasser, W. Schrenk, and G. Strasser, “Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator,” Opt. Express, 20, 5622–5628 (2012).
[Crossref] [PubMed]

Deutsch, C.

M. Brandstetter, M. Krall, C. Deutsch, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Influence of the facet type on the performance of terahertz quantum cascade lasers with double-metal waveguides,” Appl. Phys. Lett. 102, 231121 (2013).
[Crossref]

Diehl, L.

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for laser beam shaping,” IEEE Trans. Nanotech. 9, 11–29 (2010).
[Crossref]

Edamura, T.

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for laser beam shaping,” IEEE Trans. Nanotech. 9, 11–29 (2010).
[Crossref]

Ettenberg, M.

M. Ettenberg, H. S. Sommers, H. Kressel, and H. F. Lockwood, “Control of facet damage in GaAs laser diodes,” Appl. Phys. Lett. 18, 571 (1971).
[Crossref]

Faist, J.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE J. Quantum Electron. 44, 36–40 (2008).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Fan, J.

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for laser beam shaping,” IEEE Trans. Nanotech. 9, 11–29 (2010).
[Crossref]

Franssens, G.

P. Kaczmarski, R. Baets, G. Franssens, and P. E. Lagasse, “Extension of bidirectional beam propagation method to TM polarisation and application to laser facet reflectivity,” Electron. Lett. 25, 716–717 (1989).
[Crossref]

Furuta, S.

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for laser beam shaping,” IEEE Trans. Nanotech. 9, 11–29 (2010).
[Crossref]

Gansch, R.

Gini, E.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE J. Quantum Electron. 44, 36–40 (2008).
[Crossref]

Giovannini, M.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE J. Quantum Electron. 44, 36–40 (2008).
[Crossref]

Gmachl, C.

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photon. 6, 432 (2013).
[Crossref]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103 (2002).
[Crossref]

Gmachl, C. F.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photon. Technol. Lett. 18, 1347–1349 (2006).
[Crossref]

Gresch, T.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE J. Quantum Electron. 44, 36–40 (2008).
[Crossref]

Gu, J. S.

P. A. Besse, J. S. Gu, and H. Melchior, “Reflectivity minimization of semiconductor laser amplifiers with coated and angled facets considering two-dimensional beam profiles,” IEEE J. Quantum Electron. 27, 1830–1836 (1991).
[Crossref]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photon. 6, 432 (2013).
[Crossref]

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photon. Technol. Lett. 18, 1347–1349 (2006).
[Crossref]

Howard, S. S.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photon. Technol. Lett. 18, 1347–1349 (2006).
[Crossref]

Hoyler, N.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE J. Quantum Electron. 44, 36–40 (2008).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Hvozdara, L.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE J. Quantum Electron. 44, 36–40 (2008).
[Crossref]

Iga, K.

Kaczmarski, P.

P. Kaczmarski, R. Baets, G. Franssens, and P. E. Lagasse, “Extension of bidirectional beam propagation method to TM polarisation and application to laser facet reflectivity,” Electron. Lett. 25, 716–717 (1989).
[Crossref]

Kalchmair, S.

Kan, H.

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for laser beam shaping,” IEEE Trans. Nanotech. 9, 11–29 (2010).
[Crossref]

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

Krall, M.

M. Brandstetter, M. Krall, C. Deutsch, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Influence of the facet type on the performance of terahertz quantum cascade lasers with double-metal waveguides,” Appl. Phys. Lett. 102, 231121 (2013).
[Crossref]

Kressel, H.

M. Ettenberg, H. S. Sommers, H. Kressel, and H. F. Lockwood, “Control of facet damage in GaAs laser diodes,” Appl. Phys. Lett. 18, 571 (1971).
[Crossref]

Kunikane, T.

Lagasse, P. E.

P. Kaczmarski, R. Baets, G. Franssens, and P. E. Lagasse, “Extension of bidirectional beam propagation method to TM polarisation and application to laser facet reflectivity,” Electron. Lett. 25, 716–717 (1989).
[Crossref]

Lasser, G.

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

Lin, C. F.

C. F. Lin, “Superluminescent diodes with angled facet etched by chemically assisted ion beam etching, ” Electron. Lett. 27, 968–980 (1991).
[Crossref]

Liu, H.

H. Liu, M. Buchanan, and Z. Wasilewski, “How good is the polarization selection rule for intersubband transitions?” Appl. Phys. Lett. 72, 1682 (1998).
[Crossref]

Liu, Z.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photon. Technol. Lett. 18, 1347–1349 (2006).
[Crossref]

Lockwood, H. F.

M. Ettenberg, H. S. Sommers, H. Kressel, and H. F. Lockwood, “Control of facet damage in GaAs laser diodes,” Appl. Phys. Lett. 18, 571 (1971).
[Crossref]

MacFarland, D. C.

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 151101 (2014).
[Crossref]

Marcuse, D.

D. Marcuse, “Reflection loss of laser mode from tilted end mirror,” J. Lightwave Technol. 7, 336–339 (1989).
[Crossref]

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

Melchior, H.

P. A. Besse, J. S. Gu, and H. Melchior, “Reflectivity minimization of semiconductor laser amplifiers with coated and angled facets considering two-dimensional beam profiles,” IEEE J. Quantum Electron. 27, 1830–1836 (1991).
[Crossref]

Mujagic, E.

Pflügl, C.

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for laser beam shaping,” IEEE Trans. Nanotech. 9, 11–29 (2010).
[Crossref]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

Reininger, P.

B. Schwarz, P. Reininger, D. Ristanic, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
[Crossref] [PubMed]

S. Kalchmair, R. Gansch, S. I. Ahn, A. M. Andrews, H. Detz, T. Zederbauer, E. Mujagic, P. Reininger, G. Lasser, W. Schrenk, and G. Strasser, “Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator,” Opt. Express, 20, 5622–5628 (2012).
[Crossref] [PubMed]

Ristanic, D.

B. Schwarz, P. Reininger, D. Ristanic, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
[Crossref] [PubMed]

Schrenk, W.

B. Schwarz, P. Reininger, D. Ristanic, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
[Crossref] [PubMed]

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 151101 (2014).
[Crossref]

S. Ahn, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Enhanced light output power of quantum cascade lasers from a tilted front facet,” Opt. Express 21, 15869–15877 (2013).
[Crossref] [PubMed]

M. Brandstetter, M. Krall, C. Deutsch, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Influence of the facet type on the performance of terahertz quantum cascade lasers with double-metal waveguides,” Appl. Phys. Lett. 102, 231121 (2013).
[Crossref]

S. Kalchmair, R. Gansch, S. I. Ahn, A. M. Andrews, H. Detz, T. Zederbauer, E. Mujagic, P. Reininger, G. Lasser, W. Schrenk, and G. Strasser, “Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator,” Opt. Express, 20, 5622–5628 (2012).
[Crossref] [PubMed]

Schwarz, B.

B. Schwarz, P. Reininger, D. Ristanic, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
[Crossref] [PubMed]

Schwarzer, C.

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 151101 (2014).
[Crossref]

S. Ahn, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Enhanced light output power of quantum cascade lasers from a tilted front facet,” Opt. Express 21, 15869–15877 (2013).
[Crossref] [PubMed]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Sivco, D. L.

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103 (2002).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Sommers, H. S.

M. Ettenberg, H. S. Sommers, H. Kressel, and H. F. Lockwood, “Control of facet damage in GaAs laser diodes,” Appl. Phys. Lett. 18, 571 (1971).
[Crossref]

Strasser, G.

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 151101 (2014).
[Crossref]

B. Schwarz, P. Reininger, D. Ristanic, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
[Crossref] [PubMed]

S. Ahn, C. Schwarzer, T. Zederbauer, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Enhanced light output power of quantum cascade lasers from a tilted front facet,” Opt. Express 21, 15869–15877 (2013).
[Crossref] [PubMed]

M. Brandstetter, M. Krall, C. Deutsch, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Influence of the facet type on the performance of terahertz quantum cascade lasers with double-metal waveguides,” Appl. Phys. Lett. 102, 231121 (2013).
[Crossref]

S. Kalchmair, R. Gansch, S. I. Ahn, A. M. Andrews, H. Detz, T. Zederbauer, E. Mujagic, P. Reininger, G. Lasser, W. Schrenk, and G. Strasser, “Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator,” Opt. Express, 20, 5622–5628 (2012).
[Crossref] [PubMed]

Tanbun-Ek, T.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photon. Technol. Lett. 18, 1347–1349 (2006).
[Crossref]

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

Troccoli, M.

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103 (2002).
[Crossref]

Unterrainer, K.

M. Brandstetter, M. Krall, C. Deutsch, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Influence of the facet type on the performance of terahertz quantum cascade lasers with double-metal waveguides,” Appl. Phys. Lett. 102, 231121 (2013).
[Crossref]

Wakao, K.

Wang, Q. J.

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for laser beam shaping,” IEEE Trans. Nanotech. 9, 11–29 (2010).
[Crossref]

Wang, X.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photon. Technol. Lett. 18, 1347–1349 (2006).
[Crossref]

Wasilewski, Z.

H. Liu, M. Buchanan, and Z. Wasilewski, “How good is the polarization selection rule for intersubband transitions?” Appl. Phys. Lett. 72, 1682 (1998).
[Crossref]

Wasserman, D.

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photon. Technol. Lett. 18, 1347–1349 (2006).
[Crossref]

Wittmann, A.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE J. Quantum Electron. 44, 36–40 (2008).
[Crossref]

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

Yamanishi, M.

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for laser beam shaping,” IEEE Trans. Nanotech. 9, 11–29 (2010).
[Crossref]

Yao, Y.

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photon. 6, 432 (2013).
[Crossref]

Yu, N.

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for laser beam shaping,” IEEE Trans. Nanotech. 9, 11–29 (2010).
[Crossref]

Zederbauer, T.

Appl. Opt. (1)

Appl. Phys. Lett. (5)

M. Ettenberg, H. S. Sommers, H. Kressel, and H. F. Lockwood, “Control of facet damage in GaAs laser diodes,” Appl. Phys. Lett. 18, 571 (1971).
[Crossref]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103 (2002).
[Crossref]

H. Liu, M. Buchanan, and Z. Wasilewski, “How good is the polarization selection rule for intersubband transitions?” Appl. Phys. Lett. 72, 1682 (1998).
[Crossref]

S. Ahn, C. Schwarzer, T. Zederbauer, D. C. MacFarland, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “High-power, low-lateral divergence broad area quantum cascade lasers with a tilted front facet,” Appl. Phys. Lett. 104, 151101 (2014).
[Crossref]

M. Brandstetter, M. Krall, C. Deutsch, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser, and K. Unterrainer, “Influence of the facet type on the performance of terahertz quantum cascade lasers with double-metal waveguides,” Appl. Phys. Lett. 102, 231121 (2013).
[Crossref]

Chem. Phys. Lett. (1)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[Crossref]

Electron. Lett. (2)

C. F. Lin, “Superluminescent diodes with angled facet etched by chemically assisted ion beam etching, ” Electron. Lett. 27, 968–980 (1991).
[Crossref]

P. Kaczmarski, R. Baets, G. Franssens, and P. E. Lagasse, “Extension of bidirectional beam propagation method to TM polarisation and application to laser facet reflectivity,” Electron. Lett. 25, 716–717 (1989).
[Crossref]

IEEE J. Quantum Electron. (2)

P. A. Besse, J. S. Gu, and H. Melchior, “Reflectivity minimization of semiconductor laser amplifiers with coated and angled facets considering two-dimensional beam profiles,” IEEE J. Quantum Electron. 27, 1830–1836 (1991).
[Crossref]

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE J. Quantum Electron. 44, 36–40 (2008).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Z. Liu, D. Wasserman, S. S. Howard, A. J. Hoffman, C. F. Gmachl, X. Wang, T. Tanbun-Ek, L. Cheng, and F. S. Choa, “Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth,” IEEE Photon. Technol. Lett. 18, 1347–1349 (2006).
[Crossref]

IEEE Trans. Nanotech. (1)

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, S. Furuta, M. Yamanishi, H. Kan, and F. Capasso, “Plasmonics for laser beam shaping,” IEEE Trans. Nanotech. 9, 11–29 (2010).
[Crossref]

J. Lightwave Technol. (1)

D. Marcuse, “Reflection loss of laser mode from tilted end mirror,” J. Lightwave Technol. 7, 336–339 (1989).
[Crossref]

Nat. Commun. (1)

B. Schwarz, P. Reininger, D. Ristanic, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, “Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures,” Nat. Commun. 5, 4085 (2014).
[Crossref] [PubMed]

Nat. Photon. (1)

Y. Yao, A. J. Hoffman, and C. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photon. 6, 432 (2013).
[Crossref]

Opt. Express (2)

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scanning electron microscopy images (a, b, c) and sketches (d, e, f) of the vertical waveguide structure of QCLs with a tilted front facet. The polarization of the emitted beam (violet arrows) is also shown where the electric field is directed along the growth direction (z). Cleaved facet (a, d) - before FIB milling. Structure A - facet tilted towards the ridge surface (b, e). Structure B - facet tilted towards the ridge substrate (c, f).

Fig. 2
Fig. 2

An example of LIV characteristics for structure B of a QCL before FIB milling (blue dashed line) and after FIB milling to be θF = 12° (red and green lines). The red and green lines are measured from front and back facets, respectively.

Fig. 3
Fig. 3

Ratios between before and after FIB milling as a function of the facet angles for (a) peak light output power (Ppeak), (b) slope efficiency (ηs), and (c) threshold current (Jth). The measurements were done using light emission from the front facet only. The characteristics for both structure A (blue triangles) and B (red circles) are shown. In order to avoid additional losses at higher driving currents, only a linear part (just above threshold) of LI curves was taken in the slope efficiency comparison [7].

Fig. 4
Fig. 4

Spectra of the QCLs for structure A (a) and structure B (b) for different facet angles. All spectra were measured at a driving current of ∼ 2.2 A (see Fig. 2).

Fig. 5
Fig. 5

Measured vertical far-field profiles for different facet angles for both (a) structure A and (b) structure B. The profiles were measured at near roll-over.

Fig. 6
Fig. 6

Simulated light power transmittance (solid lines) at the facet of a passive semiconductor waveguide as a function of the facet angle for different active region thickness (Dact). A calculated transmittance for plane wave (dashed line) and Brewster angle (θBrewster) are shown as well. The inset shows schematically the 2-D simulation model of the passive waveguide structure (Dact = 3 μm, θF = 0°) and the simulated mode distribution (λ = 8.6 μm).

Metrics