Abstract

A metal-insulator-metal (MIM) structure which is used to enhance the focusing energy of planar lens is developed in this work. The top of the MIM structure is formed by circularly arranged V-shaped nanoantennas whose double resonance effect makes it possible for light to obtain great phase changes within an ultra-thin area. The middle and bottom of the structure is medium and gold film layer respectively. This structure produces plasmonic coupling between the antenna layer and gold film, thus reducing Ohmic loss and enhancing the effect of plasmonic excitation. When the distance between the antenna layer with a thickness of 30nm and gold film is 88nm, and the thickness of gold film is 20nm, the enhancement of plasmonic coupling reaches to the strongest when the focusing intensity is 1.33 times higher than the lens only. With the advantages of small size, ultra-thin, great phase changes and high-efficient focusing ability, the enhanced plasmonic coupling lens structure can be widely applied in photoetching, and integrated optics.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electromagnetic field hugely enhanced by coupling to optical energy focusing structure

Wei Li and Yumin Hou
Opt. Express 25(7) 7358-7368 (2017)

Continuous layer gap plasmon resonators

Michael G. Nielsen, Dmitri K. Gramotnev, Anders Pors, Ole Albrektsen, and Sergey I. Bozhevolnyi
Opt. Express 19(20) 19310-19322 (2011)

Localized and nonlocalized plasmon resonance enhanced light absorption in metal-insulator-metal nanostructures

Wonkyu Kim, Blake S. Simpkins, James P. Long, Boyang Zhang, Joshua Hendrickson, and Junpeng Guo
J. Opt. Soc. Am. B 32(8) 1686-1692 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [Crossref]
  3. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [Crossref] [PubMed]
  4. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [Crossref] [PubMed]
  5. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
    [Crossref]
  6. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
    [Crossref] [PubMed]
  7. C. Oh, J. Kim, J. Muth, S. Serati, and M. J. Escuti, “High-throughput continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22(4), 200 (2010).
    [Crossref]
  8. K. Anglin, T. Ribaudo, C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” Appl. Phys. Lett. 109, 123103 (2011).
  9. Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett. 92(1), 011128 (2008).
    [Crossref]
  10. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2(9), 564–570 (2008).
    [Crossref]
  11. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  12. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
    [Crossref] [PubMed]
  13. J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
    [Crossref] [PubMed]
  14. M. T. Gale, G. K. Lang, J. M. Raynor, H. Schütz, and D. Prongué, “Fabrication of kinoform structures for optical computing,” Appl. Opt. 31(26), 5712–5715 (1992).
    [Crossref] [PubMed]
  15. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4(7), 466–470 (2010).
    [Crossref]
  16. L. Pan, Y. S. Park, Y. Xiong, E. Ulin-Avila, L. Zeng, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens at near field for high speed nano-lithography,” Proc. SPIE 7637, 763713 (2010).
    [Crossref]
  17. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354 (1997).
    [Crossref]
  18. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  19. L. Novotny and N. Hulst, “Antennas for ligh,” Nat. Photon. 5(2), 83–90 (2011).
    [Crossref]
  20. F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
    [Crossref] [PubMed]
  21. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
    [Crossref] [PubMed]

2013 (1)

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

2012 (3)

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

2011 (3)

L. Novotny and N. Hulst, “Antennas for ligh,” Nat. Photon. 5(2), 83–90 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

K. Anglin, T. Ribaudo, C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” Appl. Phys. Lett. 109, 123103 (2011).

2010 (3)

C. Oh, J. Kim, J. Muth, S. Serati, and M. J. Escuti, “High-throughput continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22(4), 200 (2010).
[Crossref]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4(7), 466–470 (2010).
[Crossref]

L. Pan, Y. S. Park, Y. Xiong, E. Ulin-Avila, L. Zeng, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens at near field for high speed nano-lithography,” Proc. SPIE 7637, 763713 (2010).
[Crossref]

2008 (2)

Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett. 92(1), 011128 (2008).
[Crossref]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2(9), 564–570 (2008).
[Crossref]

2005 (2)

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[Crossref] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

2004 (1)

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[Crossref]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

1997 (1)

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354 (1997).
[Crossref]

1992 (1)

Adams, C.

K. Anglin, T. Ribaudo, C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” Appl. Phys. Lett. 109, 123103 (2011).

Aieta, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Anglin, K.

K. Anglin, T. Ribaudo, C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” Appl. Phys. Lett. 109, 123103 (2011).

Antoniou, N.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Beausoleil, R. G.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4(7), 466–470 (2010).
[Crossref]

Bogy, D. B.

L. Pan, Y. S. Park, Y. Xiong, E. Ulin-Avila, L. Zeng, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens at near field for high speed nano-lithography,” Proc. SPIE 7637, 763713 (2010).
[Crossref]

Boltasseva, A.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Caglayan, H.

Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett. 92(1), 011128 (2008).
[Crossref]

Capasso, F.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2(9), 564–570 (2008).
[Crossref]

Colak, E.

Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett. 92(1), 011128 (2008).
[Crossref]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Diehl, L.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2(9), 564–570 (2008).
[Crossref]

Dong, X.

Dooley, S.

K. Anglin, T. Ribaudo, C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” Appl. Phys. Lett. 109, 123103 (2011).

Du, C.

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Edamura, T.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2(9), 564–570 (2008).
[Crossref]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Escuti, M. J.

C. Oh, J. Kim, J. Muth, S. Serati, and M. J. Escuti, “High-throughput continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22(4), 200 (2010).
[Crossref]

Fan, J.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2(9), 564–570 (2008).
[Crossref]

Fattal, D.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4(7), 466–470 (2010).
[Crossref]

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4(7), 466–470 (2010).
[Crossref]

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gale, M. T.

Gao, H.

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Genevet, P.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Goodhue, W. D.

K. Anglin, T. Ribaudo, C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” Appl. Phys. Lett. 109, 123103 (2011).

Grober, R. D.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354 (1997).
[Crossref]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Hulst, N.

L. Novotny and N. Hulst, “Antennas for ligh,” Nat. Photon. 5(2), 83–90 (2011).
[Crossref]

Kan, H.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2(9), 564–570 (2008).
[Crossref]

Kats, M. A.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kildishev, A. V.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Kim, H. K.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[Crossref]

Kim, J.

C. Oh, J. Kim, J. Muth, S. Serati, and M. J. Escuti, “High-throughput continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22(4), 200 (2010).
[Crossref]

Lang, G. K.

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4(7), 466–470 (2010).
[Crossref]

Li, Z.

Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett. 92(1), 011128 (2008).
[Crossref]

Lin, J.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Luo, X.

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Mueller, J. P.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Muth, J.

C. Oh, J. Kim, J. Muth, S. Serati, and M. J. Escuti, “High-throughput continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22(4), 200 (2010).
[Crossref]

Ni, X.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. Hulst, “Antennas for ligh,” Nat. Photon. 5(2), 83–90 (2011).
[Crossref]

Oh, C.

C. Oh, J. Kim, J. Muth, S. Serati, and M. J. Escuti, “High-throughput continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22(4), 200 (2010).
[Crossref]

Ozbay, E.

Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett. 92(1), 011128 (2008).
[Crossref]

Pan, L.

L. Pan, Y. S. Park, Y. Xiong, E. Ulin-Avila, L. Zeng, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens at near field for high speed nano-lithography,” Proc. SPIE 7637, 763713 (2010).
[Crossref]

Park, Y. S.

L. Pan, Y. S. Park, Y. Xiong, E. Ulin-Avila, L. Zeng, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens at near field for high speed nano-lithography,” Proc. SPIE 7637, 763713 (2010).
[Crossref]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4(7), 466–470 (2010).
[Crossref]

Pflügl, C.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2(9), 564–570 (2008).
[Crossref]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Prober, D. E.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354 (1997).
[Crossref]

Prongué, D.

Qian, X.

K. Anglin, T. Ribaudo, C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” Appl. Phys. Lett. 109, 123103 (2011).

Raynor, J. M.

Ribaudo, T.

K. Anglin, T. Ribaudo, C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” Appl. Phys. Lett. 109, 123103 (2011).

Schoelkopf, R. J.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354 (1997).
[Crossref]

Schütz, H.

Serati, S.

C. Oh, J. Kim, J. Muth, S. Serati, and M. J. Escuti, “High-throughput continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22(4), 200 (2010).
[Crossref]

Shalaev, V. M.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Shaner, E. A.

K. Anglin, T. Ribaudo, C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” Appl. Phys. Lett. 109, 123103 (2011).

Shi, H.

Sun, C.

L. Pan, Y. S. Park, Y. Xiong, E. Ulin-Avila, L. Zeng, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens at near field for high speed nano-lithography,” Proc. SPIE 7637, 763713 (2010).
[Crossref]

Sun, Z.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Ulin-Avila, E.

L. Pan, Y. S. Park, Y. Xiong, E. Ulin-Avila, L. Zeng, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens at near field for high speed nano-lithography,” Proc. SPIE 7637, 763713 (2010).
[Crossref]

Wang, C.

Wang, Q.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Wang, Q. J.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2(9), 564–570 (2008).
[Crossref]

Wasserman, D.

K. Anglin, T. Ribaudo, C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” Appl. Phys. Lett. 109, 123103 (2011).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Xiong, Y.

L. Pan, Y. S. Park, Y. Xiong, E. Ulin-Avila, L. Zeng, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens at near field for high speed nano-lithography,” Proc. SPIE 7637, 763713 (2010).
[Crossref]

Yamanishi, M.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2(9), 564–570 (2008).
[Crossref]

Yu, N.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2(9), 564–570 (2008).
[Crossref]

Yuan, G.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yuan, X. C.

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Zeng, L.

L. Pan, Y. S. Park, Y. Xiong, E. Ulin-Avila, L. Zeng, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens at near field for high speed nano-lithography,” Proc. SPIE 7637, 763713 (2010).
[Crossref]

Zhang, X.

L. Pan, Y. S. Park, Y. Xiong, E. Ulin-Avila, L. Zeng, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens at near field for high speed nano-lithography,” Proc. SPIE 7637, 763713 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354 (1997).
[Crossref]

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[Crossref]

K. Anglin, T. Ribaudo, C. Adams, X. Qian, W. D. Goodhue, S. Dooley, E. A. Shaner, and D. Wasserman, “Voltage-controlled active mid-infrared plasmonic devices,” Appl. Phys. Lett. 109, 123103 (2011).

Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett. 92(1), 011128 (2008).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. Oh, J. Kim, J. Muth, S. Serati, and M. J. Escuti, “High-throughput continuous beam steering using rotating polarization gratings,” IEEE Photon. Technol. Lett. 22(4), 200 (2010).
[Crossref]

Nano Lett. (2)

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Nat. Photon. (3)

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon. 4(7), 466–470 (2010).
[Crossref]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2(9), 564–570 (2008).
[Crossref]

L. Novotny and N. Hulst, “Antennas for ligh,” Nat. Photon. 5(2), 83–90 (2011).
[Crossref]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Phys. Rev. Lett. (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Proc. SPIE (1)

L. Pan, Y. S. Park, Y. Xiong, E. Ulin-Avila, L. Zeng, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens at near field for high speed nano-lithography,” Proc. SPIE 7637, 763713 (2010).
[Crossref]

Science (5)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

J. Lin, J. P. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Geometry model of beam focusing realization by plasmonic nanoantenna.(a)Principle diagram of plasmonic focusing lens and (b) geometry model of V-shaped nanoantenna.
Fig. 2
Fig. 2 Design of V-shaped nano-antennas. (a) Unit structure of beam deflector and its corresponding electric field distribution of the cross polarized light where the wavelength of incident light is 1.5μm, the substrate is silicon, and the medium is air (b)Designed phase distribution at different x positions where f = 1μm,λ = 1.5 μm,△x = 0.24 μm.
Fig. 3
Fig. 3 Design of plasmonic focusing lens. (a) Circularly arranged antennas arrays with the focal length of 1μm. (b) Distribution of steady electric field intensity |Ey|2of the 2D circularly arranged antenna array on x-z plane. The white dotted line refers to cross section of focal spot center when the focal length is 1.15μm. (c) Distribution of steady electric field intensity |Ey|2of the 2D circularly arranged antenna array on focal plane. (d) Normalized light intensity distribution of the cross section of the focal spot center. The FWHM value is 690nm.
Fig. 4
Fig. 4 Enhanced lens focusing by plasmonic coupling. (a) Schematic of enhanced focusing lens by plasmonic coupling, adding a layer of gold film with the thickness of d between the gold antenna layer and Si. The distance between antenna layer and gold film is t, the plane wave with the wavelength of 1.5μm incidents through the substrate, and focus above the antenna layer. (b,d) Distribution of steady electric field intensity |Ey|2 of the lens on y plane when the distance between antenna layer and gold film is 88nm, and the steady electric field intensity distribution |Ey|2 of the lens on y plane when the distance between antenna layer and gold film is 88nm, and the normalized light intensity distribution of the cross section of the focal spot center. (c) Curve for the normalized light intensity (red dots) and FWHM value (blue block) varying as the space variation between gold film and antenna layer. The red dotted line shows the energy of the focusing spot without adding gold film, and the blue one is the half-wavelength of incident light working at 750nm.
Fig. 5
Fig. 5 Optimization of film thickness. (a) Curve for the normalized light intensity (the blue curve) and FWHM value varying as the thickness of gold film. The blue dotted line is the energy of focusing spot without adding gold film, and the red one is a half-wavelength of incident light working at 750nm. (b) Steady electric field intensity distribution |Ey|2 of the lens on y plane when the thickness of gold film working at 20nm. (c) Normalized light intensity distribution of the cross section of the focusing spot center with the FWHM as 689nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ(x)=2nπ+ 2nπ λ 2π f 2 + x 2 λ
{ x=iΔrcos( 2π n j) y=iΔrsin( 2π n j) ,i=0,...,k;j=1,...,n

Metrics