Abstract

Optical data storage was developed using binary encoding primarily due to signal to noise ratio considerations. We report on a multiplexing method that allows a seven fold storage increase, per storage layer, per side, and propose one that can yield theoretically a 20+ fold increase. Multiplexing is achieved by encoding information in polarization via appropriately oriented nanostructures that emit strongly polarized light when excited by unpolarized light. The storage increase is possible due to the significantly reduced crosstalk that results form using unpolarized light.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Confocal polarization imaging in high-numerical-aperture space

C. Macias-Romero, M. R. Foreman, P. R. T. Munro, and P. Török
Opt. Lett. 39(8) 2322-2325 (2014)

Polarization encoding and multiplexing of two-dimensional signals: application to image encryption

Unnikrishnan Gopinathan, Thomas J. Naughton, and John T. Sheridan
Appl. Opt. 45(22) 5693-5700 (2006)

Spectral encoding of the polarization state of light in multiplexed polarization-sensitive lasing structures

E. Brasselet, D. Wright, J. Zyss, G. Langer, and W. Kern
Opt. Lett. 29(12) 1309-1311 (2004)

References

  • View by:
  • |
  • |
  • |

  1. A. S. V. D. Nes, J. J. M. Braat, and S. F. Pereira, “High-density optical data storage,” Rep. Prog. Phys. 69(8), 2323–2363 (2006).
    [Crossref]
  2. C. Rockstuhl, S. F. Pereira, a. S. V. D. Nes, P. Török, and M. Salt, Investigations on different multiplexing approaches in optical data storage systems: Super Laser Array Memory (EU FP6, 2004).
  3. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [Crossref] [PubMed]
  4. B. Yao, M. Lei, L. Ren, N. Menke, Y. Wang, T. Fischer, and N. Hampp, “Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films,” Opt. Lett. 30(22), 3060–3062 (2005).
    [Crossref] [PubMed]
  5. Y. Niidome, S. Urakawa, M. Kawahara, and S. Yamada, “Dichroism of Poly(vinylalcohol) Films Containing Gold Nanorods Induced by Polarized Pulsed-Laser Irradiation,” Jpn. J. Appl. Phys. 42(P4A), 1749–1750 (2003).
    [Crossref]
  6. S. Alasfar, M. Ishikawa, Y. Kawata, C. Egami, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, “Polarization-Multiplexed Optical Memory with UrethaneUrea Copolymers,” Appl. Opt. 38(29), 6201 (1999).
    [Crossref]
  7. J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260(1), 109–112 (2006).
    [Crossref]
  8. C. Macias-Romero, M. R. Foreman, P. R. T. Munro, and P. Török, “Confocal polarization imaging in high-numerical-aperture space,” Opt. Lett. 39(9) 2322 (2014).
    [Crossref] [PubMed]
  9. A. De Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003).
    [Crossref] [PubMed]
  10. E. Compain and B. Drevillon, “Broadband Division-of-Amplitude Polarimeter Based on Uncoated Prisms,” Appl. Opt. 37(25), 5938–5944 (1998).
    [Crossref]
  11. S.-Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).
    [Crossref]
  12. P. D. Higdon, T. Wilson, and P. Török, “On the general properties of polarised light conventional and confocal microscopes,” Opt. Commun. 148(4–6), 300–315 (1998).
    [Crossref]
  13. B. Sklar, Digital Communications, vol. 2 (Prentice Hall NJ, 2001).
  14. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, 1st ed. (Elsevier, 1987).
  15. P. Török, P. R. Munro, and E. E. Kriezis, “Rigorous near- to far-field transformation for vectorial diffraction calculations and its numerical implementation,” J. Opt. Soc. Am. A 23(3), 713 (2006).
    [Crossref]
  16. K. Lindfors, T. Setälä, M. Kaivola, A. T. Friberg, and T. Seta, “Degree of polarization in tightly focused optical fields,” J. Opt. Soc. Am. A 22(3), 561–568 (2005).
    [Crossref]
  17. D. Lara and C. Dainty, “Double-pass axially resolved confocal Mueller matrix imaging polarimetry,” Opt. Lett. 30(21), 2879–2881 (2005).
    [Crossref] [PubMed]

2014 (1)

2009 (1)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

2006 (3)

A. S. V. D. Nes, J. J. M. Braat, and S. F. Pereira, “High-density optical data storage,” Rep. Prog. Phys. 69(8), 2323–2363 (2006).
[Crossref]

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260(1), 109–112 (2006).
[Crossref]

P. Török, P. R. Munro, and E. E. Kriezis, “Rigorous near- to far-field transformation for vectorial diffraction calculations and its numerical implementation,” J. Opt. Soc. Am. A 23(3), 713 (2006).
[Crossref]

2005 (3)

2003 (2)

Y. Niidome, S. Urakawa, M. Kawahara, and S. Yamada, “Dichroism of Poly(vinylalcohol) Films Containing Gold Nanorods Induced by Polarized Pulsed-Laser Irradiation,” Jpn. J. Appl. Phys. 42(P4A), 1749–1750 (2003).
[Crossref]

A. De Martino, Y.-K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003).
[Crossref] [PubMed]

1999 (1)

1998 (2)

E. Compain and B. Drevillon, “Broadband Division-of-Amplitude Polarimeter Based on Uncoated Prisms,” Appl. Opt. 37(25), 5938–5944 (1998).
[Crossref]

P. D. Higdon, T. Wilson, and P. Török, “On the general properties of polarised light conventional and confocal microscopes,” Opt. Commun. 148(4–6), 300–315 (1998).
[Crossref]

1996 (1)

Alasfar, S.

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, 1st ed. (Elsevier, 1987).

Barrera, J. F.

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260(1), 109–112 (2006).
[Crossref]

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, 1st ed. (Elsevier, 1987).

Bolognini, N.

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260(1), 109–112 (2006).
[Crossref]

Braat, J. J. M.

A. S. V. D. Nes, J. J. M. Braat, and S. F. Pereira, “High-density optical data storage,” Rep. Prog. Phys. 69(8), 2323–2363 (2006).
[Crossref]

Chipman, R. A.

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Compain, E.

Dainty, C.

De Martino, A.

Drevillon, B.

Drévillon, B.

Egami, C.

Fischer, T.

Foreman, M. R.

Friberg, A. T.

Garcia-Caurel, E.

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Hampp, N.

Henao, R.

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260(1), 109–112 (2006).
[Crossref]

Higdon, P. D.

P. D. Higdon, T. Wilson, and P. Török, “On the general properties of polarised light conventional and confocal microscopes,” Opt. Commun. 148(4–6), 300–315 (1998).
[Crossref]

Ishikawa, M.

Kaivola, M.

Kawahara, M.

Y. Niidome, S. Urakawa, M. Kawahara, and S. Yamada, “Dichroism of Poly(vinylalcohol) Films Containing Gold Nanorods Induced by Polarized Pulsed-Laser Irradiation,” Jpn. J. Appl. Phys. 42(P4A), 1749–1750 (2003).
[Crossref]

Kawata, Y.

Kim, Y.-K.

Kriezis, E. E.

Lara, D.

Laude, B.

Lei, M.

Lindfors, K.

Lu, S.-Y.

Macias-Romero, C.

Menke, N.

Munro, P. R.

Munro, P. R. T.

Nes, A. S. V. D.

A. S. V. D. Nes, J. J. M. Braat, and S. F. Pereira, “High-density optical data storage,” Rep. Prog. Phys. 69(8), 2323–2363 (2006).
[Crossref]

C. Rockstuhl, S. F. Pereira, a. S. V. D. Nes, P. Török, and M. Salt, Investigations on different multiplexing approaches in optical data storage systems: Super Laser Array Memory (EU FP6, 2004).

Niidome, Y.

Y. Niidome, S. Urakawa, M. Kawahara, and S. Yamada, “Dichroism of Poly(vinylalcohol) Films Containing Gold Nanorods Induced by Polarized Pulsed-Laser Irradiation,” Jpn. J. Appl. Phys. 42(P4A), 1749–1750 (2003).
[Crossref]

Okamoto, N.

Pereira, S. F.

A. S. V. D. Nes, J. J. M. Braat, and S. F. Pereira, “High-density optical data storage,” Rep. Prog. Phys. 69(8), 2323–2363 (2006).
[Crossref]

C. Rockstuhl, S. F. Pereira, a. S. V. D. Nes, P. Török, and M. Salt, Investigations on different multiplexing approaches in optical data storage systems: Super Laser Array Memory (EU FP6, 2004).

Ren, L.

Rockstuhl, C.

C. Rockstuhl, S. F. Pereira, a. S. V. D. Nes, P. Török, and M. Salt, Investigations on different multiplexing approaches in optical data storage systems: Super Laser Array Memory (EU FP6, 2004).

Salt, M.

C. Rockstuhl, S. F. Pereira, a. S. V. D. Nes, P. Török, and M. Salt, Investigations on different multiplexing approaches in optical data storage systems: Super Laser Array Memory (EU FP6, 2004).

Seta, T.

Setälä, T.

Sklar, B.

B. Sklar, Digital Communications, vol. 2 (Prentice Hall NJ, 2001).

Sugihara, O.

Tebaldi, M.

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260(1), 109–112 (2006).
[Crossref]

Török, P.

C. Macias-Romero, M. R. Foreman, P. R. T. Munro, and P. Török, “Confocal polarization imaging in high-numerical-aperture space,” Opt. Lett. 39(9) 2322 (2014).
[Crossref] [PubMed]

P. Török, P. R. Munro, and E. E. Kriezis, “Rigorous near- to far-field transformation for vectorial diffraction calculations and its numerical implementation,” J. Opt. Soc. Am. A 23(3), 713 (2006).
[Crossref]

P. D. Higdon, T. Wilson, and P. Török, “On the general properties of polarised light conventional and confocal microscopes,” Opt. Commun. 148(4–6), 300–315 (1998).
[Crossref]

C. Rockstuhl, S. F. Pereira, a. S. V. D. Nes, P. Török, and M. Salt, Investigations on different multiplexing approaches in optical data storage systems: Super Laser Array Memory (EU FP6, 2004).

Torroba, R.

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260(1), 109–112 (2006).
[Crossref]

Tsuchimori, M.

Urakawa, S.

Y. Niidome, S. Urakawa, M. Kawahara, and S. Yamada, “Dichroism of Poly(vinylalcohol) Films Containing Gold Nanorods Induced by Polarized Pulsed-Laser Irradiation,” Jpn. J. Appl. Phys. 42(P4A), 1749–1750 (2003).
[Crossref]

Wang, Y.

Watanabe, O.

Wilson, T.

P. D. Higdon, T. Wilson, and P. Török, “On the general properties of polarised light conventional and confocal microscopes,” Opt. Commun. 148(4–6), 300–315 (1998).
[Crossref]

Yamada, S.

Y. Niidome, S. Urakawa, M. Kawahara, and S. Yamada, “Dichroism of Poly(vinylalcohol) Films Containing Gold Nanorods Induced by Polarized Pulsed-Laser Irradiation,” Jpn. J. Appl. Phys. 42(P4A), 1749–1750 (2003).
[Crossref]

Yao, B.

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Appl. Opt. (2)

J. Opt. Soc. Am. A (3)

Jpn. J. Appl. Phys. (1)

Y. Niidome, S. Urakawa, M. Kawahara, and S. Yamada, “Dichroism of Poly(vinylalcohol) Films Containing Gold Nanorods Induced by Polarized Pulsed-Laser Irradiation,” Jpn. J. Appl. Phys. 42(P4A), 1749–1750 (2003).
[Crossref]

Nature (1)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Opt. Commun. (2)

J. F. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encrypted data by using polarized light,” Opt. Commun. 260(1), 109–112 (2006).
[Crossref]

P. D. Higdon, T. Wilson, and P. Török, “On the general properties of polarised light conventional and confocal microscopes,” Opt. Commun. 148(4–6), 300–315 (1998).
[Crossref]

Opt. Lett. (4)

Rep. Prog. Phys. (1)

A. S. V. D. Nes, J. J. M. Braat, and S. F. Pereira, “High-density optical data storage,” Rep. Prog. Phys. 69(8), 2323–2363 (2006).
[Crossref]

Other (3)

C. Rockstuhl, S. F. Pereira, a. S. V. D. Nes, P. Török, and M. Salt, Investigations on different multiplexing approaches in optical data storage systems: Super Laser Array Memory (EU FP6, 2004).

B. Sklar, Digital Communications, vol. 2 (Prentice Hall NJ, 2001).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, 1st ed. (Elsevier, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Scanning electron microscope (SEM) image of the pits. (b) Measured irradiance, ellipticity, azimuth angle, and degree of polarization (rows) of the field emitted by the pits when illuminating with horizontal polarization (left column) left–circular polarization (center column)and unpolarized light (right column). The figures show only a portion of the prototype depicted by the dashed square in (a).
Fig. 2
Fig. 2 Line scans of the (a,d) top, (b,e) middle, and (c,f) bottom row of the azimuth angle distribution obtained when illuminating with horizontally (a – c) and left–circularly (d – f) polarized light.
Fig. 3
Fig. 3 Line scans of the (a) top, (b) middle, and (c) bottom row of the azimuth angle distribution obtained when illuminating with unpolarized light. The markers depict the angular orientation: blue is from the SEM image, red is from experiment, and black is from simulations.
Fig. 4
Fig. 4 Measured (a) retardance, (b) diattenuation, (c) polarizance, and (d) depolarization of the pits.

Metrics