Abstract

We have proposed, designed, manufactured and tested low loss dielectric micro-lenses for infrared (IR) radiation based on a dielectric metamaterial layer. This metamaterial layer was created by patterning a dielectric surface and etching to sub-micron depths. For a proof-of-concept lens demonstration, we have chosen a fine patterned array of nano-pillars with variable diameters. Gradient index (GRIN) properties were achieved by engineering the nano-pattern characteristics across the lens, so that the effective optical density of the dielectric metamaterial layer peaks around the lens center, and gradually drops at the lens periphery. A set of lens designs with reduced reflection and tailorable phase gradients have been developed and tested, demonstrating focal distances of a few hundred microns, beam area contraction ratio up to three, and insertion losses as low as 11%.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide-band achromatic flat focusing lens based on all-dielectric subwavelength metasurface

Shaowu Wang, Jianjun Lai, Tao Wu, Changhong Chen, and Junqiang Sun
Opt. Express 25(6) 7121-7130 (2017)

Metamaterial-based gradient index lens with strong focusing in the THz frequency range

J. Neu, B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm
Opt. Express 18(26) 27748-27757 (2010)

Robust design procedure for dielectric resonator metasurface lens array

Fabrizio Silvestri, Giampiero Gerini, Stefan M.B. Bäumer, and Erwin J. van Zwet
Opt. Express 24(25) 29153-29169 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. Stork, N. Streibl, H. Haidner, and P. Kipfer, “Artificial distributed-index media fabricated by zero-order gratings,” Opt. Lett. 16(24), 1921–1923 (1991).
    [Crossref] [PubMed]
  2. M. W. Farn, “Binary gratings with increased efficiency,” Appl. Opt. 31(22), 4453–4458 (1992).
    [Crossref] [PubMed]
  3. H. Haidner, P. Kipfer, J. Sheridan, J. Schwider, N. Streibl, M. Collischon, J. Hutfless, and M. März, “Diffraction gratings with rectangular grooves exceeding 80% diffraction efficiency,” Infrared Phys. 34(5), 467–475 (1993).
    [Crossref]
  4. F. T. Chen and H. G. Craighead, “Diffractive phase elements based on two-dimensional artificial dielectrics,” Opt. Lett. 20(2), 121–123 (1995).
    [Crossref] [PubMed]
  5. F. T. Chen and H. G. Craighead, “Diffractive lens fabricated with mostly zeroth-order gratings,” Opt. Lett. 21(3), 177–179 (1996).
    [Crossref] [PubMed]
  6. S. Astilean, P. Lalanne, P. Chavel, E. Cambril, and H. Launois, “High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm,” Opt. Lett. 23(7), 552–554 (1998).
    [Crossref] [PubMed]
  7. M. S. Lee, P. Lalanne, J. C. Rodier, and E. Cambril, “Wide-field-angle behavior of blazed-binary gratings in the resonance domain,” Opt. Lett. 25(23), 1690–1692 (2000).
    [Crossref] [PubMed]
  8. S. Wilson and M. Hutley, “The optical properties of 'moth eye' antireflection surfaces,” J. Mod. Opt. 29(7), 993–1009 (1982).
  9. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16(5), 1143–1156 (1999).
    [Crossref]
  10. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  11. E. B. Kley, W. Freese, T. Kampfe, A. Tunnermann, U. D. Zeitner, D. Michaelis, and M. Erdmann, “Large-scale application of binary subwavelength structures,” in 2009 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (2009), pp. 148–149.
    [Crossref]
  12. M.-S. L. Lee, S. Bansropun, O. Huet, S. Cassette, B. Loiseaux, A. P. Wood, C. Sauvan, and P. Lalanne, “Sub-wavelength structures for broadband diffractive optics,” Proc. SPIE 6029, 602919 (2006).
    [Crossref]
  13. C. Sauvan, P. Lalanne, and M. S. Lee, “Broadband blazing with artificial dielectrics,” Opt. Lett. 29(14), 1593–1595 (2004).
    [Crossref] [PubMed]
  14. C. Ribot, M. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1(7), 489–493 (2013).
    [Crossref]
  15. M. Kuittinen, J. Turunen, and P. Vahimaa, “Rigorous analysis and optimization of subwavelength-structured binary dielectric beam deflector gratings,” J. Mod. Opt. 45(1), 133–142 (1998).
    [Crossref]
  16. P. Lalanne, J. Rodier, P. Chavel, E. Cambril, A. Talneau, and Y. Chen, “Applications of index-gradient artificial dielectrics,” SPIE Proc. 1–7 (2003).
  17. M. Lee, P. Lalanne, A. Wood, and C. Sauvan, WIPO Patent No. 2005038501. Geneva, Switzerland: World Intellectual Property Organization (2005).
  18. P. Lalanne and M. Hutley, “Artificial media optical properties – subwavelength scale,” in Encyclopedia of Optical Engineering, R. Driggers, ed. (Marcel Dekker), Vol. 1, 62–71 (2003).
  19. J. Feng and Z. Zhou, “Polarization beam splitter using a binary blazed grating coupler,” Opt. Lett. 32(12), 1662–1664 (2007).
    [Crossref] [PubMed]
  20. J. Feng and Z. Zhou, “High-efficiency compact grating coupler for integrated optical circuits,” Proc. SPIE 6351, 65311H (2006).
    [Crossref]
  21. P. Lalanne, “Waveguiding in blazed-binary diffractive elements,” J. Opt. Soc. Am. A 16(10), 2517–2520 (1999).
    [Crossref]
  22. W. Freese, T. Kämpfe, W. Rockstroh, E. B. Kley, and A. Tünnermann, “Optimized electron beam writing strategy for fabricating computer-generated holograms based on an effective medium approach,” Opt. Express 19(9), 8684–8692 (2011).
    [Crossref] [PubMed]
  23. W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design and fabrication of a highly off-axis binary multi-phase level computer-generated hologram based on an effective medium approach,” Proc. SPIE 7927(792710), 792710 (2011).
    [Crossref]
  24. W. Yu, K. Takahara, T. Konishi, T. Yotsuya, and Y. Ichioka, “Fabrication of multilevel phase computer-generated hologram elements based on effective medium theory,” Appl. Opt. 39(20), 3531–3536 (2000).
    [Crossref] [PubMed]
  25. V. Raulot, B. Serio, P. Gérard, P. Twardowski, and P. Meyrueis, “Modeling of a diffractive micro-lens by an effective medium method,” Proc. SPIE Proc. SPIE 7716, 77162J–77162J, (2010).
  26. B. Kleemann, U.S. Patent No. 7,262,915. Washington, DC: U.S. Patent and Trademark Office. (2007).
  27. M. Lee, P. Lalanne, J. Rodier, P. Chavel, E. Cambril, and Y. Chen, “Imaging with blazed-binary diffractive elements,” J. Opt. A 4(5), S119–S124 (2002).
    [Crossref]
  28. M. Lee, P. Lalanne, P. Chavel, and E. Cambril, “Imaging with blazed-binary diffractive elements,” Proc. SPIE 4438, 62–68 (2001).
    [Crossref]
  29. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “A Silicon Lens for Integrated Free-Space Optics,” in Advanced Photonics (Optical Society of America, Toronto, 2011), p. ITuD2.
  30. M. Lee, P. Pichon, C. Sauvan, J. Rodier, P. Lalanne, M. Hutley, and Y. Chen, “Transmission blazed-binary gratings for visible light operation: performances and interferometric characterization,” J. Opt. A 5(5), S244–S249 (2003).
    [Crossref]
  31. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
    [Crossref] [PubMed]

2014 (1)

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

2013 (1)

C. Ribot, M. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1(7), 489–493 (2013).
[Crossref]

2011 (3)

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design and fabrication of a highly off-axis binary multi-phase level computer-generated hologram based on an effective medium approach,” Proc. SPIE 7927(792710), 792710 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

W. Freese, T. Kämpfe, W. Rockstroh, E. B. Kley, and A. Tünnermann, “Optimized electron beam writing strategy for fabricating computer-generated holograms based on an effective medium approach,” Opt. Express 19(9), 8684–8692 (2011).
[Crossref] [PubMed]

2007 (1)

2006 (2)

M.-S. L. Lee, S. Bansropun, O. Huet, S. Cassette, B. Loiseaux, A. P. Wood, C. Sauvan, and P. Lalanne, “Sub-wavelength structures for broadband diffractive optics,” Proc. SPIE 6029, 602919 (2006).
[Crossref]

J. Feng and Z. Zhou, “High-efficiency compact grating coupler for integrated optical circuits,” Proc. SPIE 6351, 65311H (2006).
[Crossref]

2004 (1)

2003 (1)

M. Lee, P. Pichon, C. Sauvan, J. Rodier, P. Lalanne, M. Hutley, and Y. Chen, “Transmission blazed-binary gratings for visible light operation: performances and interferometric characterization,” J. Opt. A 5(5), S244–S249 (2003).
[Crossref]

2002 (1)

M. Lee, P. Lalanne, J. Rodier, P. Chavel, E. Cambril, and Y. Chen, “Imaging with blazed-binary diffractive elements,” J. Opt. A 4(5), S119–S124 (2002).
[Crossref]

2001 (1)

M. Lee, P. Lalanne, P. Chavel, and E. Cambril, “Imaging with blazed-binary diffractive elements,” Proc. SPIE 4438, 62–68 (2001).
[Crossref]

2000 (2)

1999 (2)

1998 (2)

S. Astilean, P. Lalanne, P. Chavel, E. Cambril, and H. Launois, “High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm,” Opt. Lett. 23(7), 552–554 (1998).
[Crossref] [PubMed]

M. Kuittinen, J. Turunen, and P. Vahimaa, “Rigorous analysis and optimization of subwavelength-structured binary dielectric beam deflector gratings,” J. Mod. Opt. 45(1), 133–142 (1998).
[Crossref]

1996 (1)

1995 (1)

1993 (1)

H. Haidner, P. Kipfer, J. Sheridan, J. Schwider, N. Streibl, M. Collischon, J. Hutfless, and M. März, “Diffraction gratings with rectangular grooves exceeding 80% diffraction efficiency,” Infrared Phys. 34(5), 467–475 (1993).
[Crossref]

1992 (1)

1991 (1)

1982 (1)

S. Wilson and M. Hutley, “The optical properties of 'moth eye' antireflection surfaces,” J. Mod. Opt. 29(7), 993–1009 (1982).

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Astilean, S.

Bansropun, S.

C. Ribot, M. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1(7), 489–493 (2013).
[Crossref]

M.-S. L. Lee, S. Bansropun, O. Huet, S. Cassette, B. Loiseaux, A. P. Wood, C. Sauvan, and P. Lalanne, “Sub-wavelength structures for broadband diffractive optics,” Proc. SPIE 6029, 602919 (2006).
[Crossref]

Brongersma, M. L.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Cambril, E.

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Cassette, S.

C. Ribot, M. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1(7), 489–493 (2013).
[Crossref]

M.-S. L. Lee, S. Bansropun, O. Huet, S. Cassette, B. Loiseaux, A. P. Wood, C. Sauvan, and P. Lalanne, “Sub-wavelength structures for broadband diffractive optics,” Proc. SPIE 6029, 602919 (2006).
[Crossref]

Chavel, P.

Chen, F. T.

Chen, Y.

M. Lee, P. Pichon, C. Sauvan, J. Rodier, P. Lalanne, M. Hutley, and Y. Chen, “Transmission blazed-binary gratings for visible light operation: performances and interferometric characterization,” J. Opt. A 5(5), S244–S249 (2003).
[Crossref]

M. Lee, P. Lalanne, J. Rodier, P. Chavel, E. Cambril, and Y. Chen, “Imaging with blazed-binary diffractive elements,” J. Opt. A 4(5), S119–S124 (2002).
[Crossref]

Collin, S.

C. Ribot, M. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1(7), 489–493 (2013).
[Crossref]

Collischon, M.

H. Haidner, P. Kipfer, J. Sheridan, J. Schwider, N. Streibl, M. Collischon, J. Hutfless, and M. März, “Diffraction gratings with rectangular grooves exceeding 80% diffraction efficiency,” Infrared Phys. 34(5), 467–475 (1993).
[Crossref]

Craighead, H. G.

Fan, P.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Farn, M. W.

Feng, J.

J. Feng and Z. Zhou, “Polarization beam splitter using a binary blazed grating coupler,” Opt. Lett. 32(12), 1662–1664 (2007).
[Crossref] [PubMed]

J. Feng and Z. Zhou, “High-efficiency compact grating coupler for integrated optical circuits,” Proc. SPIE 6351, 65311H (2006).
[Crossref]

Freese, W.

W. Freese, T. Kämpfe, W. Rockstroh, E. B. Kley, and A. Tünnermann, “Optimized electron beam writing strategy for fabricating computer-generated holograms based on an effective medium approach,” Opt. Express 19(9), 8684–8692 (2011).
[Crossref] [PubMed]

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design and fabrication of a highly off-axis binary multi-phase level computer-generated hologram based on an effective medium approach,” Proc. SPIE 7927(792710), 792710 (2011).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Haidner, H.

H. Haidner, P. Kipfer, J. Sheridan, J. Schwider, N. Streibl, M. Collischon, J. Hutfless, and M. März, “Diffraction gratings with rectangular grooves exceeding 80% diffraction efficiency,” Infrared Phys. 34(5), 467–475 (1993).
[Crossref]

W. Stork, N. Streibl, H. Haidner, and P. Kipfer, “Artificial distributed-index media fabricated by zero-order gratings,” Opt. Lett. 16(24), 1921–1923 (1991).
[Crossref] [PubMed]

Hasman, E.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Huet, O.

M.-S. L. Lee, S. Bansropun, O. Huet, S. Cassette, B. Loiseaux, A. P. Wood, C. Sauvan, and P. Lalanne, “Sub-wavelength structures for broadband diffractive optics,” Proc. SPIE 6029, 602919 (2006).
[Crossref]

Hutfless, J.

H. Haidner, P. Kipfer, J. Sheridan, J. Schwider, N. Streibl, M. Collischon, J. Hutfless, and M. März, “Diffraction gratings with rectangular grooves exceeding 80% diffraction efficiency,” Infrared Phys. 34(5), 467–475 (1993).
[Crossref]

Hutley, M.

M. Lee, P. Pichon, C. Sauvan, J. Rodier, P. Lalanne, M. Hutley, and Y. Chen, “Transmission blazed-binary gratings for visible light operation: performances and interferometric characterization,” J. Opt. A 5(5), S244–S249 (2003).
[Crossref]

S. Wilson and M. Hutley, “The optical properties of 'moth eye' antireflection surfaces,” J. Mod. Opt. 29(7), 993–1009 (1982).

Ichioka, Y.

Kämpfe, T.

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design and fabrication of a highly off-axis binary multi-phase level computer-generated hologram based on an effective medium approach,” Proc. SPIE 7927(792710), 792710 (2011).
[Crossref]

W. Freese, T. Kämpfe, W. Rockstroh, E. B. Kley, and A. Tünnermann, “Optimized electron beam writing strategy for fabricating computer-generated holograms based on an effective medium approach,” Opt. Express 19(9), 8684–8692 (2011).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kipfer, P.

H. Haidner, P. Kipfer, J. Sheridan, J. Schwider, N. Streibl, M. Collischon, J. Hutfless, and M. März, “Diffraction gratings with rectangular grooves exceeding 80% diffraction efficiency,” Infrared Phys. 34(5), 467–475 (1993).
[Crossref]

W. Stork, N. Streibl, H. Haidner, and P. Kipfer, “Artificial distributed-index media fabricated by zero-order gratings,” Opt. Lett. 16(24), 1921–1923 (1991).
[Crossref] [PubMed]

Kley, E. B.

Kley, E.-B.

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design and fabrication of a highly off-axis binary multi-phase level computer-generated hologram based on an effective medium approach,” Proc. SPIE 7927(792710), 792710 (2011).
[Crossref]

Konishi, T.

Kuittinen, M.

M. Kuittinen, J. Turunen, and P. Vahimaa, “Rigorous analysis and optimization of subwavelength-structured binary dielectric beam deflector gratings,” J. Mod. Opt. 45(1), 133–142 (1998).
[Crossref]

Lalanne, P.

C. Ribot, M. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1(7), 489–493 (2013).
[Crossref]

M.-S. L. Lee, S. Bansropun, O. Huet, S. Cassette, B. Loiseaux, A. P. Wood, C. Sauvan, and P. Lalanne, “Sub-wavelength structures for broadband diffractive optics,” Proc. SPIE 6029, 602919 (2006).
[Crossref]

C. Sauvan, P. Lalanne, and M. S. Lee, “Broadband blazing with artificial dielectrics,” Opt. Lett. 29(14), 1593–1595 (2004).
[Crossref] [PubMed]

M. Lee, P. Pichon, C. Sauvan, J. Rodier, P. Lalanne, M. Hutley, and Y. Chen, “Transmission blazed-binary gratings for visible light operation: performances and interferometric characterization,” J. Opt. A 5(5), S244–S249 (2003).
[Crossref]

M. Lee, P. Lalanne, J. Rodier, P. Chavel, E. Cambril, and Y. Chen, “Imaging with blazed-binary diffractive elements,” J. Opt. A 4(5), S119–S124 (2002).
[Crossref]

M. Lee, P. Lalanne, P. Chavel, and E. Cambril, “Imaging with blazed-binary diffractive elements,” Proc. SPIE 4438, 62–68 (2001).
[Crossref]

M. S. Lee, P. Lalanne, J. C. Rodier, and E. Cambril, “Wide-field-angle behavior of blazed-binary gratings in the resonance domain,” Opt. Lett. 25(23), 1690–1692 (2000).
[Crossref] [PubMed]

P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16(5), 1143–1156 (1999).
[Crossref]

P. Lalanne, “Waveguiding in blazed-binary diffractive elements,” J. Opt. Soc. Am. A 16(10), 2517–2520 (1999).
[Crossref]

S. Astilean, P. Lalanne, P. Chavel, E. Cambril, and H. Launois, “High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm,” Opt. Lett. 23(7), 552–554 (1998).
[Crossref] [PubMed]

Launois, H.

Lee, M.

C. Ribot, M. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1(7), 489–493 (2013).
[Crossref]

M. Lee, P. Pichon, C. Sauvan, J. Rodier, P. Lalanne, M. Hutley, and Y. Chen, “Transmission blazed-binary gratings for visible light operation: performances and interferometric characterization,” J. Opt. A 5(5), S244–S249 (2003).
[Crossref]

M. Lee, P. Lalanne, J. Rodier, P. Chavel, E. Cambril, and Y. Chen, “Imaging with blazed-binary diffractive elements,” J. Opt. A 4(5), S119–S124 (2002).
[Crossref]

M. Lee, P. Lalanne, P. Chavel, and E. Cambril, “Imaging with blazed-binary diffractive elements,” Proc. SPIE 4438, 62–68 (2001).
[Crossref]

Lee, M. S.

Lee, M.-S. L.

M.-S. L. Lee, S. Bansropun, O. Huet, S. Cassette, B. Loiseaux, A. P. Wood, C. Sauvan, and P. Lalanne, “Sub-wavelength structures for broadband diffractive optics,” Proc. SPIE 6029, 602919 (2006).
[Crossref]

Lin, D.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

Loiseaux, B.

C. Ribot, M. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1(7), 489–493 (2013).
[Crossref]

M.-S. L. Lee, S. Bansropun, O. Huet, S. Cassette, B. Loiseaux, A. P. Wood, C. Sauvan, and P. Lalanne, “Sub-wavelength structures for broadband diffractive optics,” Proc. SPIE 6029, 602919 (2006).
[Crossref]

März, M.

H. Haidner, P. Kipfer, J. Sheridan, J. Schwider, N. Streibl, M. Collischon, J. Hutfless, and M. März, “Diffraction gratings with rectangular grooves exceeding 80% diffraction efficiency,” Infrared Phys. 34(5), 467–475 (1993).
[Crossref]

Pichon, P.

M. Lee, P. Pichon, C. Sauvan, J. Rodier, P. Lalanne, M. Hutley, and Y. Chen, “Transmission blazed-binary gratings for visible light operation: performances and interferometric characterization,” J. Opt. A 5(5), S244–S249 (2003).
[Crossref]

Plouhinec, P.

C. Ribot, M. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1(7), 489–493 (2013).
[Crossref]

Ribot, C.

C. Ribot, M. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1(7), 489–493 (2013).
[Crossref]

Rockstroh, W.

Rodier, J.

M. Lee, P. Pichon, C. Sauvan, J. Rodier, P. Lalanne, M. Hutley, and Y. Chen, “Transmission blazed-binary gratings for visible light operation: performances and interferometric characterization,” J. Opt. A 5(5), S244–S249 (2003).
[Crossref]

M. Lee, P. Lalanne, J. Rodier, P. Chavel, E. Cambril, and Y. Chen, “Imaging with blazed-binary diffractive elements,” J. Opt. A 4(5), S119–S124 (2002).
[Crossref]

Rodier, J. C.

Sauvan, C.

M.-S. L. Lee, S. Bansropun, O. Huet, S. Cassette, B. Loiseaux, A. P. Wood, C. Sauvan, and P. Lalanne, “Sub-wavelength structures for broadband diffractive optics,” Proc. SPIE 6029, 602919 (2006).
[Crossref]

C. Sauvan, P. Lalanne, and M. S. Lee, “Broadband blazing with artificial dielectrics,” Opt. Lett. 29(14), 1593–1595 (2004).
[Crossref] [PubMed]

M. Lee, P. Pichon, C. Sauvan, J. Rodier, P. Lalanne, M. Hutley, and Y. Chen, “Transmission blazed-binary gratings for visible light operation: performances and interferometric characterization,” J. Opt. A 5(5), S244–S249 (2003).
[Crossref]

Schwider, J.

H. Haidner, P. Kipfer, J. Sheridan, J. Schwider, N. Streibl, M. Collischon, J. Hutfless, and M. März, “Diffraction gratings with rectangular grooves exceeding 80% diffraction efficiency,” Infrared Phys. 34(5), 467–475 (1993).
[Crossref]

Sheridan, J.

H. Haidner, P. Kipfer, J. Sheridan, J. Schwider, N. Streibl, M. Collischon, J. Hutfless, and M. März, “Diffraction gratings with rectangular grooves exceeding 80% diffraction efficiency,” Infrared Phys. 34(5), 467–475 (1993).
[Crossref]

Stork, W.

Streibl, N.

H. Haidner, P. Kipfer, J. Sheridan, J. Schwider, N. Streibl, M. Collischon, J. Hutfless, and M. März, “Diffraction gratings with rectangular grooves exceeding 80% diffraction efficiency,” Infrared Phys. 34(5), 467–475 (1993).
[Crossref]

W. Stork, N. Streibl, H. Haidner, and P. Kipfer, “Artificial distributed-index media fabricated by zero-order gratings,” Opt. Lett. 16(24), 1921–1923 (1991).
[Crossref] [PubMed]

Takahara, K.

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Thenot, D.

C. Ribot, M. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1(7), 489–493 (2013).
[Crossref]

Tünnermann, A.

W. Freese, T. Kämpfe, W. Rockstroh, E. B. Kley, and A. Tünnermann, “Optimized electron beam writing strategy for fabricating computer-generated holograms based on an effective medium approach,” Opt. Express 19(9), 8684–8692 (2011).
[Crossref] [PubMed]

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design and fabrication of a highly off-axis binary multi-phase level computer-generated hologram based on an effective medium approach,” Proc. SPIE 7927(792710), 792710 (2011).
[Crossref]

Turunen, J.

M. Kuittinen, J. Turunen, and P. Vahimaa, “Rigorous analysis and optimization of subwavelength-structured binary dielectric beam deflector gratings,” J. Mod. Opt. 45(1), 133–142 (1998).
[Crossref]

Vahimaa, P.

M. Kuittinen, J. Turunen, and P. Vahimaa, “Rigorous analysis and optimization of subwavelength-structured binary dielectric beam deflector gratings,” J. Mod. Opt. 45(1), 133–142 (1998).
[Crossref]

Wilson, S.

S. Wilson and M. Hutley, “The optical properties of 'moth eye' antireflection surfaces,” J. Mod. Opt. 29(7), 993–1009 (1982).

Wood, A. P.

M.-S. L. Lee, S. Bansropun, O. Huet, S. Cassette, B. Loiseaux, A. P. Wood, C. Sauvan, and P. Lalanne, “Sub-wavelength structures for broadband diffractive optics,” Proc. SPIE 6029, 602919 (2006).
[Crossref]

Yotsuya, T.

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yu, W.

Zhou, Z.

J. Feng and Z. Zhou, “Polarization beam splitter using a binary blazed grating coupler,” Opt. Lett. 32(12), 1662–1664 (2007).
[Crossref] [PubMed]

J. Feng and Z. Zhou, “High-efficiency compact grating coupler for integrated optical circuits,” Proc. SPIE 6351, 65311H (2006).
[Crossref]

Adv. Opt. Mater. (1)

C. Ribot, M. Lee, S. Collin, S. Bansropun, P. Plouhinec, D. Thenot, S. Cassette, B. Loiseaux, and P. Lalanne, “Broadband and efficient diffraction,” Adv. Opt. Mater. 1(7), 489–493 (2013).
[Crossref]

Appl. Opt. (2)

Infrared Phys. (1)

H. Haidner, P. Kipfer, J. Sheridan, J. Schwider, N. Streibl, M. Collischon, J. Hutfless, and M. März, “Diffraction gratings with rectangular grooves exceeding 80% diffraction efficiency,” Infrared Phys. 34(5), 467–475 (1993).
[Crossref]

J. Mod. Opt. (2)

S. Wilson and M. Hutley, “The optical properties of 'moth eye' antireflection surfaces,” J. Mod. Opt. 29(7), 993–1009 (1982).

M. Kuittinen, J. Turunen, and P. Vahimaa, “Rigorous analysis and optimization of subwavelength-structured binary dielectric beam deflector gratings,” J. Mod. Opt. 45(1), 133–142 (1998).
[Crossref]

J. Opt. A (2)

M. Lee, P. Lalanne, J. Rodier, P. Chavel, E. Cambril, and Y. Chen, “Imaging with blazed-binary diffractive elements,” J. Opt. A 4(5), S119–S124 (2002).
[Crossref]

M. Lee, P. Pichon, C. Sauvan, J. Rodier, P. Lalanne, M. Hutley, and Y. Chen, “Transmission blazed-binary gratings for visible light operation: performances and interferometric characterization,” J. Opt. A 5(5), S244–S249 (2003).
[Crossref]

J. Opt. Soc. Am. A (2)

Opt. Express (1)

Opt. Lett. (7)

Proc. SPIE (4)

M.-S. L. Lee, S. Bansropun, O. Huet, S. Cassette, B. Loiseaux, A. P. Wood, C. Sauvan, and P. Lalanne, “Sub-wavelength structures for broadband diffractive optics,” Proc. SPIE 6029, 602919 (2006).
[Crossref]

M. Lee, P. Lalanne, P. Chavel, and E. Cambril, “Imaging with blazed-binary diffractive elements,” Proc. SPIE 4438, 62–68 (2001).
[Crossref]

J. Feng and Z. Zhou, “High-efficiency compact grating coupler for integrated optical circuits,” Proc. SPIE 6351, 65311H (2006).
[Crossref]

W. Freese, T. Kämpfe, E.-B. Kley, and A. Tünnermann, “Design and fabrication of a highly off-axis binary multi-phase level computer-generated hologram based on an effective medium approach,” Proc. SPIE 7927(792710), 792710 (2011).
[Crossref]

Science (2)

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345(6194), 298–302 (2014).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Other (7)

E. B. Kley, W. Freese, T. Kampfe, A. Tunnermann, U. D. Zeitner, D. Michaelis, and M. Erdmann, “Large-scale application of binary subwavelength structures,” in 2009 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics (2009), pp. 148–149.
[Crossref]

P. Lalanne, J. Rodier, P. Chavel, E. Cambril, A. Talneau, and Y. Chen, “Applications of index-gradient artificial dielectrics,” SPIE Proc. 1–7 (2003).

M. Lee, P. Lalanne, A. Wood, and C. Sauvan, WIPO Patent No. 2005038501. Geneva, Switzerland: World Intellectual Property Organization (2005).

P. Lalanne and M. Hutley, “Artificial media optical properties – subwavelength scale,” in Encyclopedia of Optical Engineering, R. Driggers, ed. (Marcel Dekker), Vol. 1, 62–71 (2003).

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “A Silicon Lens for Integrated Free-Space Optics,” in Advanced Photonics (Optical Society of America, Toronto, 2011), p. ITuD2.

V. Raulot, B. Serio, P. Gérard, P. Twardowski, and P. Meyrueis, “Modeling of a diffractive micro-lens by an effective medium method,” Proc. SPIE Proc. SPIE 7716, 77162J–77162J, (2010).

B. Kleemann, U.S. Patent No. 7,262,915. Washington, DC: U.S. Patent and Trademark Office. (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Plane wave-fronts (shown in red) travelling through a conventional thick, curved lens (a), compared to a thick gradient index (GRIN) lens (b), and to a thin, flat meta-surface lens (c).

Fig. 2
Fig. 2

Top-view of the two realizations of the lens designs: a “square” lens (left), and the “rounded” lens (right), with notched belt corners. The colored region shows the arrangement of the belts for each lens, with thick pillars near the lens center and thin pillars towards the periphery.

Fig. 3
Fig. 3

Schematic showing the major steps of the fabrication process.

Fig. 4
Fig. 4

Side-view of the pillar structures that modulate the phase of light passing through the lens. Pillars of large and small diameter etched to similar depths.

Fig. 5
Fig. 5

Experimental optical phase measurement setup. The phase of each uniform array was measured by detecting the shift in the interference pattern created between the beam passing through the patterned and bare silicon surface.

Fig. 6
Fig. 6

Simulation (blue) and experimental measurements (red) for phase increments added by patterned meta-surfaces for the 15 pillar structures. The black error bars represent the 15% margin of error in the experimental measurements.

Fig. 7
Fig. 7

Schematic of the focusing effect demonstration. The single mode radiation from an Er fiber laser was tightly focused on the Si sample surface to monitor beam diffraction behind the surface micro-lens using a simple imaging system.

Fig. 8
Fig. 8

Intensity profiles taken at different image planes behind the micro-lens surface measured from the input surface of the wafer. The micro-lens is strong enough to focus light inside the wafer. The yellow-color frame depicts a 30 μm x 30 μm box equivalent to the size of the micro-lens.

Fig. 9
Fig. 9

The light intensity distribution at the micro-lens surface (a), at the minimal spot size (b), and at two focal lengths behind the focal plane (c). The yellow 30 x 30 μm square represents the size of the original lens. Secondary reflection spots are visible near left lower corner of the photos. The intensity of the Gaussian beam at the micro-lens input (green) is compared to the measured intensity at the focusing plane (blue) for one of the micro-lenses (d).

Tables (1)

Tables Icon

Table 1 Lens Characteristics

Metrics