Abstract

In order to realize three-dimensional (3D) displays, various multiplexing methods have been proposed to add the depth dimension to two-dimensional scenes. However, most of these methods have faced challenges such as the degradation of viewing qualities, the requirement of complicated equipment, and large amounts of data. In this paper, we further developed our previous concept, polarization distributed depth map, to propose the Lamina 3D display as a method for encoding and reconstructing depth information using the polarization status. By adopting projection optics to the depth encoding system, reconstructed 3D images can be scaled like images of 2D projection displays. 3D reconstruction characteristics of the polarization-encoded images are analyzed with simulation and experiment. The experimental system is also demonstrated to show feasibility of the proposed method.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Implementation of active-type Lamina 3D display system

Sangcheol Yoon, Hogil Baek, Sung-Wook Min, Soon-gi Park, Min-Kyu Park, Seong-Hyeon Yoo, Hak-Rin Kim, and Byoungho Lee
Opt. Express 23(12) 15848-15856 (2015)

Polarization distributed depth map for depth-fused three-dimensional display

Soon-gi Park, Jin-Ho Kim, and Sung-Wook Min
Opt. Express 19(5) 4316-4323 (2011)

Depth-expression characteristics of multi-projection 3D display systems [Invited]

Soon-gi Park, Jong-Young Hong, Chang-Kun Lee, Matheus Miranda, Youngmin Kim, and Byoungho Lee
Appl. Opt. 53(27) G198-G208 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
    [Crossref]
  2. S. A. Benton, Selected Papers on Three-Dimensional Displays (SPIE Optical Engineering Press, 2001).
  3. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008) http://www.journalofvision.org/content/8/3/33 .
    [Crossref] [PubMed]
  4. W. Fleming, “Vertical three-dimensional image screen,” US Patent 4,654,989 (1987).
  5. M. Blackshaw, A. DeVincenzi, D. Lakatos, D. Leithinger, and H. Ishii, “Recompose: direct and gestural interaction with an actuated surface,” in Proceedings of CHI '11 Extended Abstracts on Human Factors in Computing Systems (ACM, 2011), pp. 1237–1242.
    [Crossref]
  6. S. Follmer, D. Leithinger, A. Olwal, A. Hogge, and H. Ishii, “inFORM: dynamic physical affordances and constraints through shape and object actuation,” in Proceedings of the 26th annual ACM symposium on User interface software and technology (ACM, 2013), pp. 417–426.
    [Crossref]
  7. E. B. Goldstein, Sensation and Perception (Wadsworth, 2013).
  8. A. Sullivan, “DepthCube solid-state 3D volumetric display,” Proc. SPIE 5291, 279–284 (2004).
    [Crossref]
  9. S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
    [Crossref] [PubMed]
  10. S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19(21), 20940–20952 (2011).
    [Crossref] [PubMed]
  11. S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
    [Crossref] [PubMed]
  12. S. G. Park, J.-H. Kim, and S.-W. Min, “Polarization distributed depth map for depth-fused three-dimensional display,” Opt. Express 19(5), 4316–4323 (2011).
    [Crossref] [PubMed]
  13. J.-W. Seo and T. Kim, “Double-layer projection display system using scattering polarizer film,” Jpn. J. Appl. Phys. 47(3), 1602–1605 (2008).
    [Crossref]
  14. D. Armitage, I. Underwood, and S. T. Wu, Introduction to Microdisplays (Wiley, 2006).
  15. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 2010).
  16. R. A. Carlton, Pharmaceutical Microscopy, (Springer, 2011), Chap. 2.
  17. S. Katz, A. Tal, and R. Basri, “Direct visibility of point sets,” ACM Trans. Graph. 26(3), 24 (2007).
    [Crossref]

2013 (1)

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[Crossref]

2011 (2)

2010 (1)

2008 (2)

J.-W. Seo and T. Kim, “Double-layer projection display system using scattering polarizer film,” Jpn. J. Appl. Phys. 47(3), 1602–1605 (2008).
[Crossref]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008) http://www.journalofvision.org/content/8/3/33 .
[Crossref] [PubMed]

2007 (1)

S. Katz, A. Tal, and R. Basri, “Direct visibility of point sets,” ACM Trans. Graph. 26(3), 24 (2007).
[Crossref]

2004 (2)

A. Sullivan, “DepthCube solid-state 3D volumetric display,” Proc. SPIE 5291, 279–284 (2004).
[Crossref]

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref] [PubMed]

Akeley, K.

S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19(21), 20940–20952 (2011).
[Crossref] [PubMed]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008) http://www.journalofvision.org/content/8/3/33 .
[Crossref] [PubMed]

Banks, M. S.

S. Ravikumar, K. Akeley, and M. S. Banks, “Creating effective focus cues in multi-plane 3D displays,” Opt. Express 19(21), 20940–20952 (2011).
[Crossref] [PubMed]

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008) http://www.journalofvision.org/content/8/3/33 .
[Crossref] [PubMed]

Basri, R.

S. Katz, A. Tal, and R. Basri, “Direct visibility of point sets,” ACM Trans. Graph. 26(3), 24 (2007).
[Crossref]

Girshick, A. R.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008) http://www.journalofvision.org/content/8/3/33 .
[Crossref] [PubMed]

Hoffman, D. M.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008) http://www.journalofvision.org/content/8/3/33 .
[Crossref] [PubMed]

Hua, H.

Katz, S.

S. Katz, A. Tal, and R. Basri, “Direct visibility of point sets,” ACM Trans. Graph. 26(3), 24 (2007).
[Crossref]

Kim, J.-H.

Kim, T.

J.-W. Seo and T. Kim, “Double-layer projection display system using scattering polarizer film,” Jpn. J. Appl. Phys. 47(3), 1602–1605 (2008).
[Crossref]

Lee, B.

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[Crossref]

Liu, S.

Min, S.-W.

Ohtsuka, S.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref] [PubMed]

Park, S. G.

Ravikumar, S.

Sakai, S.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref] [PubMed]

Seo, J.-W.

J.-W. Seo and T. Kim, “Double-layer projection display system using scattering polarizer film,” Jpn. J. Appl. Phys. 47(3), 1602–1605 (2008).
[Crossref]

Sullivan, A.

A. Sullivan, “DepthCube solid-state 3D volumetric display,” Proc. SPIE 5291, 279–284 (2004).
[Crossref]

Suyama, S.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref] [PubMed]

Takada, H.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref] [PubMed]

Tal, A.

S. Katz, A. Tal, and R. Basri, “Direct visibility of point sets,” ACM Trans. Graph. 26(3), 24 (2007).
[Crossref]

Uehira, K.

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref] [PubMed]

ACM Trans. Graph. (1)

S. Katz, A. Tal, and R. Basri, “Direct visibility of point sets,” ACM Trans. Graph. 26(3), 24 (2007).
[Crossref]

J. Vis. (1)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008) http://www.journalofvision.org/content/8/3/33 .
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

J.-W. Seo and T. Kim, “Double-layer projection display system using scattering polarizer film,” Jpn. J. Appl. Phys. 47(3), 1602–1605 (2008).
[Crossref]

Opt. Express (3)

Phys. Today (1)

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[Crossref]

Proc. SPIE (1)

A. Sullivan, “DepthCube solid-state 3D volumetric display,” Proc. SPIE 5291, 279–284 (2004).
[Crossref]

Vision Res. (1)

S. Suyama, S. Ohtsuka, H. Takada, K. Uehira, and S. Sakai, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44(8), 785–793 (2004).
[Crossref] [PubMed]

Other (8)

S. A. Benton, Selected Papers on Three-Dimensional Displays (SPIE Optical Engineering Press, 2001).

D. Armitage, I. Underwood, and S. T. Wu, Introduction to Microdisplays (Wiley, 2006).

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 2010).

R. A. Carlton, Pharmaceutical Microscopy, (Springer, 2011), Chap. 2.

W. Fleming, “Vertical three-dimensional image screen,” US Patent 4,654,989 (1987).

M. Blackshaw, A. DeVincenzi, D. Lakatos, D. Leithinger, and H. Ishii, “Recompose: direct and gestural interaction with an actuated surface,” in Proceedings of CHI '11 Extended Abstracts on Human Factors in Computing Systems (ACM, 2011), pp. 1237–1242.
[Crossref]

S. Follmer, D. Leithinger, A. Olwal, A. Hogge, and H. Ishii, “inFORM: dynamic physical affordances and constraints through shape and object actuation,” in Proceedings of the 26th annual ACM symposium on User interface software and technology (ACM, 2013), pp. 417–426.
[Crossref]

E. B. Goldstein, Sensation and Perception (Wadsworth, 2013).

Supplementary Material (3)

» Media 1: MOV (469 KB)     
» Media 2: MOV (5629 KB)     
» Media 3: MOV (1142 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Conceptual diagram of system configuration of Lamina 3D display.
Fig. 2
Fig. 2 Filtered images at each layer of the experimental system: (a) depth information, filtered images at (b) the nearest layer, (c) the middle layer, and (d) the farthest layer.
Fig. 3
Fig. 3 Actual and perceived position of each layer according to polarization state of projected images based on the simulation
Fig. 4
Fig. 4 PSF of the Lamina 3D display with an input polarization of 45°: (a) 1D PSF of the system. The profile corresponds to the cross section of the 2D PSF along the red dashed line in (b). (b) 2D PSF of the system.
Fig. 5
Fig. 5 Comparison of blur characteristics of Lamina 3D display: (a) Experimental and (b) simulated images, and (c) their horizontal intensity profiles. (d) Experimental and (e) simulated images of blur characteristics of white square obtained with a three-layer configuration, and (f) horizontal profiles of blurred image. (g) The difference between the original and the blurred profiles of the images for comparison of normalized intensity difference.
Fig. 6
Fig. 6 Schematic diagram of experimental setup and prototype system: (a) conceptual diagram of system, (b) prototype system, and (c) scattering process at each layer.
Fig. 7
Fig. 7 Result images of Lamina 3D display. (a), (e), and (i) show the depth images for calibration, abstract depth, and computer-generated 3D car images, respectively. (b), (c), and (d) show images from left, center, and right views of the reconstructed 3D images, respectively. (f), (g), and (h) show left, center and right views of the abstract depth image, respectively. (j), (k), and (i) show left, center and right views of the computer-generated 3D object, respectively. Continuous perspectives of the reconstructed 3D images are shown in (Media 1).
Fig. 8
Fig. 8 Experimental results: (a) human figure (Media 2) and (b) letters (Media 3).
Fig. 9
Fig. 9 Comparison of image blur according to number of layers: (a) three layers, (b) four layers, and (c) five layers.

Tables (2)

Tables Icon

Table 1 Specifications of the Experimental System

Tables Icon

Table 2 Luminance Distribution over Layers

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

PS F S,θ, ϕ in (θ,ϕ)= a S (θ, ϕ in )exp( (ϕ ϕ in ) 2 b 2 ),
PS F T,θ, ϕ in (θ,ϕ)= a T (θ, ϕ in )δ(ϕ ϕ in ),
image S n =image S n1 PS F S,θ, ϕ in +image T n1 PS F S,90θ, ϕ in ,
image T n =image S n1 PS F T,θ, ϕ in +image T n1 PS F T,90θ, ϕ in ,
image I n (x,y)= w n ×image S n (x,y),
w n = n N R( α n )PR( α n ) 2 .
z(x,y) N image I n (x,y)× z n N image I n (x,y) .
a s (θ,ϕ)=(0.90.01θ)(0.990.0082ϕ), b=8.46, a T (θ,ϕ)=(0.01θ)(0.990.0082ϕ).

Metrics