Abstract

The photosensitivity of GeSx binary glasses in response to irradiation to femtosecond pulses at 800 nm is investigated. Samples with three different molecular compositions were irradiated under different exposure conditions. The material response to laser exposure was characterized by both refractometry and micro-Raman spectroscopy. It is shown that the relative content of sulfur in the glass matrix influences the photo-induced refractive index modification. At low sulfur content, both positive and negative index changes can be obtained while at high sulfur content, only a positive index change can be reached. These changes were correlated with variations in the Raman response of exposed glass which were interpreted in terms of structural modifications of the glass network. Under optimized exposure conditions, waveguides with positive index changes of up to 7.8x10−3 and a controllable diameter from 14 to 25 μm can be obtained. Direct inscription of low insertion losses (IL = 3.1 – 3.9 dB) waveguides is demonstrated in a sample characterized by a S/Ge ratio of 4. The current results open a pathway towards the use of Ge-S binary glasses for the fabrication of integrated mid-infrared photonic components.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser direct inscription of mid-IR transmitting waveguides in BGG glasses

Jean-Philippe Bérubé, Arthur Le Camus, Sandra Helena Messaddeq, Yannick Petit, Younès Messaddeq, Lionel Canioni, and Réal Vallée
Opt. Mater. Express 7(9) 3124-3135 (2017)

X-ray preconditioning for enhancing refractive index contrast in femtosecond laser photoinscription of embedded waveguides in pure silica

Maxime Royon, Emmanuel Marin, Sylvain Girard, Aziz Boukenter, Youcef Ouerdane, and Razvan Stoian
Opt. Mater. Express 9(1) 65-74 (2019)

Raman gain and femtosecond laser induced damage of Ge-As-S chalcogenide glasses

Yan Zhang, Yinsheng Xu, Chenyang You, Dong Xu, Junzhou Tang, Peiqing Zhang, and Shixun Dai
Opt. Express 25(8) 8886-8895 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2(4), 219–225 (2008).
    [Crossref]
  2. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
    [Crossref] [PubMed]
  3. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
    [Crossref]
  4. R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
    [Crossref] [PubMed]
  5. A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21(3), 2978–2986 (2013).
    [Crossref] [PubMed]
  6. R. R. Thomson, R. J. Harris, T. A. Birks, G. Brown, J. Allington-Smith, and J. Bland-Hawthorn, “Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics,” Opt. Lett. 37(12), 2331–2333 (2012).
    [Crossref] [PubMed]
  7. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
    [Crossref] [PubMed]
  8. A. Crespi, R. Osellame, R. Ramponi, D. Brod, E. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photon. 7(7), 545–549 (2013).
    [Crossref]
  9. S. Eaton, M. Ng, R. Osellame, and P. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11–13), 2387–2391 (2011).
    [Crossref]
  10. R. W. Waynant, I. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. Lond. A 359(1780), 635–644 (2001).
    [Crossref]
  11. R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys. Conf. Ser. 178(1), 012008 (2009).
    [Crossref]
  12. J. A. Harrington, Infrared Fibers and Their Applications (SPIE, 2004).
  13. Q. An, Y. Ren, Y. Jia, J. Vázquez de Aldana, and F. Chen, “Mid-infrared waveguides in zinc sulfide crystal,” Opt. Mater. Express 3(4), 466–471 (2013).
    [Crossref]
  14. J. E. McCarthy, H. T. Bookey, N. D. Psaila, R. R. Thomson, and A. K. Kar, “Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide,” Opt. Express 20(2), 1545–1551 (2012).
    [Crossref] [PubMed]
  15. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37(3), 392–394 (2012).
    [Crossref] [PubMed]
  16. A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
    [Crossref]
  17. O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
    [Crossref]
  18. M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007).
    [Crossref]
  19. B. McMillen, B. Zhang, K. P. Chen, A. Benayas, and D. Jaque, “Ultrafast laser fabrication of low-loss waveguides in chalcogenide glass with 0.65 dB/cm loss,” Opt. Lett. 37(9), 1418–1420 (2012).
    [Crossref] [PubMed]
  20. S. H. Messaddeq, J. P. Bérubé, M. Bernier, I. Skripachev, R. Vallée, and Y. Messaddeq, “Study of the photosensitivity of GeS binary glasses to 800 nm femtosecond pulses,” Opt. Express 20(3), 2824–2831 (2012).
    [Crossref] [PubMed]
  21. T. Kawaguchi, S. Maruno, and K. Tanaka, “Composition dependence of photoinduced and thermally induced bleachings of amorphous Ge‐S and Ge‐S‐Ag films,” J. Appl. Phys. 73(9), 4560–4566 (1993).
    [Crossref]
  22. H. Takebe, H. Maeda, and K. Morinaga, “Compositional variation in the structure of Ge–S glasses,” J. Non-Cryst. Solids 291(1–2), 14–24 (2001).
    [Crossref]
  23. K. Inoue, O. Matsuda, and K. Murase, “Raman spectra of tetrahedral vibrations in crystalline germanium dichalcogenides, GeS2 and GeSe2, in high and low temperature forms,” Solid State Commun. 79(11), 905–910 (1991).
    [Crossref]
  24. J. C. Phillips, “Topology of covalent non-crystalline solids II: Medium range order in chalcogenide alloys and a-Si(Ge),” J. Non-Cryst. Solids 43(1), 37–77 (1981).
    [Crossref]
  25. I. Kotsalas and C. Raptis, “High-temperature structural phase transitions of GexS1-x by Raman spectroscopy,” Phys. Rev. B 64(12), 125210 (2001).
    [Crossref]
  26. K. Hattori and H. Kawamura, “Raman study of liquid sulfur,” J. Non-Cryst. Solids 59, 1063–1066 (1983).
    [Crossref]
  27. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, D. Polli, S. de Silvestri, G. Cerullo, and P. Laporta, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
    [Crossref]
  28. A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett. 27(23), 2061–2063 (2002).
    [Crossref] [PubMed]
  29. M. Kalal and K. A. Nugent, “Abel inversion using fast Fourier transforms,” Appl. Opt. 27(10), 1956–1959 (1988).
    [Crossref] [PubMed]
  30. V. Bhardwaj, E. Simova, P. Corkum, D. Rayner, C. Hnatovsky, R. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
    [Crossref]
  31. J. Bérubé, M. Bernier, and R. Vallée, “Femtosecond laser-induced refractive index modifications in fluoride glass,” Opt. Mater. Express 3(5), 598–611 (2013).
    [Crossref]
  32. G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44(14), 846–847 (2008).
    [Crossref]
  33. S. Messaddeq, V. Tikhomirov, Y. Messaddeq, D. Lezal, and M. Li, “Light-induced relief gratings and a mechanism of metastable light-induced expansion in chalcogenide glasses,” Phys. Rev. B 63(22), 224203 (2001).
    [Crossref]
  34. C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
    [Crossref]
  35. S. Gross, M. Ams, G. Palmer, C. Miese, R. Williams, G. Marshall, A. Fuerbach, and M. Withford, “Ultrafast laser inscription in soft glasses: A comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
    [Crossref]
  36. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
    [PubMed]
  37. G. Janz, E. Roduner, J. Coutts, and J. J. Downey, “Raman studies of sulfur-containing anions in inorganic polysulfides,” Inorg. Chem. 15(8), 1751–1754 (1976).
    [Crossref]
  38. Z. Ivanova, “Local ordering studies of semiconducting ((GeS2)100−xGax glasses,” J. Mol. Struct. 245(3–4), 335–340 (1991).
    [Crossref]
  39. P. Boolchand, J. Grothaus, M. Tenhover, M. Hazle, and R. Grasselli, “Structure of GeS2 glass: spectroscopic evidence for broken chemical order,” Phys. Rev. B 33(8), 5421–5434 (1986).
    [Crossref]
  40. K. Singh, A. Singh, and N. Saxena, “Temperature dependence of effective thermal conductivity and effective thermal diffusivity of Se90In10 bulk chalcogenide glass,” Curr. Appl. Phys. 8(2), 159–162 (2008).
    [Crossref]

2013 (4)

2012 (6)

2011 (1)

S. Eaton, M. Ng, R. Osellame, and P. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11–13), 2387–2391 (2011).
[Crossref]

2010 (1)

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[Crossref] [PubMed]

2009 (2)

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys. Conf. Ser. 178(1), 012008 (2009).
[Crossref]

2008 (4)

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2(4), 219–225 (2008).
[Crossref]

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44(14), 846–847 (2008).
[Crossref]

K. Singh, A. Singh, and N. Saxena, “Temperature dependence of effective thermal conductivity and effective thermal diffusivity of Se90In10 bulk chalcogenide glass,” Curr. Appl. Phys. 8(2), 159–162 (2008).
[Crossref]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[PubMed]

2007 (1)

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007).
[Crossref]

2005 (1)

V. Bhardwaj, E. Simova, P. Corkum, D. Rayner, C. Hnatovsky, R. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

2003 (3)

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, D. Polli, S. de Silvestri, G. Cerullo, and P. Laporta, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
[Crossref]

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
[Crossref]

2002 (1)

2001 (5)

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

R. W. Waynant, I. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. Lond. A 359(1780), 635–644 (2001).
[Crossref]

H. Takebe, H. Maeda, and K. Morinaga, “Compositional variation in the structure of Ge–S glasses,” J. Non-Cryst. Solids 291(1–2), 14–24 (2001).
[Crossref]

S. Messaddeq, V. Tikhomirov, Y. Messaddeq, D. Lezal, and M. Li, “Light-induced relief gratings and a mechanism of metastable light-induced expansion in chalcogenide glasses,” Phys. Rev. B 63(22), 224203 (2001).
[Crossref]

I. Kotsalas and C. Raptis, “High-temperature structural phase transitions of GexS1-x by Raman spectroscopy,” Phys. Rev. B 64(12), 125210 (2001).
[Crossref]

1995 (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

1994 (1)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

1993 (1)

T. Kawaguchi, S. Maruno, and K. Tanaka, “Composition dependence of photoinduced and thermally induced bleachings of amorphous Ge‐S and Ge‐S‐Ag films,” J. Appl. Phys. 73(9), 4560–4566 (1993).
[Crossref]

1991 (2)

K. Inoue, O. Matsuda, and K. Murase, “Raman spectra of tetrahedral vibrations in crystalline germanium dichalcogenides, GeS2 and GeSe2, in high and low temperature forms,” Solid State Commun. 79(11), 905–910 (1991).
[Crossref]

Z. Ivanova, “Local ordering studies of semiconducting ((GeS2)100−xGax glasses,” J. Mol. Struct. 245(3–4), 335–340 (1991).
[Crossref]

1988 (1)

1986 (1)

P. Boolchand, J. Grothaus, M. Tenhover, M. Hazle, and R. Grasselli, “Structure of GeS2 glass: spectroscopic evidence for broken chemical order,” Phys. Rev. B 33(8), 5421–5434 (1986).
[Crossref]

1983 (1)

K. Hattori and H. Kawamura, “Raman study of liquid sulfur,” J. Non-Cryst. Solids 59, 1063–1066 (1983).
[Crossref]

1981 (1)

J. C. Phillips, “Topology of covalent non-crystalline solids II: Medium range order in chalcogenide alloys and a-Si(Ge),” J. Non-Cryst. Solids 43(1), 37–77 (1981).
[Crossref]

1976 (1)

G. Janz, E. Roduner, J. Coutts, and J. J. Downey, “Raman studies of sulfur-containing anions in inorganic polysulfides,” Inorg. Chem. 15(8), 1751–1754 (1976).
[Crossref]

Aggarwal, I.

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44(14), 846–847 (2008).
[Crossref]

Allington-Smith, J.

Ampem-Lassen, E.

Ams, M.

S. Gross, M. Ams, G. Palmer, C. Miese, R. Williams, G. Marshall, A. Fuerbach, and M. Withford, “Ultrafast laser inscription in soft glasses: A comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

An, Q.

Arezki, B.

Arriola, A.

Barty, A.

Baxter, G. W.

Benayas, A.

Bernier, M.

Bérubé, J.

Bérubé, J. P.

Bhardwaj, V.

V. Bhardwaj, E. Simova, P. Corkum, D. Rayner, C. Hnatovsky, R. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

Birks, T. A.

Bland-Hawthorn, J.

Bolger, J. A.

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44(14), 846–847 (2008).
[Crossref]

Bookey, H. T.

Boolchand, P.

P. Boolchand, J. Grothaus, M. Tenhover, M. Hazle, and R. Grasselli, “Structure of GeS2 glass: spectroscopic evidence for broken chemical order,” Phys. Rev. B 33(8), 5421–5434 (1986).
[Crossref]

Brawley, G. A.

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44(14), 846–847 (2008).
[Crossref]

Brod, D.

A. Crespi, R. Osellame, R. Ramponi, D. Brod, E. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photon. 7(7), 545–549 (2013).
[Crossref]

Brown, G.

Brunéel, J.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Cardinal, T.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Cerullo, G.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, D. Polli, S. de Silvestri, G. Cerullo, and P. Laporta, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
[Crossref]

Charles, N.

Chen, F.

Chen, K. P.

Chen, W. J.

Clifford, J.

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys. Conf. Ser. 178(1), 012008 (2009).
[Crossref]

Corkum, P.

V. Bhardwaj, E. Simova, P. Corkum, D. Rayner, C. Hnatovsky, R. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

Coutts, J.

G. Janz, E. Roduner, J. Coutts, and J. J. Downey, “Raman studies of sulfur-containing anions in inorganic polysulfides,” Inorg. Chem. 15(8), 1751–1754 (1976).
[Crossref]

Couzi, M.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Crespi, A.

A. Crespi, R. Osellame, R. Ramponi, D. Brod, E. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photon. 7(7), 545–549 (2013).
[Crossref]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[Crossref] [PubMed]

de Silvestri, S.

Dongre, C.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

Dooly, G.

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys. Conf. Ser. 178(1), 012008 (2009).
[Crossref]

Downey, J. J.

G. Janz, E. Roduner, J. Coutts, and J. J. Downey, “Raman studies of sulfur-containing anions in inorganic polysulfides,” Inorg. Chem. 15(8), 1751–1754 (1976).
[Crossref]

Dragomir, N. M.

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Eaton, S.

S. Eaton, M. Ng, R. Osellame, and P. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11–13), 2387–2391 (2011).
[Crossref]

Eaton, S. M.

Efimov, O.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Eggleton, B. J.

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44(14), 846–847 (2008).
[Crossref]

Elliott, S.

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
[Crossref]

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Fuerbach, A.

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21(3), 2978–2986 (2013).
[Crossref] [PubMed]

S. Gross, M. Ams, G. Palmer, C. Miese, R. Williams, G. Marshall, A. Fuerbach, and M. Withford, “Ultrafast laser inscription in soft glasses: A comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Galvao, E.

A. Crespi, R. Osellame, R. Ramponi, D. Brod, E. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photon. 7(7), 545–549 (2013).
[Crossref]

Gannot, I.

R. W. Waynant, I. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. Lond. A 359(1780), 635–644 (2001).
[Crossref]

Garcia, J.

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Gattass, R.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2(4), 219–225 (2008).
[Crossref]

Glebov, L.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Grasselli, R.

P. Boolchand, J. Grothaus, M. Tenhover, M. Hazle, and R. Grasselli, “Structure of GeS2 glass: spectroscopic evidence for broken chemical order,” Phys. Rev. B 33(8), 5421–5434 (1986).
[Crossref]

Gross, S.

A. Arriola, S. Gross, N. Jovanovic, N. Charles, P. G. Tuthill, S. M. Olaizola, A. Fuerbach, and M. J. Withford, “Low bend loss waveguides enable compact, efficient 3D photonic chips,” Opt. Express 21(3), 2978–2986 (2013).
[Crossref] [PubMed]

S. Gross, M. Ams, G. Palmer, C. Miese, R. Williams, G. Marshall, A. Fuerbach, and M. Withford, “Ultrafast laser inscription in soft glasses: A comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Grothaus, J.

P. Boolchand, J. Grothaus, M. Tenhover, M. Hazle, and R. Grasselli, “Structure of GeS2 glass: spectroscopic evidence for broken chemical order,” Phys. Rev. B 33(8), 5421–5434 (1986).
[Crossref]

Harris, R. J.

Hattori, K.

K. Hattori and H. Kawamura, “Raman study of liquid sulfur,” J. Non-Cryst. Solids 59, 1063–1066 (1983).
[Crossref]

Hazle, M.

P. Boolchand, J. Grothaus, M. Tenhover, M. Hazle, and R. Grasselli, “Structure of GeS2 glass: spectroscopic evidence for broken chemical order,” Phys. Rev. B 33(8), 5421–5434 (1986).
[Crossref]

Herman, P.

S. Eaton, M. Ng, R. Osellame, and P. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11–13), 2387–2391 (2011).
[Crossref]

Herman, P. R.

Hewak, D.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007).
[Crossref]

Hnatovsky, C.

V. Bhardwaj, E. Simova, P. Corkum, D. Rayner, C. Hnatovsky, R. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

Ho, S.

Hughes, M.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007).
[Crossref]

Huntington, S. T.

Ilev, I.

R. W. Waynant, I. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. Lond. A 359(1780), 635–644 (2001).
[Crossref]

Inoue, K.

K. Inoue, O. Matsuda, and K. Murase, “Raman spectra of tetrahedral vibrations in crystalline germanium dichalcogenides, GeS2 and GeSe2, in high and low temperature forms,” Solid State Commun. 79(11), 905–910 (1991).
[Crossref]

Ivanova, Z.

Z. Ivanova, “Local ordering studies of semiconducting ((GeS2)100−xGax glasses,” J. Mol. Struct. 245(3–4), 335–340 (1991).
[Crossref]

Janz, G.

G. Janz, E. Roduner, J. Coutts, and J. J. Downey, “Raman studies of sulfur-containing anions in inorganic polysulfides,” Inorg. Chem. 15(8), 1751–1754 (1976).
[Crossref]

Jaque, D.

Jha, A.

Jia, Y.

Jose, G.

Jovanovic, N.

Kalal, M.

Kar, A.

Kar, A. K.

Kawaguchi, T.

T. Kawaguchi, S. Maruno, and K. Tanaka, “Composition dependence of photoinduced and thermally induced bleachings of amorphous Ge‐S and Ge‐S‐Ag films,” J. Appl. Phys. 73(9), 4560–4566 (1993).
[Crossref]

Kawamura, H.

K. Hattori and H. Kawamura, “Raman study of liquid sulfur,” J. Non-Cryst. Solids 59, 1063–1066 (1983).
[Crossref]

Kern, P.

Kluge, M.

V. Bhardwaj, E. Simova, P. Corkum, D. Rayner, C. Hnatovsky, R. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Kotsalas, I.

I. Kotsalas and C. Raptis, “High-temperature structural phase transitions of GexS1-x by Raman spectroscopy,” Phys. Rev. B 64(12), 125210 (2001).
[Crossref]

Labadie, L.

Laporta, P.

Lewis, E.

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys. Conf. Ser. 178(1), 012008 (2009).
[Crossref]

Lezal, D.

S. Messaddeq, V. Tikhomirov, Y. Messaddeq, D. Lezal, and M. Li, “Light-induced relief gratings and a mechanism of metastable light-induced expansion in chalcogenide glasses,” Phys. Rev. B 63(22), 224203 (2001).
[Crossref]

Li, J.

Li, M.

S. Messaddeq, V. Tikhomirov, Y. Messaddeq, D. Lezal, and M. Li, “Light-induced relief gratings and a mechanism of metastable light-induced expansion in chalcogenide glasses,” Phys. Rev. B 63(22), 224203 (2001).
[Crossref]

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Maeda, H.

H. Takebe, H. Maeda, and K. Morinaga, “Compositional variation in the structure of Ge–S glasses,” J. Non-Cryst. Solids 291(1–2), 14–24 (2001).
[Crossref]

Maiorino, E.

A. Crespi, R. Osellame, R. Ramponi, D. Brod, E. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photon. 7(7), 545–549 (2013).
[Crossref]

Marangoni, M.

Marshall, G.

S. Gross, M. Ams, G. Palmer, C. Miese, R. Williams, G. Marshall, A. Fuerbach, and M. Withford, “Ultrafast laser inscription in soft glasses: A comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Martin, G.

Maruno, S.

T. Kawaguchi, S. Maruno, and K. Tanaka, “Composition dependence of photoinduced and thermally induced bleachings of amorphous Ge‐S and Ge‐S‐Ag films,” J. Appl. Phys. 73(9), 4560–4566 (1993).
[Crossref]

Mataloni, P.

A. Crespi, R. Osellame, R. Ramponi, D. Brod, E. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photon. 7(7), 545–549 (2013).
[Crossref]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[Crossref] [PubMed]

Matsuda, O.

K. Inoue, O. Matsuda, and K. Murase, “Raman spectra of tetrahedral vibrations in crystalline germanium dichalcogenides, GeS2 and GeSe2, in high and low temperature forms,” Solid State Commun. 79(11), 905–910 (1991).
[Crossref]

Mazur, E.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2(4), 219–225 (2008).
[Crossref]

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

McCarthy, J. E.

McMillen, B.

Messaddeq, S.

S. Messaddeq, V. Tikhomirov, Y. Messaddeq, D. Lezal, and M. Li, “Light-induced relief gratings and a mechanism of metastable light-induced expansion in chalcogenide glasses,” Phys. Rev. B 63(22), 224203 (2001).
[Crossref]

Messaddeq, S. H.

Messaddeq, Y.

S. H. Messaddeq, J. P. Bérubé, M. Bernier, I. Skripachev, R. Vallée, and Y. Messaddeq, “Study of the photosensitivity of GeS binary glasses to 800 nm femtosecond pulses,” Opt. Express 20(3), 2824–2831 (2012).
[Crossref] [PubMed]

S. Messaddeq, V. Tikhomirov, Y. Messaddeq, D. Lezal, and M. Li, “Light-induced relief gratings and a mechanism of metastable light-induced expansion in chalcogenide glasses,” Phys. Rev. B 63(22), 224203 (2001).
[Crossref]

Miese, C.

S. Gross, M. Ams, G. Palmer, C. Miese, R. Williams, G. Marshall, A. Fuerbach, and M. Withford, “Ultrafast laser inscription in soft glasses: A comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Morinaga, K.

H. Takebe, H. Maeda, and K. Morinaga, “Compositional variation in the structure of Ge–S glasses,” J. Non-Cryst. Solids 291(1–2), 14–24 (2001).
[Crossref]

Mourou, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Muda, R.

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys. Conf. Ser. 178(1), 012008 (2009).
[Crossref]

Murase, K.

K. Inoue, O. Matsuda, and K. Murase, “Raman spectra of tetrahedral vibrations in crystalline germanium dichalcogenides, GeS2 and GeSe2, in high and low temperature forms,” Solid State Commun. 79(11), 905–910 (1991).
[Crossref]

Ng, M.

S. Eaton, M. Ng, R. Osellame, and P. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11–13), 2387–2391 (2011).
[Crossref]

Ng, M. L.

Nolli, D.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

Nugent, K. A.

O’Keeffe, S.

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys. Conf. Ser. 178(1), 012008 (2009).
[Crossref]

Olaizola, S. M.

Osellame, R.

A. Crespi, R. Osellame, R. Ramponi, D. Brod, E. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photon. 7(7), 545–549 (2013).
[Crossref]

S. Eaton, M. Ng, R. Osellame, and P. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11–13), 2387–2391 (2011).
[Crossref]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[Crossref] [PubMed]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, D. Polli, S. de Silvestri, G. Cerullo, and P. Laporta, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
[Crossref]

Palmer, G.

S. Gross, M. Ams, G. Palmer, C. Miese, R. Williams, G. Marshall, A. Fuerbach, and M. Withford, “Ultrafast laser inscription in soft glasses: A comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Park, S.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Phillips, J. C.

J. C. Phillips, “Topology of covalent non-crystalline solids II: Medium range order in chalcogenide alloys and a-Si(Ge),” J. Non-Cryst. Solids 43(1), 37–77 (1981).
[Crossref]

Polli, D.

Pollnau, M.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

Psaila, N.

Psaila, N. D.

Ramponi, R.

A. Crespi, R. Osellame, R. Ramponi, D. Brod, E. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photon. 7(7), 545–549 (2013).
[Crossref]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[Crossref] [PubMed]

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, D. Polli, S. de Silvestri, G. Cerullo, and P. Laporta, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20(7), 1559–1567 (2003).
[Crossref]

Raptis, C.

I. Kotsalas and C. Raptis, “High-temperature structural phase transitions of GexS1-x by Raman spectroscopy,” Phys. Rev. B 64(12), 125210 (2001).
[Crossref]

Rayner, D.

V. Bhardwaj, E. Simova, P. Corkum, D. Rayner, C. Hnatovsky, R. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

Ren, Y.

Richardson, K.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Roberts, A.

Ródenas, A.

Roduner, E.

G. Janz, E. Roduner, J. Coutts, and J. J. Downey, “Raman studies of sulfur-containing anions in inorganic polysulfides,” Inorg. Chem. 15(8), 1751–1754 (1976).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Sanghera, J. S.

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44(14), 846–847 (2008).
[Crossref]

Sansoni, L.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[Crossref] [PubMed]

Saxena, N.

K. Singh, A. Singh, and N. Saxena, “Temperature dependence of effective thermal conductivity and effective thermal diffusivity of Se90In10 bulk chalcogenide glass,” Curr. Appl. Phys. 8(2), 159–162 (2008).
[Crossref]

Schaffer, C.

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Schreder, B.

V. Bhardwaj, E. Simova, P. Corkum, D. Rayner, C. Hnatovsky, R. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

Sciarrino, F.

A. Crespi, R. Osellame, R. Ramponi, D. Brod, E. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photon. 7(7), 545–549 (2013).
[Crossref]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[Crossref] [PubMed]

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Simova, E.

V. Bhardwaj, E. Simova, P. Corkum, D. Rayner, C. Hnatovsky, R. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

Singh, A.

K. Singh, A. Singh, and N. Saxena, “Temperature dependence of effective thermal conductivity and effective thermal diffusivity of Se90In10 bulk chalcogenide glass,” Curr. Appl. Phys. 8(2), 159–162 (2008).
[Crossref]

Singh, K.

K. Singh, A. Singh, and N. Saxena, “Temperature dependence of effective thermal conductivity and effective thermal diffusivity of Se90In10 bulk chalcogenide glass,” Curr. Appl. Phys. 8(2), 159–162 (2008).
[Crossref]

Skripachev, I.

Spagnolo, N.

A. Crespi, R. Osellame, R. Ramponi, D. Brod, E. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photon. 7(7), 545–549 (2013).
[Crossref]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Ta’eed, V. G.

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44(14), 846–847 (2008).
[Crossref]

Taccheo, S.

Takebe, H.

H. Takebe, H. Maeda, and K. Morinaga, “Compositional variation in the structure of Ge–S glasses,” J. Non-Cryst. Solids 291(1–2), 14–24 (2001).
[Crossref]

Tanaka, K.

T. Kawaguchi, S. Maruno, and K. Tanaka, “Composition dependence of photoinduced and thermally induced bleachings of amorphous Ge‐S and Ge‐S‐Ag films,” J. Appl. Phys. 73(9), 4560–4566 (1993).
[Crossref]

Taylor, R.

V. Bhardwaj, E. Simova, P. Corkum, D. Rayner, C. Hnatovsky, R. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

Tenhover, M.

P. Boolchand, J. Grothaus, M. Tenhover, M. Hazle, and R. Grasselli, “Structure of GeS2 glass: spectroscopic evidence for broken chemical order,” Phys. Rev. B 33(8), 5421–5434 (1986).
[Crossref]

Thomson, R.

Thomson, R. R.

Tikhomirov, V.

S. Messaddeq, V. Tikhomirov, Y. Messaddeq, D. Lezal, and M. Li, “Light-induced relief gratings and a mechanism of metastable light-induced expansion in chalcogenide glasses,” Phys. Rev. B 63(22), 224203 (2001).
[Crossref]

Tuthill, P. G.

Vallée, R.

Vallone, G.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[Crossref] [PubMed]

van den Vlekkert, H.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

Van Stryland, E.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Vazquez, R. M.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

Vázquez de Aldana, J.

Vitelli, C.

A. Crespi, R. Osellame, R. Ramponi, D. Brod, E. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photon. 7(7), 545–549 (2013).
[Crossref]

Waynant, R. W.

R. W. Waynant, I. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. Lond. A 359(1780), 635–644 (2001).
[Crossref]

Williams, R.

S. Gross, M. Ams, G. Palmer, C. Miese, R. Williams, G. Marshall, A. Fuerbach, and M. Withford, “Ultrafast laser inscription in soft glasses: A comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Withford, M.

S. Gross, M. Ams, G. Palmer, C. Miese, R. Williams, G. Marshall, A. Fuerbach, and M. Withford, “Ultrafast laser inscription in soft glasses: A comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Withford, M. J.

Yang, W.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007).
[Crossref]

Zakery, A.

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
[Crossref]

Zhang, B.

Zhang, H.

Zimmer, J.

V. Bhardwaj, E. Simova, P. Corkum, D. Rayner, C. Hnatovsky, R. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007).
[Crossref]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

C. Schaffer, J. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high repetition rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Curr. Appl. Phys. (1)

K. Singh, A. Singh, and N. Saxena, “Temperature dependence of effective thermal conductivity and effective thermal diffusivity of Se90In10 bulk chalcogenide glass,” Curr. Appl. Phys. 8(2), 159–162 (2008).
[Crossref]

Electron. Lett. (1)

G. A. Brawley, V. G. Ta’eed, J. A. Bolger, J. S. Sanghera, I. Aggarwal, and B. J. Eggleton, “Strong photoinduced Bragg gratings in arsenic selenide optical fibre using transverse holographic method,” Electron. Lett. 44(14), 846–847 (2008).
[Crossref]

Inorg. Chem. (1)

G. Janz, E. Roduner, J. Coutts, and J. J. Downey, “Raman studies of sulfur-containing anions in inorganic polysulfides,” Inorg. Chem. 15(8), 1751–1754 (1976).
[Crossref]

Int. J. Appl. Glass Sci. (1)

S. Gross, M. Ams, G. Palmer, C. Miese, R. Williams, G. Marshall, A. Fuerbach, and M. Withford, “Ultrafast laser inscription in soft glasses: A comparative study of athermal and thermal processing regimes for guided wave optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

J. Appl. Phys. (2)

V. Bhardwaj, E. Simova, P. Corkum, D. Rayner, C. Hnatovsky, R. Taylor, B. Schreder, M. Kluge, and J. Zimmer, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys. 97(8), 083102 (2005).
[Crossref]

T. Kawaguchi, S. Maruno, and K. Tanaka, “Composition dependence of photoinduced and thermally induced bleachings of amorphous Ge‐S and Ge‐S‐Ag films,” J. Appl. Phys. 73(9), 4560–4566 (1993).
[Crossref]

J. Mol. Struct. (1)

Z. Ivanova, “Local ordering studies of semiconducting ((GeS2)100−xGax glasses,” J. Mol. Struct. 245(3–4), 335–340 (1991).
[Crossref]

J. Non-Cryst. Solids (5)

H. Takebe, H. Maeda, and K. Morinaga, “Compositional variation in the structure of Ge–S glasses,” J. Non-Cryst. Solids 291(1–2), 14–24 (2001).
[Crossref]

J. C. Phillips, “Topology of covalent non-crystalline solids II: Medium range order in chalcogenide alloys and a-Si(Ge),” J. Non-Cryst. Solids 43(1), 37–77 (1981).
[Crossref]

K. Hattori and H. Kawamura, “Raman study of liquid sulfur,” J. Non-Cryst. Solids 59, 1063–1066 (1983).
[Crossref]

S. Eaton, M. Ng, R. Osellame, and P. Herman, “High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser,” J. Non-Cryst. Solids 357(11–13), 2387–2391 (2011).
[Crossref]

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1–3), 1–12 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Conf. Ser. (1)

R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys. Conf. Ser. 178(1), 012008 (2009).
[Crossref]

Lab Chip (1)

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[Crossref] [PubMed]

Nat. Photon. (2)

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2(4), 219–225 (2008).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, D. Brod, E. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Integrated multimode interferometers with arbitrary designs for photonic boson sampling,” Nat. Photon. 7(7), 545–549 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. (1)

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Brunéel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17(3), 379–386 (2001).
[Crossref]

Opt. Mater. Express (2)

Philos. Trans. R. Soc. Lond. A (1)

R. W. Waynant, I. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Philos. Trans. R. Soc. Lond. A 359(1780), 635–644 (2001).
[Crossref]

Phys. Rev. B (3)

S. Messaddeq, V. Tikhomirov, Y. Messaddeq, D. Lezal, and M. Li, “Light-induced relief gratings and a mechanism of metastable light-induced expansion in chalcogenide glasses,” Phys. Rev. B 63(22), 224203 (2001).
[Crossref]

P. Boolchand, J. Grothaus, M. Tenhover, M. Hazle, and R. Grasselli, “Structure of GeS2 glass: spectroscopic evidence for broken chemical order,” Phys. Rev. B 33(8), 5421–5434 (1986).
[Crossref]

I. Kotsalas and C. Raptis, “High-temperature structural phase transitions of GexS1-x by Raman spectroscopy,” Phys. Rev. B 64(12), 125210 (2001).
[Crossref]

Phys. Rev. Lett. (2)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010).
[Crossref] [PubMed]

Solid State Commun. (1)

K. Inoue, O. Matsuda, and K. Murase, “Raman spectra of tetrahedral vibrations in crystalline germanium dichalcogenides, GeS2 and GeSe2, in high and low temperature forms,” Solid State Commun. 79(11), 905–910 (1991).
[Crossref]

Other (1)

J. A. Harrington, Infrared Fibers and Their Applications (SPIE, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 a) IR transmission spectra of the GeS2.2 and GeS4 samples. b) Visible transmission spectrum of the GeS4 sample (thickness of both samples is 7 mm).
Fig. 2
Fig. 2 Raman spectra of a) GeS2.2, b) GeS3 and c) GeS4. The structures of main bands are identified. Blue spheres denote Ge atoms and yellow ones S atoms.
Fig. 3
Fig. 3 Refractive index change of tracks inscribed with a translation speed of v = 50 mm/s, 5 mm/s and 0.5 mm/s. a) Δn at the center of the exposed area as a function of net fluence for GeS2.2 and GeS4. b) Phase contrast images of the longitudinal section and the corresponding refractive index profiles (identified by rectangles A, B and C in a)) of tracks inscribed in the three samples with the same net fluence and different translation speeds.
Fig. 4
Fig. 4 The Δn at the center of the exposed area for tracks inscribed with a translation speed of v = 0.05 mm/s as a function of net fluence for the three samples.
Fig. 5
Fig. 5 Pulse energy threshold for observable modification as a function of the translation speed for GeS2.2 and GeS4 glass compositions.
Fig. 6
Fig. 6 Size of the induced tracks as a function of the pulse energy, for a translation speed of a) v = 50 mm/s and b) v = 5 mm/s.
Fig. 7
Fig. 7 Raman spectra of irradiated channels in a) GeS2.2 and b) GeS4 glasses which were written using translation speeds of 0.05 (—-) and 50 mm/s (—-) and a pulse energy of 600 nJ.
Fig. 8
Fig. 8 Structural modification of the glass network of GeS2.2 pre- and post-irradiation under high net fluence.
Fig. 9
Fig. 9 Δn measured at the center of the exposed region and the diameter of optimized waveguides plotted versus pulse energy. Translation speed v = 5 mm/s.
Fig. 10
Fig. 10 a) Microscope image of the longitudinal section, b) image of the cross section, c) Δn profile and d) near-field mode profile of a waveguide inscribed with a translation speed of 5 mm/s and E = 200 nJ. IL: insertion loss, PL: propagation loss.

Tables (1)

Tables Icon

Table 1 Selected physical properties of GeSx binary glass samples.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F= 2 E p Γ R π w y v x

Metrics