Abstract

The wavelength-dependent optical torques provided by a circularly polarized (CP) plane wave driving Au nanorod (NR) and nanowire (NW) to rotate constantly were studied theoretically. Using the multiple multipole method, the resultant torque in terms of Maxwell’s stress tensor was analyzed. Numerical results show that the optical torque spectrum is in accordance with the absorption spectrum of Au NR/NW. Under the same fluence, the maximum optical torque occurs at the longitudinal surface plasmon resonance (LSPR) of Au NR/NW, accompanied by a severe plasmonic heating. The rotation direction of the light-driven NR/NW depends on the handedness of CP light. In contrast, the optical torque exerted on Au NR/NW illuminated by a linearly polarized light is null at LSPR. Due to the plasmonic effect, the optical torque on Au NR/NW by CP light is two orders of magnitude larger than that on a dielectric NR/NW of the same size. The steady-state rotation of NR/NW in water, resulting from the balance of optical torque and viscous torque, was also discussed. Our finding shed some light on manipulating a CP light-driven Au NR/NW as a rotating nanomotor for a variety of applications in optofluidics and biophysics.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength-dependent longitudinal polarizability of gold nanorod on optical torques

Jiunn-Woei Liaw, Wei-Jiun Lo, and Mao-Kuen Kuo
Opt. Express 22(9) 10858-10867 (2014)

Light torque nanocontrol, nanomotors and nanorockers

Keith D. Bonin, Bakhit Kourmanov, and Thad G. Walker
Opt. Express 10(19) 984-989 (2002)

Precise switching control of liquid crystalline microgears driven by circularly polarized light

Kiminori Ito, Hiroshi Frusawa, and Masahiro Kimura
Opt. Express 20(4) 4254-4259 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
    [Crossref]
  2. J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 82(557), 560–567 (1909).
    [Crossref]
  3. E. Hasman, “New twist on nanoscale motors,” Nat. Nanotechnol. 5(8), 563–564 (2010).
    [Crossref] [PubMed]
  4. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
    [Crossref]
  5. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
    [Crossref] [PubMed]
  6. L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
    [Crossref] [PubMed]
  7. M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
    [Crossref] [PubMed]
  8. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  9. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
    [Crossref] [PubMed]
  10. X. Xu, C. Cheng, H. Xin, H. Lei, and B. Li, “Controllable orientation of single silver nanowire using two fiber probes,” Sci. Rep. 4, 3989 (2014).
    [Crossref] [PubMed]
  11. P. H. Jones, F. Palmisano, F. Bonaccorso, P. G. Gucciardi, G. Calogero, A. C. Ferrari, and O. M. Maragó, “Rotation detection in light-driven nanorotors,” ACS Nano 3(10), 3077–3084 (2009).
    [Crossref] [PubMed]
  12. A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
    [Crossref] [PubMed]
  13. Z. Yan and N. F. Scherer, “Optical vortex induced rotation of silver nanowires,” J. Phys. Chem. Lett. 4(17), 2937–2942 (2013).
    [Crossref]
  14. A. Lehmuskero, Y. Li, P. Johansson, and M. Käll, “Plasmonic particles set into fast orbital motion by an optical vortex beam,” Opt. Express 22(4), 4349–4356 (2014).
    [Crossref] [PubMed]
  15. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
    [Crossref] [PubMed]
  16. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  17. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
    [Crossref] [PubMed]
  18. X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
    [Crossref] [PubMed]
  19. M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006).
    [Crossref] [PubMed]
  20. J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
    [Crossref] [PubMed]
  21. J. Trojek, L. Chvátal, and P. Zemánek, “Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study,” J. Opt. Soc. Am. A 29(7), 1224–1236 (2012).
    [Crossref] [PubMed]
  22. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
    [Crossref] [PubMed]
  23. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  24. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
    [Crossref] [PubMed]
  25. V. Wong and M. A. Ratner, “Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles,” Phys. Rev. B 73(7), 075416 (2006).
    [Crossref]
  26. B. J. Roxworthy and K. C. Toussaint., “Plasmonic nanotweezers: strong influence of adhesion layer and nanostructure orientation on trapping performance,” Opt. Express 20(9), 9591–9603 (2012).
    [Crossref] [PubMed]
  27. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
    [Crossref] [PubMed]
  28. L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z.-Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012).
    [Crossref] [PubMed]
  29. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
    [Crossref] [PubMed]
  30. P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
    [Crossref] [PubMed]
  31. L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, and Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
    [Crossref] [PubMed]
  32. C. Rockstuhl and J. Tominaga, “Calculation of the torque exerted by light fields on silver elliptical nanocylinders,” Europhys. Lett. 73(2), 313–319 (2006).
    [Crossref]
  33. Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
    [Crossref] [PubMed]
  34. Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, and N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
    [Crossref] [PubMed]
  35. J.-W. Liaw, W.-J. Lo, and M.-K. Kuo, “Wavelength-dependent longitudinal polarizability of gold nanorod on optical torques,” Opt. Express 22(9), 10858–10867 (2014).
    [Crossref] [PubMed]
  36. W. A. Shelton, K. D. Bonin, and T. G. Walker, “Nonlinear motion of optically torqued nanorods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2A), 036204 (2005).
    [Crossref] [PubMed]
  37. J.-W. Liaw and H.-Y. Tsai, “Theoretical investigation of plasmonic enhancement of silica-coated gold nanorod on molecular fluorescence,” J. Quant. Spectrosc. Radiat. Transf. 113(6), 470–479 (2012).
    [Crossref]
  38. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  39. M. Castillo, R. Ebensperger, D. Wirtz, M. Walczak, D. E. Hurtado, and A. Celedon, “Local mechanical response of cells to the controlled rotation of magnetic nanorods,” J. Biomed. Mater. Res. B Appl. Biomater. 102(8), 1779–1785 (2014).
    [Crossref] [PubMed]

2014 (4)

X. Xu, C. Cheng, H. Xin, H. Lei, and B. Li, “Controllable orientation of single silver nanowire using two fiber probes,” Sci. Rep. 4, 3989 (2014).
[Crossref] [PubMed]

A. Lehmuskero, Y. Li, P. Johansson, and M. Käll, “Plasmonic particles set into fast orbital motion by an optical vortex beam,” Opt. Express 22(4), 4349–4356 (2014).
[Crossref] [PubMed]

J.-W. Liaw, W.-J. Lo, and M.-K. Kuo, “Wavelength-dependent longitudinal polarizability of gold nanorod on optical torques,” Opt. Express 22(9), 10858–10867 (2014).
[Crossref] [PubMed]

M. Castillo, R. Ebensperger, D. Wirtz, M. Walczak, D. E. Hurtado, and A. Celedon, “Local mechanical response of cells to the controlled rotation of magnetic nanorods,” J. Biomed. Mater. Res. B Appl. Biomater. 102(8), 1779–1785 (2014).
[Crossref] [PubMed]

2013 (6)

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[Crossref] [PubMed]

Z. Yan and N. F. Scherer, “Optical vortex induced rotation of silver nanowires,” J. Phys. Chem. Lett. 4(17), 2937–2942 (2013).
[Crossref]

J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
[Crossref] [PubMed]

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

2012 (7)

J. Trojek, L. Chvátal, and P. Zemánek, “Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study,” J. Opt. Soc. Am. A 29(7), 1224–1236 (2012).
[Crossref] [PubMed]

X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
[Crossref] [PubMed]

B. J. Roxworthy and K. C. Toussaint., “Plasmonic nanotweezers: strong influence of adhesion layer and nanostructure orientation on trapping performance,” Opt. Express 20(9), 9591–9603 (2012).
[Crossref] [PubMed]

L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z.-Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012).
[Crossref] [PubMed]

L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, and Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
[Crossref] [PubMed]

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, and N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[Crossref] [PubMed]

J.-W. Liaw and H.-Y. Tsai, “Theoretical investigation of plasmonic enhancement of silica-coated gold nanorod on molecular fluorescence,” J. Quant. Spectrosc. Radiat. Transf. 113(6), 470–479 (2012).
[Crossref]

2011 (3)

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

2010 (3)

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref] [PubMed]

E. Hasman, “New twist on nanoscale motors,” Nat. Nanotechnol. 5(8), 563–564 (2010).
[Crossref] [PubMed]

2009 (1)

P. H. Jones, F. Palmisano, F. Bonaccorso, P. G. Gucciardi, G. Calogero, A. C. Ferrari, and O. M. Maragó, “Rotation detection in light-driven nanorotors,” ACS Nano 3(10), 3077–3084 (2009).
[Crossref] [PubMed]

2008 (2)

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[Crossref] [PubMed]

2007 (1)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[Crossref] [PubMed]

2006 (3)

C. Rockstuhl and J. Tominaga, “Calculation of the torque exerted by light fields on silver elliptical nanocylinders,” Europhys. Lett. 73(2), 313–319 (2006).
[Crossref]

V. Wong and M. A. Ratner, “Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles,” Phys. Rev. B 73(7), 075416 (2006).
[Crossref]

M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006).
[Crossref] [PubMed]

2005 (2)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

W. A. Shelton, K. D. Bonin, and T. G. Walker, “Nonlinear motion of optically torqued nanorods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2A), 036204 (2005).
[Crossref] [PubMed]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

2001 (1)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

1998 (1)

1994 (1)

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1936 (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
[Crossref]

1909 (1)

J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 82(557), 560–567 (1909).
[Crossref]

Arlt, J.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Bartal, G.

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref] [PubMed]

Beth, R. A.

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
[Crossref]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Bonaccorso, F.

P. H. Jones, F. Palmisano, F. Bonaccorso, P. G. Gucciardi, G. Calogero, A. C. Ferrari, and O. M. Maragó, “Rotation detection in light-driven nanorotors,” ACS Nano 3(10), 3077–3084 (2009).
[Crossref] [PubMed]

Bonin, K. D.

W. A. Shelton, K. D. Bonin, and T. G. Walker, “Nonlinear motion of optically torqued nanorods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2A), 036204 (2005).
[Crossref] [PubMed]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Bryant, P. E.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Calogero, G.

P. H. Jones, F. Palmisano, F. Bonaccorso, P. G. Gucciardi, G. Calogero, A. C. Ferrari, and O. M. Maragó, “Rotation detection in light-driven nanorotors,” ACS Nano 3(10), 3077–3084 (2009).
[Crossref] [PubMed]

Castillo, M.

M. Castillo, R. Ebensperger, D. Wirtz, M. Walczak, D. E. Hurtado, and A. Celedon, “Local mechanical response of cells to the controlled rotation of magnetic nanorods,” J. Biomed. Mater. Res. B Appl. Biomater. 102(8), 1779–1785 (2014).
[Crossref] [PubMed]

Celedon, A.

M. Castillo, R. Ebensperger, D. Wirtz, M. Walczak, D. E. Hurtado, and A. Celedon, “Local mechanical response of cells to the controlled rotation of magnetic nanorods,” J. Biomed. Mater. Res. B Appl. Biomater. 102(8), 1779–1785 (2014).
[Crossref] [PubMed]

Cheng, C.

X. Xu, C. Cheng, H. Xin, H. Lei, and B. Li, “Controllable orientation of single silver nanowire using two fiber probes,” Sci. Rep. 4, 3989 (2014).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chvátal, L.

Dholakia, K.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[Crossref] [PubMed]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Do, J.

J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
[Crossref] [PubMed]

Du, L.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Ebensperger, R.

M. Castillo, R. Ebensperger, D. Wirtz, M. Walczak, D. E. Hurtado, and A. Celedon, “Local mechanical response of cells to the controlled rotation of magnetic nanorods,” J. Biomed. Mater. Res. B Appl. Biomater. 102(8), 1779–1785 (2014).
[Crossref] [PubMed]

Fang, H.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Fedoruk, M.

J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
[Crossref] [PubMed]

Feldmann, J.

J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
[Crossref] [PubMed]

Feng, B.

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

P. H. Jones, F. Palmisano, F. Bonaccorso, P. G. Gucciardi, G. Calogero, A. C. Ferrari, and O. M. Maragó, “Rotation detection in light-driven nanorotors,” ACS Nano 3(10), 3077–3084 (2009).
[Crossref] [PubMed]

Friese, M. E. J.

Gan, L.

L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, and Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
[Crossref] [PubMed]

Gorodetski, Y.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Gschneidtner, T.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[Crossref] [PubMed]

Gu, M.

X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
[Crossref] [PubMed]

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[Crossref] [PubMed]

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

P. H. Jones, F. Palmisano, F. Bonaccorso, P. G. Gucciardi, G. Calogero, A. C. Ferrari, and O. M. Maragó, “Rotation detection in light-driven nanorotors,” ACS Nano 3(10), 3077–3084 (2009).
[Crossref] [PubMed]

Guffey, M. J.

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, and N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[Crossref] [PubMed]

Guo, H.

Guo, H.-L.

L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, and Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
[Crossref] [PubMed]

Guyot-Sionnest, P.

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Hasman, E.

E. Hasman, “New twist on nanoscale motors,” Nat. Nanotechnol. 5(8), 563–564 (2010).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Heckenberg, N. R.

Higurashi, E.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[Crossref]

Huang, L.

L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, and Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
[Crossref] [PubMed]

L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z.-Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012).
[Crossref] [PubMed]

Hurtado, D. E.

M. Castillo, R. Ebensperger, D. Wirtz, M. Walczak, D. E. Hurtado, and A. Celedon, “Local mechanical response of cells to the controlled rotation of magnetic nanorods,” J. Biomed. Mater. Res. B Appl. Biomater. 102(8), 1779–1785 (2014).
[Crossref] [PubMed]

Jäckel, F.

J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
[Crossref] [PubMed]

Johansson, P.

A. Lehmuskero, Y. Li, P. Johansson, and M. Käll, “Plasmonic particles set into fast orbital motion by an optical vortex beam,” Opt. Express 22(4), 4349–4356 (2014).
[Crossref] [PubMed]

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jones, P. H.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

P. H. Jones, F. Palmisano, F. Bonaccorso, P. G. Gucciardi, G. Calogero, A. C. Ferrari, and O. M. Maragó, “Rotation detection in light-driven nanorotors,” ACS Nano 3(10), 3077–3084 (2009).
[Crossref] [PubMed]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Jureller, J. E.

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, and N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[Crossref] [PubMed]

Käll, M.

A. Lehmuskero, Y. Li, P. Johansson, and M. Käll, “Plasmonic particles set into fast orbital motion by an optical vortex beam,” Opt. Express 22(4), 4349–4356 (2014).
[Crossref] [PubMed]

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[Crossref] [PubMed]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

Kim, H. Y.

Kleiner, V.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Kuo, M.-K.

Lan, T.-H.

X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
[Crossref] [PubMed]

Lehmuskero, A.

A. Lehmuskero, Y. Li, P. Johansson, and M. Käll, “Plasmonic particles set into fast orbital motion by an optical vortex beam,” Opt. Express 22(4), 4349–4356 (2014).
[Crossref] [PubMed]

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[Crossref] [PubMed]

Lei, H.

X. Xu, C. Cheng, H. Xin, H. Lei, and B. Li, “Controllable orientation of single silver nanowire using two fiber probes,” Sci. Rep. 4, 3989 (2014).
[Crossref] [PubMed]

Lei, T.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Li, B.

X. Xu, C. Cheng, H. Xin, H. Lei, and B. Li, “Controllable orientation of single silver nanowire using two fiber probes,” Sci. Rep. 4, 3989 (2014).
[Crossref] [PubMed]

Li, J.

Li, J.-F.

L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, and Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
[Crossref] [PubMed]

Li, X.

X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
[Crossref] [PubMed]

Li, Y.

Li, Z.-Y.

L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, and Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
[Crossref] [PubMed]

L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z.-Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012).
[Crossref] [PubMed]

Liaw, J.-W.

J.-W. Liaw, W.-J. Lo, and M.-K. Kuo, “Wavelength-dependent longitudinal polarizability of gold nanorod on optical torques,” Opt. Express 22(9), 10858–10867 (2014).
[Crossref] [PubMed]

J.-W. Liaw and H.-Y. Tsai, “Theoretical investigation of plasmonic enhancement of silica-coated gold nanorod on molecular fluorescence,” J. Quant. Spectrosc. Radiat. Transf. 113(6), 470–479 (2012).
[Crossref]

Ling, L.

L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, and Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
[Crossref] [PubMed]

L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z.-Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012).
[Crossref] [PubMed]

Liu, M.

Liu, Y.

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref] [PubMed]

Lo, W.-J.

MacDonald, M. P.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Maragó, O. M.

P. H. Jones, F. Palmisano, F. Bonaccorso, P. G. Gucciardi, G. Calogero, A. C. Ferrari, and O. M. Maragó, “Rotation detection in light-driven nanorotors,” ACS Nano 3(10), 3077–3084 (2009).
[Crossref] [PubMed]

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Miljkovic, V. D.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

Min, C.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Nieminen, T. A.

Niv, A.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Oddershede, L. B.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[Crossref] [PubMed]

Ogier, R.

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[Crossref] [PubMed]

Ohguchi, O.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[Crossref]

Orrit, M.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[Crossref] [PubMed]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Palmisano, F.

P. H. Jones, F. Palmisano, F. Bonaccorso, P. G. Gucciardi, G. Calogero, A. C. Ferrari, and O. M. Maragó, “Rotation detection in light-driven nanorotors,” ACS Nano 3(10), 3077–3084 (2009).
[Crossref] [PubMed]

Paterson, L.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Pelton, M.

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, and N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[Crossref] [PubMed]

M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006).
[Crossref] [PubMed]

Poynting, J. H.

J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 82(557), 560–567 (1909).
[Crossref]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Ratner, M. A.

V. Wong and M. A. Ratner, “Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles,” Phys. Rev. B 73(7), 075416 (2006).
[Crossref]

Reece, P.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[Crossref] [PubMed]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Rockstuhl, C.

C. Rockstuhl and J. Tominaga, “Calculation of the torque exerted by light fields on silver elliptical nanocylinders,” Europhys. Lett. 73(2), 313–319 (2006).
[Crossref]

Roxworthy, B. J.

Rubinsztein-Dunlop, H.

Ruijgrok, P. V.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[Crossref] [PubMed]

Scherer, N. F.

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

Z. Yan and N. F. Scherer, “Optical vortex induced rotation of silver nanowires,” J. Phys. Chem. Lett. 4(17), 2937–2942 (2013).
[Crossref]

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, and N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[Crossref] [PubMed]

M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006).
[Crossref] [PubMed]

Schubert, O.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[Crossref] [PubMed]

Selhuber-Unkel, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[Crossref] [PubMed]

Shelton, W. A.

W. A. Shelton, K. D. Bonin, and T. G. Walker, “Nonlinear motion of optically torqued nanorods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2A), 036204 (2005).
[Crossref] [PubMed]

Shen, J.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Shen, Z.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Sibbett, W.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Smith, G.

Sönnichsen, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[Crossref] [PubMed]

Sweet, J.

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, and N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[Crossref] [PubMed]

Tanaka, H.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[Crossref]

Tchebotareva, A. L.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[Crossref] [PubMed]

Tien, C.-H.

X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
[Crossref] [PubMed]

Tominaga, J.

C. Rockstuhl and J. Tominaga, “Calculation of the torque exerted by light fields on silver elliptical nanocylinders,” Europhys. Lett. 73(2), 313–319 (2006).
[Crossref]

Tong, L.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

Toussaint, K. C.

Trojek, J.

Tsai, H.-Y.

J.-W. Liaw and H.-Y. Tsai, “Theoretical investigation of plasmonic enhancement of silica-coated gold nanorod on molecular fluorescence,” J. Quant. Spectrosc. Radiat. Transf. 113(6), 470–479 (2012).
[Crossref]

Ukita, H.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[Crossref]

Verhart, N. R.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[Crossref] [PubMed]

Vigderman, L.

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

Volpe, G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Walczak, M.

M. Castillo, R. Ebensperger, D. Wirtz, M. Walczak, D. E. Hurtado, and A. Celedon, “Local mechanical response of cells to the controlled rotation of magnetic nanorods,” J. Biomed. Mater. Res. B Appl. Biomater. 102(8), 1779–1785 (2014).
[Crossref] [PubMed]

Walker, T. G.

W. A. Shelton, K. D. Bonin, and T. G. Walker, “Nonlinear motion of optically torqued nanorods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2A), 036204 (2005).
[Crossref] [PubMed]

Wirtz, D.

M. Castillo, R. Ebensperger, D. Wirtz, M. Walczak, D. E. Hurtado, and A. Celedon, “Local mechanical response of cells to the controlled rotation of magnetic nanorods,” J. Biomed. Mater. Res. B Appl. Biomater. 102(8), 1779–1785 (2014).
[Crossref] [PubMed]

Wong, V.

V. Wong and M. A. Ratner, “Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles,” Phys. Rev. B 73(7), 075416 (2006).
[Crossref]

Xin, H.

X. Xu, C. Cheng, H. Xin, H. Lei, and B. Li, “Controllable orientation of single silver nanowire using two fiber probes,” Sci. Rep. 4, 3989 (2014).
[Crossref] [PubMed]

Xu, X.

X. Xu, C. Cheng, H. Xin, H. Lei, and B. Li, “Controllable orientation of single silver nanowire using two fiber probes,” Sci. Rep. 4, 3989 (2014).
[Crossref] [PubMed]

Yan, Z.

Z. Yan and N. F. Scherer, “Optical vortex induced rotation of silver nanowires,” J. Phys. Chem. Lett. 4(17), 2937–2942 (2013).
[Crossref]

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, and N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[Crossref] [PubMed]

Yuan, G.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Yuan, X.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Zemánek, P.

Zentgraf, T.

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref] [PubMed]

Zhang, X.

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref] [PubMed]

Zhang, Y.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Zhong, X.-L.

L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, and Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
[Crossref] [PubMed]

Zhu, S.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

Zijlstra, P.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[Crossref] [PubMed]

Zins, I.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[Crossref] [PubMed]

Zubarev, E. R.

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

ACS Nano (2)

P. H. Jones, F. Palmisano, F. Bonaccorso, P. G. Gucciardi, G. Calogero, A. C. Ferrari, and O. M. Maragó, “Rotation detection in light-driven nanorotors,” ACS Nano 3(10), 3077–3084 (2009).
[Crossref] [PubMed]

Z. Yan, M. Pelton, L. Vigderman, E. R. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano 7(10), 8794–8800 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[Crossref]

Chem. Soc. Rev. (1)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[Crossref] [PubMed]

Europhys. Lett. (1)

C. Rockstuhl and J. Tominaga, “Calculation of the torque exerted by light fields on silver elliptical nanocylinders,” Europhys. Lett. 73(2), 313–319 (2006).
[Crossref]

J. Biomed. Mater. Res. B Appl. Biomater. (1)

M. Castillo, R. Ebensperger, D. Wirtz, M. Walczak, D. E. Hurtado, and A. Celedon, “Local mechanical response of cells to the controlled rotation of magnetic nanorods,” J. Biomed. Mater. Res. B Appl. Biomater. 102(8), 1779–1785 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. Lett. (1)

Z. Yan and N. F. Scherer, “Optical vortex induced rotation of silver nanowires,” J. Phys. Chem. Lett. 4(17), 2937–2942 (2013).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

J.-W. Liaw and H.-Y. Tsai, “Theoretical investigation of plasmonic enhancement of silica-coated gold nanorod on molecular fluorescence,” J. Quant. Spectrosc. Radiat. Transf. 113(6), 470–479 (2012).
[Crossref]

Nano Lett. (6)

A. Lehmuskero, R. Ogier, T. Gschneidtner, P. Johansson, and M. Käll, “Ultrafast spinning of gold nanoparticles in water using circularly polarized light,” Nano Lett. 13(7), 3129–3134 (2013).
[Crossref] [PubMed]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10(1), 268–273 (2010).
[Crossref] [PubMed]

J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
[Crossref] [PubMed]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[Crossref] [PubMed]

Z. Yan, J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, and N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12(10), 5155–5161 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

L. Ling, H.-L. Guo, X.-L. Zhong, L. Huang, J.-F. Li, L. Gan, and Z.-Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23(21), 215302 (2012).
[Crossref] [PubMed]

Nat. Commun. (2)

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref] [PubMed]

X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

E. Hasman, “New twist on nanoscale motors,” Nat. Nanotechnol. 5(8), 563–564 (2010).
[Crossref] [PubMed]

M. Liu, T. Zentgraf, Y. Liu, G. Bartal, and X. Zhang, “Light-driven nanoscale plasmonic motors,” Nat. Nanotechnol. 5(8), 570–573 (2010).
[Crossref] [PubMed]

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
[Crossref]

Phys. Rev. B (2)

V. Wong and M. A. Ratner, “Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles,” Phys. Rev. B 73(7), 075416 (2006).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

W. A. Shelton, K. D. Bonin, and T. G. Walker, “Nonlinear motion of optically torqued nanorods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2A), 036204 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107(3), 037401 (2011).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character (1)

J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 82(557), 560–567 (1909).
[Crossref]

Sci. Rep. (1)

X. Xu, C. Cheng, H. Xin, H. Lei, and B. Li, “Controllable orientation of single silver nanowire using two fiber probes,” Sci. Rep. 4, 3989 (2014).
[Crossref] [PubMed]

Science (1)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Configuration of Au NR/NW lying on a plane, irradiated by a CP plane wave.
Fig. 2
Fig. 2 (a) Optical torque (red) and absorption efficiency (blue) for Au NR (r = 10 nm, AR = 3) versus wavelength. (b) Optical force (red) and extinction efficiency (blue). Solid line: CP light. Dash line: LP light at θ = 45°. Fluence: 25 MW/cm2.
Fig. 3
Fig. 3 (a) Surface charge | E n | and (b) traction distributions ( e r × ( T n ) ) e y on Au NR (r = 10 nm, AR = 3) at 710 nm (LSPR).
Fig. 4
Fig. 4 (a) Optical torques (solid lines) and absorption efficiencies (dash lines) versus wavelength of CP light for Au NR (r = 10, 15, 20 nm, AR = 3). (b) Efficiency of optical torque versus wavelength of CP light.
Fig. 5
Fig. 5 (a) Optical torque (red) and absorption efficiency (blue) for Au NW (r = 20 nm, AR = 12) versus wavelength. (b) Efficiency of optical torque. Solid line: CP light. Dash line: LP light at θ = 45°. (c) Optical force (red) and extinction efficiency (blue). Fluence: 25 MW/cm2.
Fig. 6
Fig. 6 (a) Surface charge | E n | and (b) traction ( e r × ( T n ) ) e y distributions on Au NW (r = 20 nm, AR = 12) at 1064 nm.
Fig. 7
Fig. 7 (a) Optical torques | M o | (solid line) on Au NR/NW (r = 20 nm) with various ARs irradiated by a CP light at LSPR (dash line). (b) | M o | and (c) | M o | / AR 3 versus AR at 830 nm, 1064 nm and 1500 nm. Fluence: 25 MW/cm2.

Tables (1)

Tables Icon

Table 1 Permittivity Coefficients of Drude-Lorentz Model of Au

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E i = Ε 0 ( e x ± j e z ) / 2
F o = S T n d s
M o = S r × ( T n ) d s
P a = 1 2 Re { S E × H ¯ n d s }
ε A u ( ω ) = ε ω p 2 ω ( ω + j δ ) χ ω 0 2 ( ω 2 ω 0 2 ) + 2 j γ ω
M v = C η v l 3 Ω

Metrics