Abstract

We experimentally and numerically developed a tunable absorbing nanoscale thin-film system, comprising of dye molecules doped dielectric coatings on reflecting surfaces, the absorption behaviors of which can be flexibly tuned by adjusting the system parameters, i.e. the coating thickness and the doping concentration of dye molecules. Specifically, with appropriate system parameters, our absorbing thin-film system exhibits very directional and polarization dependent absorption properties, which can be significantly altered if applied with different parameters. Calculations demonstrate the unique absorption behaviors are a result of coupling between molecular absorption and Fabry-Perot resonances in the thin-film cavity. In addition, we theoretically show that both the spectral and directional range of the absorption in the thin-film system can be intentionally regulated by doping dyes with different absorption band and setting proper excitation conditions of Fabry-Perot resonances.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband terahertz absorption enabled by coating an ultrathin antireflection film on doped semiconductor

Hongxing Wu, Fenghua Shi, and Yihang Chen
Opt. Express 24(18) 20663-20671 (2016)

Surface enhanced absorption and transmission from dye coated gold nanoparticles in thin films

Virendra N. Rai, Arvind K. Srivastava, Chandrachud Mukherjee, and Sudip K. Deb
Appl. Opt. 51(14) 2606-2615 (2012)

Nature of the enhanced optical absorption of dye-coated Ag island films

C. F. Eagen
Appl. Opt. 20(17) 3035-3042 (1981)

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  2. B. Ding, M. Bardosova, I. Povey, M. E. Pemble, and S. G. Romanov, “Engineered light scattering in colloidal photonic heterocrystals,” Adv. Funct. Mater. 20(5), 853–860 (2010).
    [Crossref]
  3. B. Ding, M. Bardosova, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Broadband omnidirectional diversion of light in hybrid plasmonic-photonic heterocrystals,” Adv. Funct. Mater. 21(21), 4182–4192 (2011).
    [Crossref]
  4. B. Curtin, R. Biswas, and V. Dalal, “Photonic cyrstal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells,” Appl. Phys. Lett. 95(23), 231102 (2009).
    [Crossref]
  5. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
    [Crossref]
  6. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
    [Crossref] [PubMed]
  7. X. Chen, H. Gong, S. D. Dai, D. Zhao, Y. Yang, Q. Li, and M. Qiu, “Near-infrared broadband absorber with film-coupled multilayer nanorods,” Opt. Lett. 38(13), 2247–2249 (2013).
    [Crossref] [PubMed]
  8. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
    [Crossref] [PubMed]
  9. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
    [Crossref] [PubMed]
  10. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
    [Crossref]
  11. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
    [Crossref] [PubMed]
  12. M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
    [Crossref]
  13. J. R. Tischler, M. S. Bradley, and V. Bulović, “Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film,” Opt. Lett. 31(13), 2045–2047 (2006).
    [Crossref] [PubMed]
  14. M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
    [Crossref] [PubMed]
  15. B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties,” Mater. Chem. Phys. 119(1-2), 237–242 (2010).
    [Crossref]
  16. B. Ding, C. Hrelescu, N. Arnold, G. Isic, and T. A. Klar, “Spectral and Directional Reshaping of Fluorescence in Large Area Self-Assembled Plasmonic-Photonic Crystals,” Nano Lett. 13(2), 378–386 (2013).
    [Crossref] [PubMed]
  17. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  18. N. Arnold, B. Ding, C. Hrelescu, and T. A. Klar, “Dye-doped Spheres with Plasmonic Semi-Shells: Lasing Modes and Scattering at Realistic Gain Levels,” J. Nanotechnology 4, 974–987 (2013).
    [Crossref] [PubMed]
  19. I. J. Hodgkinson and Q. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).
  20. S. M. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” Appl. Phys. Rev. 78(2), 607–639 (1995).
    [Crossref]
  21. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 2003).
  22. W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Opt. Express 21(7), 9113–9122 (2013).
    [Crossref] [PubMed]
  23. S. P. Huber, R. W. E. van de Kruijs, A. E. Yakshin, E. Zoethout, K.-J. Boller, and F. Bijkerk, “Subwavelength single layer absorption resonance antireflection coatings,” Opt. Express 22(1), 490–497 (2014).
    [Crossref] [PubMed]
  24. J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, “All optical, high contrast absorptive modulation in an asymmetric Fabry–Perot étalon,” Appl. Phys. Lett. 58(25), 2877 (1991).
    [Crossref]
  25. Graz University of Technology, “fluorophores.org,” http://www.fluorophores.tugraz.at/substance/852 .
  26. ATTO-TEC Catalogue 2009/2010,” https://www.atto-tec.com/fileadmin/user_upload/Katalog_Flyer_Support/Catalogue_2009_2010.pdf .
  27. D. Han, X. Li, F. Wu, X. Liu, and J. Zi, “Enhanced transmission of optically thick metallic films,” Appl. Phys. Lett. 88(16), 161110 (2006).
    [Crossref]
  28. G. Ramakrishnan, G. K. P. Ramanandan, A. J. Adam, M. Xu, N. Kumar, R. W. A. Hendrikx, and P. C. M. Planken, “Enhanced terahertz emission by coherent optical absorption in ultrathin semiconductor films on metals,” Opt. Express 21(14), 16784–16798 (2013).
    [Crossref] [PubMed]
  29. G. M. Akselrod, B. J. Walker, W. A. Tisdale, M. G. Bawendi, and V. Bulovic, “Twenty-Fold Enhancement of Molecular Fluorescence by Coupling to a J-aggregate Critically Coupled Resonator,” ACS Nano 6(1), 467–471 (2012).
    [Crossref] [PubMed]
  30. X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
    [Crossref]
  31. T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
    [Crossref] [PubMed]

2014 (2)

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[Crossref] [PubMed]

S. P. Huber, R. W. E. van de Kruijs, A. E. Yakshin, E. Zoethout, K.-J. Boller, and F. Bijkerk, “Subwavelength single layer absorption resonance antireflection coatings,” Opt. Express 22(1), 490–497 (2014).
[Crossref] [PubMed]

2013 (6)

W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Opt. Express 21(7), 9113–9122 (2013).
[Crossref] [PubMed]

G. Ramakrishnan, G. K. P. Ramanandan, A. J. Adam, M. Xu, N. Kumar, R. W. A. Hendrikx, and P. C. M. Planken, “Enhanced terahertz emission by coherent optical absorption in ultrathin semiconductor films on metals,” Opt. Express 21(14), 16784–16798 (2013).
[Crossref] [PubMed]

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

B. Ding, C. Hrelescu, N. Arnold, G. Isic, and T. A. Klar, “Spectral and Directional Reshaping of Fluorescence in Large Area Self-Assembled Plasmonic-Photonic Crystals,” Nano Lett. 13(2), 378–386 (2013).
[Crossref] [PubMed]

N. Arnold, B. Ding, C. Hrelescu, and T. A. Klar, “Dye-doped Spheres with Plasmonic Semi-Shells: Lasing Modes and Scattering at Realistic Gain Levels,” J. Nanotechnology 4, 974–987 (2013).
[Crossref] [PubMed]

X. Chen, H. Gong, S. D. Dai, D. Zhao, Y. Yang, Q. Li, and M. Qiu, “Near-infrared broadband absorber with film-coupled multilayer nanorods,” Opt. Lett. 38(13), 2247–2249 (2013).
[Crossref] [PubMed]

2012 (4)

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

G. M. Akselrod, B. J. Walker, W. A. Tisdale, M. G. Bawendi, and V. Bulovic, “Twenty-Fold Enhancement of Molecular Fluorescence by Coupling to a J-aggregate Critically Coupled Resonator,” ACS Nano 6(1), 467–471 (2012).
[Crossref] [PubMed]

2011 (3)

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

B. Ding, M. Bardosova, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Broadband omnidirectional diversion of light in hybrid plasmonic-photonic heterocrystals,” Adv. Funct. Mater. 21(21), 4182–4192 (2011).
[Crossref]

2010 (3)

B. Ding, M. Bardosova, I. Povey, M. E. Pemble, and S. G. Romanov, “Engineered light scattering in colloidal photonic heterocrystals,” Adv. Funct. Mater. 20(5), 853–860 (2010).
[Crossref]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties,” Mater. Chem. Phys. 119(1-2), 237–242 (2010).
[Crossref]

2009 (1)

B. Curtin, R. Biswas, and V. Dalal, “Photonic cyrstal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells,” Appl. Phys. Lett. 95(23), 231102 (2009).
[Crossref]

2008 (2)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

2006 (2)

1995 (1)

S. M. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” Appl. Phys. Rev. 78(2), 607–639 (1995).
[Crossref]

1991 (1)

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, “All optical, high contrast absorptive modulation in an asymmetric Fabry–Perot étalon,” Appl. Phys. Lett. 58(25), 2877 (1991).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abdelsalam, M.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Adam, A. J.

Aizenberg, J.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

Akselrod, G. M.

G. M. Akselrod, B. J. Walker, W. A. Tisdale, M. G. Bawendi, and V. Bulovic, “Twenty-Fold Enhancement of Molecular Fluorescence by Coupling to a J-aggregate Critically Coupled Resonator,” ACS Nano 6(1), 467–471 (2012).
[Crossref] [PubMed]

Arnold, N.

N. Arnold, B. Ding, C. Hrelescu, and T. A. Klar, “Dye-doped Spheres with Plasmonic Semi-Shells: Lasing Modes and Scattering at Realistic Gain Levels,” J. Nanotechnology 4, 974–987 (2013).
[Crossref] [PubMed]

B. Ding, C. Hrelescu, N. Arnold, G. Isic, and T. A. Klar, “Spectral and Directional Reshaping of Fluorescence in Large Area Self-Assembled Plasmonic-Photonic Crystals,” Nano Lett. 13(2), 378–386 (2013).
[Crossref] [PubMed]

Bardosova, M.

B. Ding, M. Bardosova, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Broadband omnidirectional diversion of light in hybrid plasmonic-photonic heterocrystals,” Adv. Funct. Mater. 21(21), 4182–4192 (2011).
[Crossref]

B. Ding, M. Bardosova, I. Povey, M. E. Pemble, and S. G. Romanov, “Engineered light scattering in colloidal photonic heterocrystals,” Adv. Funct. Mater. 20(5), 853–860 (2010).
[Crossref]

Barnes, W. L.

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[Crossref] [PubMed]

Bartlett, P. N.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Basov, D. N.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Baumberg, J. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Bawendi, M. G.

G. M. Akselrod, B. J. Walker, W. A. Tisdale, M. G. Bawendi, and V. Bulovic, “Twenty-Fold Enhancement of Molecular Fluorescence by Coupling to a J-aggregate Critically Coupled Resonator,” ACS Nano 6(1), 467–471 (2012).
[Crossref] [PubMed]

Bijkerk, F.

Biswas, R.

B. Curtin, R. Biswas, and V. Dalal, “Photonic cyrstal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells,” Appl. Phys. Lett. 95(23), 231102 (2009).
[Crossref]

Blanchard, R.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Boller, K.-J.

Borisov, A. G.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Bradley, M. S.

Bulovic, V.

G. M. Akselrod, B. J. Walker, W. A. Tisdale, M. G. Bawendi, and V. Bulovic, “Twenty-Fold Enhancement of Molecular Fluorescence by Coupling to a J-aggregate Critically Coupled Resonator,” ACS Nano 6(1), 467–471 (2012).
[Crossref] [PubMed]

J. R. Tischler, M. S. Bradley, and V. Bulović, “Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film,” Opt. Lett. 31(13), 2045–2047 (2006).
[Crossref] [PubMed]

Byrnes, S. J.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

Cao, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Capasso, F.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Chen, D.

B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties,” Mater. Chem. Phys. 119(1-2), 237–242 (2010).
[Crossref]

Chen, X.

Chen, Y.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

Chong, Y.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Chong, Y. D.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Curtin, B.

B. Curtin, R. Biswas, and V. Dalal, “Photonic cyrstal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells,” Appl. Phys. Lett. 95(23), 231102 (2009).
[Crossref]

Dai, S. D.

Dalal, V.

B. Curtin, R. Biswas, and V. Dalal, “Photonic cyrstal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells,” Appl. Phys. Lett. 95(23), 231102 (2009).
[Crossref]

Ding, B.

B. Ding, C. Hrelescu, N. Arnold, G. Isic, and T. A. Klar, “Spectral and Directional Reshaping of Fluorescence in Large Area Self-Assembled Plasmonic-Photonic Crystals,” Nano Lett. 13(2), 378–386 (2013).
[Crossref] [PubMed]

N. Arnold, B. Ding, C. Hrelescu, and T. A. Klar, “Dye-doped Spheres with Plasmonic Semi-Shells: Lasing Modes and Scattering at Realistic Gain Levels,” J. Nanotechnology 4, 974–987 (2013).
[Crossref] [PubMed]

B. Ding, M. Bardosova, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Broadband omnidirectional diversion of light in hybrid plasmonic-photonic heterocrystals,” Adv. Funct. Mater. 21(21), 4182–4192 (2011).
[Crossref]

B. Ding, M. Bardosova, I. Povey, M. E. Pemble, and S. G. Romanov, “Engineered light scattering in colloidal photonic heterocrystals,” Adv. Funct. Mater. 20(5), 853–860 (2010).
[Crossref]

Feng, S.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Fujita, K.

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

García de Abajo, F. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Ge, L.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Genevet, P.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Gentile, M. J.

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[Crossref] [PubMed]

Gong, H.

Guo, Z.

B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties,” Mater. Chem. Phys. 119(1-2), 237–242 (2010).
[Crossref]

Han, D.

D. Han, X. Li, F. Wu, X. Liu, and J. Zi, “Enhanced transmission of optically thick metallic films,” Appl. Phys. Lett. 88(16), 161110 (2006).
[Crossref]

Heffernan, J. F.

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, “All optical, high contrast absorptive modulation in an asymmetric Fabry–Perot étalon,” Appl. Phys. Lett. 58(25), 2877 (1991).
[Crossref]

Hegarty, J.

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, “All optical, high contrast absorptive modulation in an asymmetric Fabry–Perot étalon,” Appl. Phys. Lett. 58(25), 2877 (1991).
[Crossref]

Hendrikx, R. W. A.

Hrelescu, C.

N. Arnold, B. Ding, C. Hrelescu, and T. A. Klar, “Dye-doped Spheres with Plasmonic Semi-Shells: Lasing Modes and Scattering at Realistic Gain Levels,” J. Nanotechnology 4, 974–987 (2013).
[Crossref] [PubMed]

B. Ding, C. Hrelescu, N. Arnold, G. Isic, and T. A. Klar, “Spectral and Directional Reshaping of Fluorescence in Large Area Self-Assembled Plasmonic-Photonic Crystals,” Nano Lett. 13(2), 378–386 (2013).
[Crossref] [PubMed]

Huber, S. P.

Isic, G.

B. Ding, C. Hrelescu, N. Arnold, G. Isic, and T. A. Klar, “Spectral and Directional Reshaping of Fluorescence in Large Area Self-Assembled Plasmonic-Photonic Crystals,” Nano Lett. 13(2), 378–386 (2013).
[Crossref] [PubMed]

Jacobs, T.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kats, M. A.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Klar, T. A.

B. Ding, C. Hrelescu, N. Arnold, G. Isic, and T. A. Klar, “Spectral and Directional Reshaping of Fluorescence in Large Area Self-Assembled Plasmonic-Photonic Crystals,” Nano Lett. 13(2), 378–386 (2013).
[Crossref] [PubMed]

N. Arnold, B. Ding, C. Hrelescu, and T. A. Klar, “Dye-doped Spheres with Plasmonic Semi-Shells: Lasing Modes and Scattering at Realistic Gain Levels,” J. Nanotechnology 4, 974–987 (2013).
[Crossref] [PubMed]

Kolle, M.

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

Korovin, A. V.

B. Ding, M. Bardosova, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Broadband omnidirectional diversion of light in hybrid plasmonic-photonic heterocrystals,” Adv. Funct. Mater. 21(21), 4182–4192 (2011).
[Crossref]

Kumar, N.

Law, S.

Li, Q.

Li, X.

D. Han, X. Li, F. Wu, X. Liu, and J. Zi, “Enhanced transmission of optically thick metallic films,” Appl. Phys. Lett. 88(16), 161110 (2006).
[Crossref]

Lin, J.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Liu, H.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Liu, X.

D. Han, X. Li, F. Wu, X. Liu, and J. Zi, “Enhanced transmission of optically thick metallic films,” Appl. Phys. Lett. 88(16), 161110 (2006).
[Crossref]

Meng, X.

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Moloney, M. H.

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, “All optical, high contrast absorptive modulation in an asymmetric Fabry–Perot étalon,” Appl. Phys. Lett. 58(25), 2877 (1991).
[Crossref]

Murai, S.

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Noh, H.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Núñez-Sánchez, S.

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[Crossref] [PubMed]

Pang, Z.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Pemble, M. E.

B. Ding, M. Bardosova, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Broadband omnidirectional diversion of light in hybrid plasmonic-photonic heterocrystals,” Adv. Funct. Mater. 21(21), 4182–4192 (2011).
[Crossref]

B. Ding, M. Bardosova, I. Povey, M. E. Pemble, and S. G. Romanov, “Engineered light scattering in colloidal photonic heterocrystals,” Adv. Funct. Mater. 20(5), 853–860 (2010).
[Crossref]

Peschel, U.

B. Ding, M. Bardosova, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Broadband omnidirectional diversion of light in hybrid plasmonic-photonic heterocrystals,” Adv. Funct. Mater. 21(21), 4182–4192 (2011).
[Crossref]

Planken, P. C. M.

Povey, I.

B. Ding, M. Bardosova, I. Povey, M. E. Pemble, and S. G. Romanov, “Engineered light scattering in colloidal photonic heterocrystals,” Adv. Funct. Mater. 20(5), 853–860 (2010).
[Crossref]

Qazilbash, M. M.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Qiu, M.

Ramakrishnan, G.

Ramanandan, G. K. P.

Ramanathan, S.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Roberts, J. S.

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, “All optical, high contrast absorptive modulation in an asymmetric Fabry–Perot étalon,” Appl. Phys. Lett. 58(25), 2877 (1991).
[Crossref]

Romanov, S. G.

B. Ding, M. Bardosova, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Broadband omnidirectional diversion of light in hybrid plasmonic-photonic heterocrystals,” Adv. Funct. Mater. 21(21), 4182–4192 (2011).
[Crossref]

B. Ding, M. Bardosova, I. Povey, M. E. Pemble, and S. G. Romanov, “Engineered light scattering in colloidal photonic heterocrystals,” Adv. Funct. Mater. 20(5), 853–860 (2010).
[Crossref]

Rooney, G.

Sharma, D.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Stone, A. D.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Streyer, W.

Strite, S.

S. M. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” Appl. Phys. Rev. 78(2), 607–639 (1995).
[Crossref]

Su, X.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties,” Mater. Chem. Phys. 119(1-2), 237–242 (2010).
[Crossref]

Sugawara, Y.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Suo, B.

B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties,” Mater. Chem. Phys. 119(1-2), 237–242 (2010).
[Crossref]

Tanaka, K.

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Teperik, T. V.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Tischler, J. R.

Tisdale, W. A.

G. M. Akselrod, B. J. Walker, W. A. Tisdale, M. G. Bawendi, and V. Bulovic, “Twenty-Fold Enhancement of Molecular Fluorescence by Coupling to a J-aggregate Critically Coupled Resonator,” ACS Nano 6(1), 467–471 (2012).
[Crossref] [PubMed]

Ünlü, S. M.

S. M. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” Appl. Phys. Rev. 78(2), 607–639 (1995).
[Crossref]

van de Kruijs, R. W. E.

Walker, B. J.

G. M. Akselrod, B. J. Walker, W. A. Tisdale, M. G. Bawendi, and V. Bulovic, “Twenty-Fold Enhancement of Molecular Fluorescence by Coupling to a J-aggregate Critically Coupled Resonator,” ACS Nano 6(1), 467–471 (2012).
[Crossref] [PubMed]

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Wang, A.

B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties,” Mater. Chem. Phys. 119(1-2), 237–242 (2010).
[Crossref]

Wang, L.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Wasserman, D.

Whitehead, M.

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, “All optical, high contrast absorptive modulation in an asymmetric Fabry–Perot étalon,” Appl. Phys. Lett. 58(25), 2877 (1991).
[Crossref]

Wu, F.

D. Han, X. Li, F. Wu, X. Liu, and J. Zi, “Enhanced transmission of optically thick metallic films,” Appl. Phys. Lett. 88(16), 161110 (2006).
[Crossref]

Wu, J.

B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties,” Mater. Chem. Phys. 119(1-2), 237–242 (2010).
[Crossref]

Xu, M.

Yakshin, A. E.

Yan, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

Yang, Y.

Yang, Z.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

Zhai, T.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Zhang, X.

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Zhao, D.

Zi, J.

D. Han, X. Li, F. Wu, X. Liu, and J. Zi, “Enhanced transmission of optically thick metallic films,” Appl. Phys. Lett. 88(16), 161110 (2006).
[Crossref]

Zoethout, E.

Zong, Y.

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

ACS Nano (2)

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012).
[Crossref] [PubMed]

G. M. Akselrod, B. J. Walker, W. A. Tisdale, M. G. Bawendi, and V. Bulovic, “Twenty-Fold Enhancement of Molecular Fluorescence by Coupling to a J-aggregate Critically Coupled Resonator,” ACS Nano 6(1), 467–471 (2012).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

B. Ding, M. Bardosova, I. Povey, M. E. Pemble, and S. G. Romanov, “Engineered light scattering in colloidal photonic heterocrystals,” Adv. Funct. Mater. 20(5), 853–860 (2010).
[Crossref]

B. Ding, M. Bardosova, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Broadband omnidirectional diversion of light in hybrid plasmonic-photonic heterocrystals,” Adv. Funct. Mater. 21(21), 4182–4192 (2011).
[Crossref]

Appl. Phys. Lett. (6)

B. Curtin, R. Biswas, and V. Dalal, “Photonic cyrstal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells,” Appl. Phys. Lett. 95(23), 231102 (2009).
[Crossref]

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
[Crossref]

M. A. Kats, S. J. Byrnes, R. Blanchard, M. Kolle, P. Genevet, J. Aizenberg, and F. Capasso, “Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings,” Appl. Phys. Lett. 103(10), 101104 (2013).
[Crossref]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

D. Han, X. Li, F. Wu, X. Liu, and J. Zi, “Enhanced transmission of optically thick metallic films,” Appl. Phys. Lett. 88(16), 161110 (2006).
[Crossref]

J. F. Heffernan, M. H. Moloney, J. Hegarty, J. S. Roberts, and M. Whitehead, “All optical, high contrast absorptive modulation in an asymmetric Fabry–Perot étalon,” Appl. Phys. Lett. 58(25), 2877 (1991).
[Crossref]

Appl. Phys. Rev. (1)

S. M. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” Appl. Phys. Rev. 78(2), 607–639 (1995).
[Crossref]

J. Nanotechnology (1)

N. Arnold, B. Ding, C. Hrelescu, and T. A. Klar, “Dye-doped Spheres with Plasmonic Semi-Shells: Lasing Modes and Scattering at Realistic Gain Levels,” J. Nanotechnology 4, 974–987 (2013).
[Crossref] [PubMed]

Mater. Chem. Phys. (1)

B. Suo, X. Su, J. Wu, D. Chen, A. Wang, and Z. Guo, “Poly (vinyl alcohol) thin film filled with CdSe–ZnS quantum dots: Fabrication, characterization and optical properties,” Mater. Chem. Phys. 119(1-2), 237–242 (2010).
[Crossref]

Nano Lett. (3)

B. Ding, C. Hrelescu, N. Arnold, G. Isic, and T. A. Klar, “Spectral and Directional Reshaping of Fluorescence in Large Area Self-Assembled Plasmonic-Photonic Crystals,” Nano Lett. 13(2), 378–386 (2013).
[Crossref] [PubMed]

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[Crossref] [PubMed]

T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random Laser Based on Waveguided Plasmonic Gain Channels,” Nano Lett. 11(10), 4295–4298 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent Perfect Absorbers: Time-Reversed Lasers,” Phys. Rev. Lett. 105(5), 053901 (2010).
[Crossref] [PubMed]

Science (1)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331(6019), 889–892 (2011).
[Crossref] [PubMed]

Other (5)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Graz University of Technology, “fluorophores.org,” http://www.fluorophores.tugraz.at/substance/852 .

ATTO-TEC Catalogue 2009/2010,” https://www.atto-tec.com/fileadmin/user_upload/Katalog_Flyer_Support/Catalogue_2009_2010.pdf .

I. J. Hodgkinson and Q. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental (a,b) and simulated (c,d) absorption spectra of a PVAR6G film on a glass substrate (dashed thin line, corresponding to the left scale bar in each panel), a bare PVA film on a Ag substrate (solid thin line, right scale bar) and a PVAR6G film on Ag substrate (solid thick line, right scale bar) under s-polarized (a,c) and p-polarized (b,d) illumination. Structural parameters and incident conditions are labelled above (a) and (c). Schematic (left): the oblique illumination on a PVAR6G-Ag sample. The orientations of electric fields are indicated by black (s-polarization) and red (p-polarization) arrows. Schematics of reference samples: a PVA-Ag sample (upper-right) and PVAR6G-glass sample (lower-right).

Fig. 2
Fig. 2

Experimental (a,b) and Simulated (c,d) absorption spectra under s-polarised (a,c) and p-polarised (b,d) illumination over a range of incident angles from θ = 5 o ( θ = 0 o in the case of simulation) to θ = 85 o for PVAR6G coatings (the same parameters for experimental and simulated spectra as in Fig. 1) on Ag substrates. The intensity plot above each 3-dimensional surface is the projection of absorption spectra on a 2-dimensional plane as a function of λ and θ .

Fig. 3
Fig. 3

(a) Phasor diagram of reflected partial waves at λ = 536 nm under the oblique illumination with θ = 85.8 o for PVAR6G coating ( d = 93.9 nm and ΔεR6G = 0.005) on glass and Ag substrates (medium indicators: 1 for Air, 2 for PVAR6G and 3 for Ag or glass). The green dashed line indicates the position of 100% reflectivity (R = 1). T/R/A spectra for the same PVAR6G film as in (a) with 2d thickness suspending in Air under s-polarized (b) and p-polarized (c) illumination with the incident angle of θ = 85.8 o . The T/R spectra correspond to the left scale bar, while the absorption spectra correspond to the right one in panel (b) and (c)

Fig. 4
Fig. 4

Experimental (a,c) and simulated (b,d) absorption spectra PVAR6G coatings on Ag substrates under s- (black thick line) and p-polarised (red thin line) illumination The specific structure and illumination parameters are labeled in each panel.

Fig. 5
Fig. 5

(a) Extinction spectrum of ATTO 594 dissolved in water solution (adopted from [25]). Simulated absorption spectra for PVA coatings doped with ATTO 594 on a Ag substrate under s-polarized (b) and p-polarized (c) illumination. The thickness of PVAATTO594 coating is d = 30 nm, while the transition strength is ΔεATTO594 = 0.5.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε PVA R6G = ε PVA + Δ ε R6G j A j ω abs j 2 ω abs j 2 ω 2 i ω γ j
r = m = 0 r m .

Metrics