Abstract

We demonstrate the first semiconductor mode-locked lasers for ultrashort pulse generation at the 760 nm waveband. Multi-section laser diodes based on an AlGaAs multi-quantum-well structure were passively mode-locked, resulting in the generation of pulses at around 766 nm, with GHz (with different laser cavity lengths of 1.8 mm and 1.5 mm, respectively). The influence of the bias conditions on the mode-locking characteristics was investigated for these new lasers, revealing trends which can be ascribed to the interplay of dynamical processes in the saturable absorber and gain sections. It was also found that the front facet reflectivity played a key role in the stability of mode-locking and the occurrence of self-pulsations. These lasers hold significant promise as light sources for multi-photon biomedical imaging, as well as in other applications such as frequency conversion into the ultraviolet and radio-over-fibre communications.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Short pulse generation using a passively mode locked single InGaAsP/InP quantum well laser

K. Merghem, A. Akrout, A. Martinez, G. Moreau, J.-P. Tourrenc, F. Lelarge, F. Van Dijk, G.-H. Duan, G. Aubin, and A. Ramdane
Opt. Express 16(14) 10675-10683 (2008)

Generation of mode-locked optical pulses at 1035 nm from a fiber Bragg grating stabilized semiconductor laser diode

Peh Siong Teh, Shaif-ul Alam, David P. Shepherd, and David J. Richardson
Opt. Express 22(11) 13366-13373 (2014)

760  fs diode-pumped mode-locked laser with Yb:LuAG crystal at 1032  nm

Xian-Cui Su, Yi-Ran Wang, Jing-Liang He, Ru-Wei Zhao, Pei-Xiong Zhang, Yin Hang, Jia Hou, Bai-Tao Zhang, and Shuang Zhao
Appl. Opt. 54(23) 7120-7123 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. Ding, R. Aviles-Espinosa, M. A. Cataluna, D. Nikitichev, M. Ruiz, M. Tran, Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella, M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. Krakowski, P. Loza-Alvarez, and E. Rafailov, “High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier,” Opt. Express 20(13), 14308–14320 (2012).
    [Crossref] [PubMed]
  2. M. Kuramoto, N. Kitajima, H. Guo, Y. Furushima, M. Ikeda, and H. Yokoyama, “Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source,” Opt. Lett. 32(18), 2726–2728 (2007).
    [Crossref] [PubMed]
  3. K. König, M. Speicher, M. J. Köhler, R. Scharenberg, and M. Kaatz, “Clinical application of multiphoton tomography in combination with high-frequency ultrasound for evaluation of skin diseases,” J Biophotonics 3(12), 759–773 (2010).
    [Crossref] [PubMed]
  4. H. Yokoyama, H. Guo, T. Yoda, K. Takashima, K.-i. Sato, H. Taniguchi, and H. Ito, “Two-photon bioimaging with picosecond optical pulses from a semiconductor laser,” Opt. Express 14(8), 3467–3471 (2006).
    [Crossref] [PubMed]
  5. T. Schoenau, T. Siebert, R. Haertel, T. Eckhardt, D. Klemme, K. Lauristen, and R. Erdmann, “Pulsed picosecond 766 nm laser source operating between 1-80 MHz with automatic pump power management,” in Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XII (SPIE, San Francisco, CA, 2013).
  6. A. Knauer, H. Wenzel, G. Erbert, B. Sumpf, and M. Weyers, “Influence of oxygen in AlGaAs-based laser structures with Al-Free active region on device properties,” J. Electron. Mater. 30(11), 1421–1424 (2001).
    [Crossref]
  7. R. Singh, D. Bull, F. P. Dabkowski, E. Clausen, and A. K. Chin, “High-power, reliable operation of 730 nm AlGaAs laser diodes,” Appl. Phys. Lett. 75(14), 2002–2004 (1999).
    [Crossref]
  8. D. S. Kim, W. C. Choi, G. W. Moon, K. Y. Jang, T. G. Kim, and Y. M. Sung, “Defect engineering for high-power 780 nm AlGaAs laser diodes,” J. Mater. Sci. 41(22), 7319–7323 (2006).
    [Crossref]
  9. T. W. Schlereth, S. Gerhard, W. Kaiser, S. Hofling, and A. Forchel, “High-performance short-wavelength (~ 760 nm) AlGaInAs quantum-dot lasers,” IEEE Photon. Technol. Lett. 19(18), 1380–1382 (2007).
    [Crossref]
  10. P. L. Tihanyi, F. C. Jain, M. J. Robinson, J. E. Dixon, J. E. Williams, K. Meehan, M. S. O’Neill, L. S. Heath, and D. M. Beyea, “High power AlGaAs-GaAs visible diode lasers,” IEEE Photon. Technol. Lett. 6(7), 775–777 (1994).
    [Crossref]
  11. M. Sakamoto, T. Okada, and Y. Mori, “Electron traps with similar concentrations in n‐type Al0.1Ga0.9As grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 58(1), 337–340 (1985).
    [Crossref]
  12. G. Tandoi, J. Javaloyes, E. Avrutin, C. N. Ironside, and J. H. Marsh, “Subpicosecond colliding pulse mode locking at 126 GHz in monolithic GaAs/AlGaAs quantum well lasers: experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100608 (2013).
    [Crossref]
  13. J. Javaloyes and S. Balle, “Mode-locking in semiconductor Fabry-Perot lasers,” IEEE J. Quantum Electron. 46(7), 1023–1030 (2010).
    [Crossref]
  14. D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor-lasers,” IEEE J. Quantum Electron. 28(10), 2186–2202 (1992).
    [Crossref]
  15. K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
    [Crossref]
  16. J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
    [Crossref]
  17. W. Yang and A. Gopinath, “Study of passive mode locking of semiconductor lasers using time‐domain modeling,” Appl. Phys. Lett. 63(20), 2717–2719 (1993).
    [Crossref]
  18. D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31(6), 1051–1058 (1995).
    [Crossref]
  19. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor-laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
    [Crossref]
  20. E. P. Ippen and C. V. Shank, “Techniques for measurement,” in Ultrashort Light Pulses, S. L. Shapiro, ed. (Springer Berlin 1984), pp. 83–122.
  21. J. Palaski and K. Y. Lau, “Parameter ranges for ultrahigh frequency mode-locking of semiconductor lasers,” Appl. Phys. Lett. 59(1), 7–9 (1991).
    [Crossref]
  22. T. Xu and I. Montrosset, “Quantum dot passively mode-locked lasers: relation between intracavity pulse evolution and mode locking performances,” IEEE J. Quantum Electron. 49(1), 65–71 (2013).
    [Crossref]
  23. G. Tandoi, C. N. Ironside, J. H. Marsh, and A. C. Bryce, “Output power limitations and improvements in passively mode locked GaAs/AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 48(3), 318–327 (2012).
    [Crossref] [PubMed]

2013 (2)

G. Tandoi, J. Javaloyes, E. Avrutin, C. N. Ironside, and J. H. Marsh, “Subpicosecond colliding pulse mode locking at 126 GHz in monolithic GaAs/AlGaAs quantum well lasers: experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100608 (2013).
[Crossref]

T. Xu and I. Montrosset, “Quantum dot passively mode-locked lasers: relation between intracavity pulse evolution and mode locking performances,” IEEE J. Quantum Electron. 49(1), 65–71 (2013).
[Crossref]

2012 (2)

2010 (2)

K. König, M. Speicher, M. J. Köhler, R. Scharenberg, and M. Kaatz, “Clinical application of multiphoton tomography in combination with high-frequency ultrasound for evaluation of skin diseases,” J Biophotonics 3(12), 759–773 (2010).
[Crossref] [PubMed]

J. Javaloyes and S. Balle, “Mode-locking in semiconductor Fabry-Perot lasers,” IEEE J. Quantum Electron. 46(7), 1023–1030 (2010).
[Crossref]

2007 (2)

T. W. Schlereth, S. Gerhard, W. Kaiser, S. Hofling, and A. Forchel, “High-performance short-wavelength (~ 760 nm) AlGaInAs quantum-dot lasers,” IEEE Photon. Technol. Lett. 19(18), 1380–1382 (2007).
[Crossref]

M. Kuramoto, N. Kitajima, H. Guo, Y. Furushima, M. Ikeda, and H. Yokoyama, “Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source,” Opt. Lett. 32(18), 2726–2728 (2007).
[Crossref] [PubMed]

2006 (2)

H. Yokoyama, H. Guo, T. Yoda, K. Takashima, K.-i. Sato, H. Taniguchi, and H. Ito, “Two-photon bioimaging with picosecond optical pulses from a semiconductor laser,” Opt. Express 14(8), 3467–3471 (2006).
[Crossref] [PubMed]

D. S. Kim, W. C. Choi, G. W. Moon, K. Y. Jang, T. G. Kim, and Y. M. Sung, “Defect engineering for high-power 780 nm AlGaAs laser diodes,” J. Mater. Sci. 41(22), 7319–7323 (2006).
[Crossref]

2004 (1)

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[Crossref]

2001 (1)

A. Knauer, H. Wenzel, G. Erbert, B. Sumpf, and M. Weyers, “Influence of oxygen in AlGaAs-based laser structures with Al-Free active region on device properties,” J. Electron. Mater. 30(11), 1421–1424 (2001).
[Crossref]

1999 (1)

R. Singh, D. Bull, F. P. Dabkowski, E. Clausen, and A. K. Chin, “High-power, reliable operation of 730 nm AlGaAs laser diodes,” Appl. Phys. Lett. 75(14), 2002–2004 (1999).
[Crossref]

1995 (1)

D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31(6), 1051–1058 (1995).
[Crossref]

1994 (2)

P. L. Tihanyi, F. C. Jain, M. J. Robinson, J. E. Dixon, J. E. Williams, K. Meehan, M. S. O’Neill, L. S. Heath, and D. M. Beyea, “High power AlGaAs-GaAs visible diode lasers,” IEEE Photon. Technol. Lett. 6(7), 775–777 (1994).
[Crossref]

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
[Crossref]

1993 (1)

W. Yang and A. Gopinath, “Study of passive mode locking of semiconductor lasers using time‐domain modeling,” Appl. Phys. Lett. 63(20), 2717–2719 (1993).
[Crossref]

1992 (1)

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor-lasers,” IEEE J. Quantum Electron. 28(10), 2186–2202 (1992).
[Crossref]

1991 (1)

J. Palaski and K. Y. Lau, “Parameter ranges for ultrahigh frequency mode-locking of semiconductor lasers,” Appl. Phys. Lett. 59(1), 7–9 (1991).
[Crossref]

1989 (1)

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor-laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

1985 (1)

M. Sakamoto, T. Okada, and Y. Mori, “Electron traps with similar concentrations in n‐type Al0.1Ga0.9As grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 58(1), 337–340 (1985).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor-laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

Allin, D. S.

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
[Crossref]

Aviles-Espinosa, R.

Avrutin, E.

G. Tandoi, J. Javaloyes, E. Avrutin, C. N. Ironside, and J. H. Marsh, “Subpicosecond colliding pulse mode locking at 126 GHz in monolithic GaAs/AlGaAs quantum well lasers: experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100608 (2013).
[Crossref]

Balle, S.

J. Javaloyes and S. Balle, “Mode-locking in semiconductor Fabry-Perot lasers,” IEEE J. Quantum Electron. 46(7), 1023–1030 (2010).
[Crossref]

Bardella, P.

Beyea, D. M.

P. L. Tihanyi, F. C. Jain, M. J. Robinson, J. E. Dixon, J. E. Williams, K. Meehan, M. S. O’Neill, L. S. Heath, and D. M. Beyea, “High power AlGaAs-GaAs visible diode lasers,” IEEE Photon. Technol. Lett. 6(7), 775–777 (1994).
[Crossref]

Bowers, J. E.

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
[Crossref]

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor-lasers,” IEEE J. Quantum Electron. 28(10), 2186–2202 (1992).
[Crossref]

Bryce, A. C.

G. Tandoi, C. N. Ironside, J. H. Marsh, and A. C. Bryce, “Output power limitations and improvements in passively mode locked GaAs/AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 48(3), 318–327 (2012).
[Crossref] [PubMed]

Bull, D.

R. Singh, D. Bull, F. P. Dabkowski, E. Clausen, and A. K. Chin, “High-power, reliable operation of 730 nm AlGaAs laser diodes,” Appl. Phys. Lett. 75(14), 2002–2004 (1999).
[Crossref]

Carroll, J. E.

D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31(6), 1051–1058 (1995).
[Crossref]

Cataluna, M. A.

Chin, A. K.

R. Singh, D. Bull, F. P. Dabkowski, E. Clausen, and A. K. Chin, “High-power, reliable operation of 730 nm AlGaAs laser diodes,” Appl. Phys. Lett. 75(14), 2002–2004 (1999).
[Crossref]

Choi, W. C.

D. S. Kim, W. C. Choi, G. W. Moon, K. Y. Jang, T. G. Kim, and Y. M. Sung, “Defect engineering for high-power 780 nm AlGaAs laser diodes,” J. Mater. Sci. 41(22), 7319–7323 (2006).
[Crossref]

Clausen, E.

R. Singh, D. Bull, F. P. Dabkowski, E. Clausen, and A. K. Chin, “High-power, reliable operation of 730 nm AlGaAs laser diodes,” Appl. Phys. Lett. 75(14), 2002–2004 (1999).
[Crossref]

Dabkowski, F. P.

R. Singh, D. Bull, F. P. Dabkowski, E. Clausen, and A. K. Chin, “High-power, reliable operation of 730 nm AlGaAs laser diodes,” Appl. Phys. Lett. 75(14), 2002–2004 (1999).
[Crossref]

Derickson, D. J.

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
[Crossref]

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor-lasers,” IEEE J. Quantum Electron. 28(10), 2186–2202 (1992).
[Crossref]

Ding, Y.

Dixon, J. E.

P. L. Tihanyi, F. C. Jain, M. J. Robinson, J. E. Dixon, J. E. Williams, K. Meehan, M. S. O’Neill, L. S. Heath, and D. M. Beyea, “High power AlGaAs-GaAs visible diode lasers,” IEEE Photon. Technol. Lett. 6(7), 775–777 (1994).
[Crossref]

Erbert, G.

A. Knauer, H. Wenzel, G. Erbert, B. Sumpf, and M. Weyers, “Influence of oxygen in AlGaAs-based laser structures with Al-Free active region on device properties,” J. Electron. Mater. 30(11), 1421–1424 (2001).
[Crossref]

Forchel, A.

T. W. Schlereth, S. Gerhard, W. Kaiser, S. Hofling, and A. Forchel, “High-performance short-wavelength (~ 760 nm) AlGaInAs quantum-dot lasers,” IEEE Photon. Technol. Lett. 19(18), 1380–1382 (2007).
[Crossref]

Furushima, Y.

Gerhard, S.

T. W. Schlereth, S. Gerhard, W. Kaiser, S. Hofling, and A. Forchel, “High-performance short-wavelength (~ 760 nm) AlGaInAs quantum-dot lasers,” IEEE Photon. Technol. Lett. 19(18), 1380–1382 (2007).
[Crossref]

Gopinath, A.

W. Yang and A. Gopinath, “Study of passive mode locking of semiconductor lasers using time‐domain modeling,” Appl. Phys. Lett. 63(20), 2717–2719 (1993).
[Crossref]

Guo, H.

Heath, L. S.

P. L. Tihanyi, F. C. Jain, M. J. Robinson, J. E. Dixon, J. E. Williams, K. Meehan, M. S. O’Neill, L. S. Heath, and D. M. Beyea, “High power AlGaAs-GaAs visible diode lasers,” IEEE Photon. Technol. Lett. 6(7), 775–777 (1994).
[Crossref]

Helkey, R. J.

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
[Crossref]

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor-lasers,” IEEE J. Quantum Electron. 28(10), 2186–2202 (1992).
[Crossref]

Hofling, S.

T. W. Schlereth, S. Gerhard, W. Kaiser, S. Hofling, and A. Forchel, “High-performance short-wavelength (~ 760 nm) AlGaInAs quantum-dot lasers,” IEEE Photon. Technol. Lett. 19(18), 1380–1382 (2007).
[Crossref]

Ikeda, M.

Ironside, C. N.

G. Tandoi, J. Javaloyes, E. Avrutin, C. N. Ironside, and J. H. Marsh, “Subpicosecond colliding pulse mode locking at 126 GHz in monolithic GaAs/AlGaAs quantum well lasers: experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100608 (2013).
[Crossref]

G. Tandoi, C. N. Ironside, J. H. Marsh, and A. C. Bryce, “Output power limitations and improvements in passively mode locked GaAs/AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 48(3), 318–327 (2012).
[Crossref] [PubMed]

Ito, H.

Jain, F. C.

P. L. Tihanyi, F. C. Jain, M. J. Robinson, J. E. Dixon, J. E. Williams, K. Meehan, M. S. O’Neill, L. S. Heath, and D. M. Beyea, “High power AlGaAs-GaAs visible diode lasers,” IEEE Photon. Technol. Lett. 6(7), 775–777 (1994).
[Crossref]

Jang, K. Y.

D. S. Kim, W. C. Choi, G. W. Moon, K. Y. Jang, T. G. Kim, and Y. M. Sung, “Defect engineering for high-power 780 nm AlGaAs laser diodes,” J. Mater. Sci. 41(22), 7319–7323 (2006).
[Crossref]

Javaloyes, J.

G. Tandoi, J. Javaloyes, E. Avrutin, C. N. Ironside, and J. H. Marsh, “Subpicosecond colliding pulse mode locking at 126 GHz in monolithic GaAs/AlGaAs quantum well lasers: experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100608 (2013).
[Crossref]

J. Javaloyes and S. Balle, “Mode-locking in semiconductor Fabry-Perot lasers,” IEEE J. Quantum Electron. 46(7), 1023–1030 (2010).
[Crossref]

Jones, D. J.

D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31(6), 1051–1058 (1995).
[Crossref]

Kaatz, M.

K. König, M. Speicher, M. J. Köhler, R. Scharenberg, and M. Kaatz, “Clinical application of multiphoton tomography in combination with high-frequency ultrasound for evaluation of skin diseases,” J Biophotonics 3(12), 759–773 (2010).
[Crossref] [PubMed]

Kaiser, W.

T. W. Schlereth, S. Gerhard, W. Kaiser, S. Hofling, and A. Forchel, “High-performance short-wavelength (~ 760 nm) AlGaInAs quantum-dot lasers,” IEEE Photon. Technol. Lett. 19(18), 1380–1382 (2007).
[Crossref]

Kapsalis, A.

Karin, J. R.

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
[Crossref]

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor-lasers,” IEEE J. Quantum Electron. 28(10), 2186–2202 (1992).
[Crossref]

Kim, D. S.

D. S. Kim, W. C. Choi, G. W. Moon, K. Y. Jang, T. G. Kim, and Y. M. Sung, “Defect engineering for high-power 780 nm AlGaAs laser diodes,” J. Mater. Sci. 41(22), 7319–7323 (2006).
[Crossref]

Kim, T. G.

D. S. Kim, W. C. Choi, G. W. Moon, K. Y. Jang, T. G. Kim, and Y. M. Sung, “Defect engineering for high-power 780 nm AlGaAs laser diodes,” J. Mater. Sci. 41(22), 7319–7323 (2006).
[Crossref]

Kitajima, N.

Knauer, A.

A. Knauer, H. Wenzel, G. Erbert, B. Sumpf, and M. Weyers, “Influence of oxygen in AlGaAs-based laser structures with Al-Free active region on device properties,” J. Electron. Mater. 30(11), 1421–1424 (2001).
[Crossref]

Köhler, M. J.

K. König, M. Speicher, M. J. Köhler, R. Scharenberg, and M. Kaatz, “Clinical application of multiphoton tomography in combination with high-frequency ultrasound for evaluation of skin diseases,” J Biophotonics 3(12), 759–773 (2010).
[Crossref] [PubMed]

König, K.

K. König, M. Speicher, M. J. Köhler, R. Scharenberg, and M. Kaatz, “Clinical application of multiphoton tomography in combination with high-frequency ultrasound for evaluation of skin diseases,” J Biophotonics 3(12), 759–773 (2010).
[Crossref] [PubMed]

Krakowski, M.

Krestnikov, I.

Kuramoto, M.

Lau, K. Y.

J. Palaski and K. Y. Lau, “Parameter ranges for ultrahigh frequency mode-locking of semiconductor lasers,” Appl. Phys. Lett. 59(1), 7–9 (1991).
[Crossref]

Livshits, D.

Loza-Alvarez, P.

Mar, A.

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor-lasers,” IEEE J. Quantum Electron. 28(10), 2186–2202 (1992).
[Crossref]

Marcenac, D. D.

D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31(6), 1051–1058 (1995).
[Crossref]

Marsh, J. H.

G. Tandoi, J. Javaloyes, E. Avrutin, C. N. Ironside, and J. H. Marsh, “Subpicosecond colliding pulse mode locking at 126 GHz in monolithic GaAs/AlGaAs quantum well lasers: experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100608 (2013).
[Crossref]

G. Tandoi, C. N. Ironside, J. H. Marsh, and A. C. Bryce, “Output power limitations and improvements in passively mode locked GaAs/AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 48(3), 318–327 (2012).
[Crossref] [PubMed]

Meehan, K.

P. L. Tihanyi, F. C. Jain, M. J. Robinson, J. E. Dixon, J. E. Williams, K. Meehan, M. S. O’Neill, L. S. Heath, and D. M. Beyea, “High power AlGaAs-GaAs visible diode lasers,” IEEE Photon. Technol. Lett. 6(7), 775–777 (1994).
[Crossref]

Mesaritakis, C.

Montrosset, I.

Moon, G. W.

D. S. Kim, W. C. Choi, G. W. Moon, K. Y. Jang, T. G. Kim, and Y. M. Sung, “Defect engineering for high-power 780 nm AlGaAs laser diodes,” J. Mater. Sci. 41(22), 7319–7323 (2006).
[Crossref]

Mori, Y.

M. Sakamoto, T. Okada, and Y. Mori, “Electron traps with similar concentrations in n‐type Al0.1Ga0.9As grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 58(1), 337–340 (1985).
[Crossref]

Nagarajan, R.

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
[Crossref]

Nikitichev, D.

O’Neill, M. S.

P. L. Tihanyi, F. C. Jain, M. J. Robinson, J. E. Dixon, J. E. Williams, K. Meehan, M. S. O’Neill, L. S. Heath, and D. M. Beyea, “High power AlGaAs-GaAs visible diode lasers,” IEEE Photon. Technol. Lett. 6(7), 775–777 (1994).
[Crossref]

Okada, T.

M. Sakamoto, T. Okada, and Y. Mori, “Electron traps with similar concentrations in n‐type Al0.1Ga0.9As grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 58(1), 337–340 (1985).
[Crossref]

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor-laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

Palaski, J.

J. Palaski and K. Y. Lau, “Parameter ranges for ultrahigh frequency mode-locking of semiconductor lasers,” Appl. Phys. Lett. 59(1), 7–9 (1991).
[Crossref]

Rafailov, E.

Robert, Y.

Robinson, M. J.

P. L. Tihanyi, F. C. Jain, M. J. Robinson, J. E. Dixon, J. E. Williams, K. Meehan, M. S. O’Neill, L. S. Heath, and D. M. Beyea, “High power AlGaAs-GaAs visible diode lasers,” IEEE Photon. Technol. Lett. 6(7), 775–777 (1994).
[Crossref]

Rossetti, M.

Ruiz, M.

Sakamoto, M.

M. Sakamoto, T. Okada, and Y. Mori, “Electron traps with similar concentrations in n‐type Al0.1Ga0.9As grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 58(1), 337–340 (1985).
[Crossref]

Sato, K.-i.

Scharenberg, R.

K. König, M. Speicher, M. J. Köhler, R. Scharenberg, and M. Kaatz, “Clinical application of multiphoton tomography in combination with high-frequency ultrasound for evaluation of skin diseases,” J Biophotonics 3(12), 759–773 (2010).
[Crossref] [PubMed]

Schlereth, T. W.

T. W. Schlereth, S. Gerhard, W. Kaiser, S. Hofling, and A. Forchel, “High-performance short-wavelength (~ 760 nm) AlGaInAs quantum-dot lasers,” IEEE Photon. Technol. Lett. 19(18), 1380–1382 (2007).
[Crossref]

Simos, H.

Singh, R.

R. Singh, D. Bull, F. P. Dabkowski, E. Clausen, and A. K. Chin, “High-power, reliable operation of 730 nm AlGaAs laser diodes,” Appl. Phys. Lett. 75(14), 2002–2004 (1999).
[Crossref]

Speicher, M.

K. König, M. Speicher, M. J. Köhler, R. Scharenberg, and M. Kaatz, “Clinical application of multiphoton tomography in combination with high-frequency ultrasound for evaluation of skin diseases,” J Biophotonics 3(12), 759–773 (2010).
[Crossref] [PubMed]

Sumpf, B.

A. Knauer, H. Wenzel, G. Erbert, B. Sumpf, and M. Weyers, “Influence of oxygen in AlGaAs-based laser structures with Al-Free active region on device properties,” J. Electron. Mater. 30(11), 1421–1424 (2001).
[Crossref]

Sung, Y. M.

D. S. Kim, W. C. Choi, G. W. Moon, K. Y. Jang, T. G. Kim, and Y. M. Sung, “Defect engineering for high-power 780 nm AlGaAs laser diodes,” J. Mater. Sci. 41(22), 7319–7323 (2006).
[Crossref]

Syvridis, D.

Takashima, K.

Tandoi, G.

G. Tandoi, J. Javaloyes, E. Avrutin, C. N. Ironside, and J. H. Marsh, “Subpicosecond colliding pulse mode locking at 126 GHz in monolithic GaAs/AlGaAs quantum well lasers: experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100608 (2013).
[Crossref]

G. Tandoi, C. N. Ironside, J. H. Marsh, and A. C. Bryce, “Output power limitations and improvements in passively mode locked GaAs/AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 48(3), 318–327 (2012).
[Crossref] [PubMed]

Taniguchi, H.

Thompson, M. G.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[Crossref]

Thornton, R. L.

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
[Crossref]

Tihanyi, P. L.

P. L. Tihanyi, F. C. Jain, M. J. Robinson, J. E. Dixon, J. E. Williams, K. Meehan, M. S. O’Neill, L. S. Heath, and D. M. Beyea, “High power AlGaAs-GaAs visible diode lasers,” IEEE Photon. Technol. Lett. 6(7), 775–777 (1994).
[Crossref]

Tran, M.

Wasserbauer, J. G.

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor-lasers,” IEEE J. Quantum Electron. 28(10), 2186–2202 (1992).
[Crossref]

Wenzel, H.

A. Knauer, H. Wenzel, G. Erbert, B. Sumpf, and M. Weyers, “Influence of oxygen in AlGaAs-based laser structures with Al-Free active region on device properties,” J. Electron. Mater. 30(11), 1421–1424 (2001).
[Crossref]

Weyers, M.

A. Knauer, H. Wenzel, G. Erbert, B. Sumpf, and M. Weyers, “Influence of oxygen in AlGaAs-based laser structures with Al-Free active region on device properties,” J. Electron. Mater. 30(11), 1421–1424 (2001).
[Crossref]

White, I. H.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[Crossref]

Williams, J. E.

P. L. Tihanyi, F. C. Jain, M. J. Robinson, J. E. Dixon, J. E. Williams, K. Meehan, M. S. O’Neill, L. S. Heath, and D. M. Beyea, “High power AlGaAs-GaAs visible diode lasers,” IEEE Photon. Technol. Lett. 6(7), 775–777 (1994).
[Crossref]

Williams, K. A.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[Crossref]

Xu, T.

Yang, W.

W. Yang and A. Gopinath, “Study of passive mode locking of semiconductor lasers using time‐domain modeling,” Appl. Phys. Lett. 63(20), 2717–2719 (1993).
[Crossref]

Yoda, T.

Yokoyama, H.

Zhang, L. M.

D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31(6), 1051–1058 (1995).
[Crossref]

Appl. Phys. Lett. (4)

R. Singh, D. Bull, F. P. Dabkowski, E. Clausen, and A. K. Chin, “High-power, reliable operation of 730 nm AlGaAs laser diodes,” Appl. Phys. Lett. 75(14), 2002–2004 (1999).
[Crossref]

J. R. Karin, R. J. Helkey, D. J. Derickson, R. Nagarajan, D. S. Allin, J. E. Bowers, and R. L. Thornton, “Ultrafast dynamics in field-enhanced saturable absorbers,” Appl. Phys. Lett. 64(6), 676–678 (1994).
[Crossref]

W. Yang and A. Gopinath, “Study of passive mode locking of semiconductor lasers using time‐domain modeling,” Appl. Phys. Lett. 63(20), 2717–2719 (1993).
[Crossref]

J. Palaski and K. Y. Lau, “Parameter ranges for ultrahigh frequency mode-locking of semiconductor lasers,” Appl. Phys. Lett. 59(1), 7–9 (1991).
[Crossref]

IEEE J. Quantum Electron. (6)

T. Xu and I. Montrosset, “Quantum dot passively mode-locked lasers: relation between intracavity pulse evolution and mode locking performances,” IEEE J. Quantum Electron. 49(1), 65–71 (2013).
[Crossref]

G. Tandoi, C. N. Ironside, J. H. Marsh, and A. C. Bryce, “Output power limitations and improvements in passively mode locked GaAs/AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 48(3), 318–327 (2012).
[Crossref] [PubMed]

D. J. Jones, L. M. Zhang, J. E. Carroll, and D. D. Marcenac, “Dynamics of monolithic passively mode-locked semiconductor lasers,” IEEE J. Quantum Electron. 31(6), 1051–1058 (1995).
[Crossref]

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor-laser amplifiers,” IEEE J. Quantum Electron. 25(11), 2297–2306 (1989).
[Crossref]

J. Javaloyes and S. Balle, “Mode-locking in semiconductor Fabry-Perot lasers,” IEEE J. Quantum Electron. 46(7), 1023–1030 (2010).
[Crossref]

D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor-lasers,” IEEE J. Quantum Electron. 28(10), 2186–2202 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Tandoi, J. Javaloyes, E. Avrutin, C. N. Ironside, and J. H. Marsh, “Subpicosecond colliding pulse mode locking at 126 GHz in monolithic GaAs/AlGaAs quantum well lasers: experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100608 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (2)

T. W. Schlereth, S. Gerhard, W. Kaiser, S. Hofling, and A. Forchel, “High-performance short-wavelength (~ 760 nm) AlGaInAs quantum-dot lasers,” IEEE Photon. Technol. Lett. 19(18), 1380–1382 (2007).
[Crossref]

P. L. Tihanyi, F. C. Jain, M. J. Robinson, J. E. Dixon, J. E. Williams, K. Meehan, M. S. O’Neill, L. S. Heath, and D. M. Beyea, “High power AlGaAs-GaAs visible diode lasers,” IEEE Photon. Technol. Lett. 6(7), 775–777 (1994).
[Crossref]

J Biophotonics (1)

K. König, M. Speicher, M. J. Köhler, R. Scharenberg, and M. Kaatz, “Clinical application of multiphoton tomography in combination with high-frequency ultrasound for evaluation of skin diseases,” J Biophotonics 3(12), 759–773 (2010).
[Crossref] [PubMed]

J. Appl. Phys. (1)

M. Sakamoto, T. Okada, and Y. Mori, “Electron traps with similar concentrations in n‐type Al0.1Ga0.9As grown by metalorganic chemical vapor deposition,” J. Appl. Phys. 58(1), 337–340 (1985).
[Crossref]

J. Electron. Mater. (1)

A. Knauer, H. Wenzel, G. Erbert, B. Sumpf, and M. Weyers, “Influence of oxygen in AlGaAs-based laser structures with Al-Free active region on device properties,” J. Electron. Mater. 30(11), 1421–1424 (2001).
[Crossref]

J. Mater. Sci. (1)

D. S. Kim, W. C. Choi, G. W. Moon, K. Y. Jang, T. G. Kim, and Y. M. Sung, “Defect engineering for high-power 780 nm AlGaAs laser diodes,” J. Mater. Sci. 41(22), 7319–7323 (2006).
[Crossref]

New J. Phys. (1)

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Other (2)

E. P. Ippen and C. V. Shank, “Techniques for measurement,” in Ultrashort Light Pulses, S. L. Shapiro, ed. (Springer Berlin 1984), pp. 83–122.

T. Schoenau, T. Siebert, R. Haertel, T. Eckhardt, D. Klemme, K. Lauristen, and R. Erdmann, “Pulsed picosecond 766 nm laser source operating between 1-80 MHz with automatic pump power management,” in Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XII (SPIE, San Francisco, CA, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the two-section laser diode and layout of the AlGaAs structure grown on an n+ GaAs substrate.
Fig. 2
Fig. 2 (a) Light-current characteristics of the 1815 μm long laser for different reverse-bias conditions. (b)Autocorrelation, (c) optical and (d) RF spectra at reverse bias of −2.5 V and forward current of 280 mA.
Fig. 3
Fig. 3 Pulse duration and time-bandwidth product variation with reverse bias, for a fixed forward current of 265 mA applied to the gain section of the 1815 µm long laser. Inset: RF spectra corresponding to situations of stable ML and a regime of ML with self-pulsations (shaded area).
Fig. 4
Fig. 4 (a) Autocorrelation and (b) optical spectra traces for an increasing gain current and a fixed reverse bias of −2.6 V (1815 µm long laser).
Fig. 5
Fig. 5 (a) Light-current characteristics of the 1515 μm long laser for different reverse-bias conditions. (b) Autocorrelation, (c) optical spectrum and (d) RF spectrum at reverse bias of −3.0 V and forward current of 230 mA.

Metrics