Abstract

Metamaterials offer exciting opportunities that enable precise control of amplitude, polarization and phase of the light beam at a subwavelength scale. A gradient metasurface consists of a class of anisotropic subwavelength metamaterial resonators that offer abrupt amplitude and phase changes, thus enabling new applications in optical device design such as ultrathin flat lenses. We propose a highly efficient gradient metasurface lens based on a metal-dielectric-metal structure that operates in the terahertz regime. The proposed structure consists of slotted metallic resonator arrays on two sides of a thin dielectric spacer. By varying the geometrical parameters, the metasurface lens efficiently manipulates the spatial distribution of the terahertz field and focuses the beam to a spot size on the order of a wavelength. The proposed flat metasurface lens design is polarization insensitive and works efficiently even at wide angles of incidence.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of a highly efficient terahertz flat lens employing tri-layer metasurfaces

Chun-Chieh Chang, Daniel Headland, Derek Abbott, Withawat Withayachumnankul, and Hou-Tong Chen
Opt. Lett. 42(9) 1867-1870 (2017)

Terahertz metasurfaces with a high refractive index enhanced by the strong nearest neighbor coupling

Siyu Tan, Fengping Yan, Leena Singh, Wei Cao, Ningning Xu, Xiang Hu, Ranjan Singh, Mingwei Wang, and Weili Zhang
Opt. Express 23(22) 29222-29230 (2015)

Active metasurface terahertz deflector with phase discontinuities

Xiaoqiang Su, Chunmei Ouyang, Ningning Xu, Wei Cao, Xin Wei, Guofeng Song, Jianqiang Gu, Zhen Tian, John F. O’Hara, Jiaguang Han, and Weili Zhang
Opt. Express 23(21) 27152-27158 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  2. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
    [Crossref]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  5. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [Crossref] [PubMed]
  6. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  7. Z. Y. Wei, Y. Cao, X. Su, Z. Gong, Y. Long, and H. Li, “Highly efficient beam steering with a transparent metasurface,” Opt. Express 21(9), 10739–10745 (2013).
    [Crossref] [PubMed]
  8. W. M. Lee, X. C. Yuan, and W. C. Cheong, “Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation,” Opt. Lett. 29(15), 1796–1798 (2004).
    [Crossref] [PubMed]
  9. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
    [Crossref] [PubMed]
  10. X. Z. Chen, L. Huang, H. Hlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
    [Crossref] [PubMed]
  11. X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
    [Crossref] [PubMed]
  12. M. F. Volk, B. Reinhard, J. Neu, R. Beigang, and M. Rahm, “In-plane focusing of terahertz surface waves on a gradient index metamaterial film,” Opt. Lett. 38(12), 2156–2158 (2013).
    [Crossref] [PubMed]
  13. G. Savini, P. A. Ade, and J. Zhang, “A new artificial material approach for flat THz frequency lenses,” Opt. Express 20(23), 25766–25773 (2012).
    [Crossref] [PubMed]
  14. Q. Wu, X. Feng, R. Chen, C. Gu, S. Li, H. Li, Y. Xu, Y. Lai, B. Hou, H. Chen, and Y. Li, “An inside-out Eaton lens made of H-fractal metamaterials,” Appl. Phys. Lett. 101(3), 031903 (2012).
    [Crossref]
  15. O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, “Gradient index metamaterial based on slot elements,” Appl. Phys. Lett. 96(24), 241110 (2010).
    [Crossref]
  16. J. Neu, B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, “Metamaterial-based gradient index lens with strong focusing in the THz frequency range,” Opt. Express 18(26), 27748–27757 (2010).
    [Crossref] [PubMed]
  17. X. Wan, X. P. Shen, and T. J. Cui, “TE-mode coplanar imaging using weakly anisotropic metasurface,” Opt. Express 21(15), 17531–17538 (2013).
    [Crossref] [PubMed]
  18. A. Dhouibi, S. Nawaz Burokur, A. de Lustrac, and A. Priou, “Metamaterial-based half Maxwell fish-eye lens for broadband directive Emissions,” Appl. Phys. Lett. 102(2), 024102 (2013).
    [Crossref]
  19. R. K. Luneburg, Mathematical Theory of Optics (Brown University, 1944).
  20. X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
    [Crossref] [PubMed]
  21. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
    [Crossref] [PubMed]
  22. F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
    [Crossref] [PubMed]
  23. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nano hole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
    [Crossref] [PubMed]
  24. X. Lu, J. Han, and W. Zhang, “Localized plasmonic properties of sub wavelength geometries resonating at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 17(1), 119–129 (2011).
    [Crossref]
  25. J. Han, J. Gu, X. Lu, M. He, Q. Xing, and W. Zhang, “Broadband resonant terahertz transmission in a composite metal-dielectric structure,” Opt. Express 17(19), 16527–16534 (2009).
    [Crossref] [PubMed]
  26. J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, “A close-ring pair terahertz metamaterial resonating at normal incidence,” Opt. Express 17(22), 20307–20312 (2009).
    [Crossref] [PubMed]
  27. C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
    [Crossref] [PubMed]
  28. C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
    [Crossref] [PubMed]
  29. F. Aieta, P. Genevet, M. Kats, and F. Capasso, “Aberrations of flat lenses and aplanatic metasurfaces,” Opt. Express 21(25), 31530–31539 (2013).
    [Crossref] [PubMed]
  30. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

2014 (1)

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

2013 (7)

F. Aieta, P. Genevet, M. Kats, and F. Capasso, “Aberrations of flat lenses and aplanatic metasurfaces,” Opt. Express 21(25), 31530–31539 (2013).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

Z. Y. Wei, Y. Cao, X. Su, Z. Gong, Y. Long, and H. Li, “Highly efficient beam steering with a transparent metasurface,” Opt. Express 21(9), 10739–10745 (2013).
[Crossref] [PubMed]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

M. F. Volk, B. Reinhard, J. Neu, R. Beigang, and M. Rahm, “In-plane focusing of terahertz surface waves on a gradient index metamaterial film,” Opt. Lett. 38(12), 2156–2158 (2013).
[Crossref] [PubMed]

X. Wan, X. P. Shen, and T. J. Cui, “TE-mode coplanar imaging using weakly anisotropic metasurface,” Opt. Express 21(15), 17531–17538 (2013).
[Crossref] [PubMed]

A. Dhouibi, S. Nawaz Burokur, A. de Lustrac, and A. Priou, “Metamaterial-based half Maxwell fish-eye lens for broadband directive Emissions,” Appl. Phys. Lett. 102(2), 024102 (2013).
[Crossref]

2012 (6)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

G. Savini, P. A. Ade, and J. Zhang, “A new artificial material approach for flat THz frequency lenses,” Opt. Express 20(23), 25766–25773 (2012).
[Crossref] [PubMed]

Q. Wu, X. Feng, R. Chen, C. Gu, S. Li, H. Li, Y. Xu, Y. Lai, B. Hou, H. Chen, and Y. Li, “An inside-out Eaton lens made of H-fractal metamaterials,” Appl. Phys. Lett. 101(3), 031903 (2012).
[Crossref]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

X. Z. Chen, L. Huang, H. Hlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

2011 (1)

X. Lu, J. Han, and W. Zhang, “Localized plasmonic properties of sub wavelength geometries resonating at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 17(1), 119–129 (2011).
[Crossref]

2010 (2)

O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, “Gradient index metamaterial based on slot elements,” Appl. Phys. Lett. 96(24), 241110 (2010).
[Crossref]

J. Neu, B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, “Metamaterial-based gradient index lens with strong focusing in the THz frequency range,” Opt. Express 18(26), 27748–27757 (2010).
[Crossref] [PubMed]

2009 (3)

2006 (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

2005 (2)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

2004 (3)

W. M. Lee, X. C. Yuan, and W. C. Cheong, “Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation,” Opt. Lett. 29(15), 1796–1798 (2004).
[Crossref] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nano hole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Ade, P. A.

Aieta, F.

F. Aieta, P. Genevet, M. Kats, and F. Capasso, “Aberrations of flat lenses and aplanatic metasurfaces,” Opt. Express 21(25), 31530–31539 (2013).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

Bai, B.

X. Z. Chen, L. Huang, H. Hlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Beigang, R.

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Boltasseva, A.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nano hole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Cao, Y.

Capasso, F.

F. Aieta, P. Genevet, M. Kats, and F. Capasso, “Aberrations of flat lenses and aplanatic metasurfaces,” Opt. Express 21(25), 31530–31539 (2013).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Chen, H.

Q. Wu, X. Feng, R. Chen, C. Gu, S. Li, H. Li, Y. Xu, Y. Lai, B. Hou, H. Chen, and Y. Li, “An inside-out Eaton lens made of H-fractal metamaterials,” Appl. Phys. Lett. 101(3), 031903 (2012).
[Crossref]

Chen, R.

Q. Wu, X. Feng, R. Chen, C. Gu, S. Li, H. Li, Y. Xu, Y. Lai, B. Hou, H. Chen, and Y. Li, “An inside-out Eaton lens made of H-fractal metamaterials,” Appl. Phys. Lett. 101(3), 031903 (2012).
[Crossref]

Chen, X.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Chen, X. Z.

X. Z. Chen, L. Huang, H. Hlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Cheong, W. C.

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Cui, T. J.

X. Wan, X. P. Shen, and T. J. Cui, “TE-mode coplanar imaging using weakly anisotropic metasurface,” Opt. Express 21(15), 17531–17538 (2013).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

de Lustrac, A.

A. Dhouibi, S. Nawaz Burokur, A. de Lustrac, and A. Priou, “Metamaterial-based half Maxwell fish-eye lens for broadband directive Emissions,” Appl. Phys. Lett. 102(2), 024102 (2013).
[Crossref]

Dhouibi, A.

A. Dhouibi, S. Nawaz Burokur, A. de Lustrac, and A. Priou, “Metamaterial-based half Maxwell fish-eye lens for broadband directive Emissions,” Appl. Phys. Lett. 102(2), 024102 (2013).
[Crossref]

Emani, N. K.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Feng, X.

Q. Wu, X. Feng, R. Chen, C. Gu, S. Li, H. Li, Y. Xu, Y. Lai, B. Hou, H. Chen, and Y. Li, “An inside-out Eaton lens made of H-fractal metamaterials,” Appl. Phys. Lett. 101(3), 031903 (2012).
[Crossref]

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

Genevet, P.

F. Aieta, P. Genevet, M. Kats, and F. Capasso, “Aberrations of flat lenses and aplanatic metasurfaces,” Opt. Express 21(25), 31530–31539 (2013).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Gong, Z.

Gordon, R.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nano hole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Grbic, A.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Gu, C.

Q. Wu, X. Feng, R. Chen, C. Gu, S. Li, H. Li, Y. Xu, Y. Lai, B. Hou, H. Chen, and Y. Li, “An inside-out Eaton lens made of H-fractal metamaterials,” Appl. Phys. Lett. 101(3), 031903 (2012).
[Crossref]

Gu, J.

Han, J.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

X. Lu, J. Han, and W. Zhang, “Localized plasmonic properties of sub wavelength geometries resonating at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 17(1), 119–129 (2011).
[Crossref]

J. Han, J. Gu, X. Lu, M. He, Q. Xing, and W. Zhang, “Broadband resonant terahertz transmission in a composite metal-dielectric structure,” Opt. Express 17(19), 16527–16534 (2009).
[Crossref] [PubMed]

J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, “A close-ring pair terahertz metamaterial resonating at normal incidence,” Opt. Express 17(22), 20307–20312 (2009).
[Crossref] [PubMed]

He, M.

He, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Hlenbernd, H.

X. Z. Chen, L. Huang, H. Hlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Hou, B.

Q. Wu, X. Feng, R. Chen, C. Gu, S. Li, H. Li, Y. Xu, Y. Lai, B. Hou, H. Chen, and Y. Li, “An inside-out Eaton lens made of H-fractal metamaterials,” Appl. Phys. Lett. 101(3), 031903 (2012).
[Crossref]

Huang, L.

X. Z. Chen, L. Huang, H. Hlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Jin, G.

X. Z. Chen, L. Huang, H. Hlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kats, M.

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nano hole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Krolla, B.

J. Neu, B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, “Metamaterial-based gradient index lens with strong focusing in the THz frequency range,” Opt. Express 18(26), 27748–27757 (2010).
[Crossref] [PubMed]

O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, “Gradient index metamaterial based on slot elements,” Appl. Phys. Lett. 96(24), 241110 (2010).
[Crossref]

Lai, Y.

Q. Wu, X. Feng, R. Chen, C. Gu, S. Li, H. Li, Y. Xu, Y. Lai, B. Hou, H. Chen, and Y. Li, “An inside-out Eaton lens made of H-fractal metamaterials,” Appl. Phys. Lett. 101(3), 031903 (2012).
[Crossref]

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nano hole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Lee, W. M.

Li, G.

X. Z. Chen, L. Huang, H. Hlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Li, H.

Z. Y. Wei, Y. Cao, X. Su, Z. Gong, Y. Long, and H. Li, “Highly efficient beam steering with a transparent metasurface,” Opt. Express 21(9), 10739–10745 (2013).
[Crossref] [PubMed]

Q. Wu, X. Feng, R. Chen, C. Gu, S. Li, H. Li, Y. Xu, Y. Lai, B. Hou, H. Chen, and Y. Li, “An inside-out Eaton lens made of H-fractal metamaterials,” Appl. Phys. Lett. 101(3), 031903 (2012).
[Crossref]

Li, S.

Q. Wu, X. Feng, R. Chen, C. Gu, S. Li, H. Li, Y. Xu, Y. Lai, B. Hou, H. Chen, and Y. Li, “An inside-out Eaton lens made of H-fractal metamaterials,” Appl. Phys. Lett. 101(3), 031903 (2012).
[Crossref]

Li, X.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Li, Y.

Q. Wu, X. Feng, R. Chen, C. Gu, S. Li, H. Li, Y. Xu, Y. Lai, B. Hou, H. Chen, and Y. Li, “An inside-out Eaton lens made of H-fractal metamaterials,” Appl. Phys. Lett. 101(3), 031903 (2012).
[Crossref]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

Long, Y.

Lu, X.

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nano hole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Nawaz Burokur, S.

A. Dhouibi, S. Nawaz Burokur, A. de Lustrac, and A. Priou, “Metamaterial-based half Maxwell fish-eye lens for broadband directive Emissions,” Appl. Phys. Lett. 102(2), 024102 (2013).
[Crossref]

Neu, J.

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Paul, O.

J. Neu, B. Krolla, O. Paul, B. Reinhard, R. Beigang, and M. Rahm, “Metamaterial-based gradient index lens with strong focusing in the THz frequency range,” Opt. Express 18(26), 27748–27757 (2010).
[Crossref] [PubMed]

O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, “Gradient index metamaterial based on slot elements,” Appl. Phys. Lett. 96(24), 241110 (2010).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Pfeiffer, C.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

Priou, A.

A. Dhouibi, S. Nawaz Burokur, A. de Lustrac, and A. Priou, “Metamaterial-based half Maxwell fish-eye lens for broadband directive Emissions,” Appl. Phys. Lett. 102(2), 024102 (2013).
[Crossref]

Qiu, C. W.

X. Z. Chen, L. Huang, H. Hlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Rahm, M.

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nano hole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

Ramakrishna, S. A.

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[Crossref]

Reinhard, B.

Savini, G.

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Shalaev, V. M.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

Shaltout, A. M.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

Shen, X. P.

Singh, R.

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Su, X.

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Sun, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Tan, Q.

X. Z. Chen, L. Huang, H. Hlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Tian, Z.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, “A close-ring pair terahertz metamaterial resonating at normal incidence,” Opt. Express 17(22), 20307–20312 (2009).
[Crossref] [PubMed]

Volk, M. F.

Wan, X.

Wei, Z. Y.

Wu, B. I.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Wu, Q.

Q. Wu, X. Feng, R. Chen, C. Gu, S. Li, H. Li, Y. Xu, Y. Lai, B. Hou, H. Chen, and Y. Li, “An inside-out Eaton lens made of H-fractal metamaterials,” Appl. Phys. Lett. 101(3), 031903 (2012).
[Crossref]

Xiao, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Xing, Q.

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Xu, Y.

Q. Wu, X. Feng, R. Chen, C. Gu, S. Li, H. Li, Y. Xu, Y. Lai, B. Hou, H. Chen, and Y. Li, “An inside-out Eaton lens made of H-fractal metamaterials,” Appl. Phys. Lett. 101(3), 031903 (2012).
[Crossref]

Yu, N.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Yuan, X. C.

Yue, W.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Zentgraf, T.

X. Z. Chen, L. Huang, H. Hlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Zhang, J.

Zhang, S.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

X. Z. Chen, L. Huang, H. Hlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Zhang, W.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

X. Lu, J. Han, and W. Zhang, “Localized plasmonic properties of sub wavelength geometries resonating at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 17(1), 119–129 (2011).
[Crossref]

J. Han, J. Gu, X. Lu, M. He, Q. Xing, and W. Zhang, “Broadband resonant terahertz transmission in a composite metal-dielectric structure,” Opt. Express 17(19), 16527–16534 (2009).
[Crossref] [PubMed]

J. Gu, J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, “A close-ring pair terahertz metamaterial resonating at normal incidence,” Opt. Express 17(22), 20307–20312 (2009).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhou, L.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

Q. Wu, X. Feng, R. Chen, C. Gu, S. Li, H. Li, Y. Xu, Y. Lai, B. Hou, H. Chen, and Y. Li, “An inside-out Eaton lens made of H-fractal metamaterials,” Appl. Phys. Lett. 101(3), 031903 (2012).
[Crossref]

O. Paul, B. Reinhard, B. Krolla, R. Beigang, and M. Rahm, “Gradient index metamaterial based on slot elements,” Appl. Phys. Lett. 96(24), 241110 (2010).
[Crossref]

A. Dhouibi, S. Nawaz Burokur, A. de Lustrac, and A. Priou, “Metamaterial-based half Maxwell fish-eye lens for broadband directive Emissions,” Appl. Phys. Lett. 102(2), 024102 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Lu, J. Han, and W. Zhang, “Localized plasmonic properties of sub wavelength geometries resonating at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 17(1), 119–129 (2011).
[Crossref]

Nano Lett. (3)

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

X. Z. Chen, L. Huang, H. Hlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1), 016608 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nano hole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68(2), 449–521 (2005).
[Crossref]

Science (4)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Other (2)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

R. K. Luneburg, Mathematical Theory of Optics (Brown University, 1944).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Structural design of the unit cell with P = 100 μm and T = 50 μm. The metal layer includes a square hole with P = 100 μm, L = 90 μm, and a square patch with a width W that changes from 0 to 80 μm. (b) Front view of the TML.
Fig. 2
Fig. 2 (a)-(c) Simulated electric field distribution at 0.84 THz for the three different designs with W = 0, 40, and 80 µm, respectively. (d)-(f) Corresponding surface current at 0.84 THz. (g) Transmission and (h) phase change in TML for the three different designs.
Fig. 3
Fig. 3 (a) Transmission (red circles) and phase (blue triangles) of the unit cells with different patch widths, W. (b) Patch width and phase change of the metasurface structure as a function of the radius number. The red circles and the blue triangles represent the phase change Δφ through the lens and the patch width W along the radial direction, respectively.
Fig. 4
Fig. 4 (a) Two dimensional plots of the calculated electric field distributions of the transmitted wave at normal incidence. (b) Corresponding electric field intensity at the focus for normal incidence. (c) and (d) Electric field distributions at oblique incidences. The incidence angles are 15° and −25°, respectively. For clarity, the scale bar is shown on the right side.
Fig. 5
Fig. 5 (a) Electric field magnitude at the z-axis. (b) Normalized electric field distribution of different frequencies in the focal plane.
Fig. 6
Fig. 6 (a) Two-dimensional plot of the electric field magnitude of the triple-layer structure. (b) Electric field distribution of the divergence structure.
Fig. 7
Fig. 7 (a) and (b) The blue lines indicate the electric field amplitude at 0.84 THz of axial length at z = 1 mm and focus plane, respectively. The red lines show the results calculated from Eq. (3).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ φ = ( f 2 + r 2 f ) 2 π λ   ,
E ( y ) = exp ( i k z 1 ) i λ z 1 exp ( i k 2 z 1 y 2 ) E ( y 1 ) exp [ i 2 π ( y 1 y λ z 1 ) ] exp ( i k 2 z 1 y 1 2 ) d y 1 ,
E ( y ) = exp ( i k z 1 ) i λ z 1 exp ( i k 2 z 1 y 2 ) D 2 D 2 E ( y 1 ) exp [ i ( n k T + Δ ϕ ) ]                             exp [ i 2 π ( y 1 y λ z 1 ) ] exp ( i k 2 z 1 y 1 2 ) Δ y 1 ,

Metrics