Abstract

In this paper, we present an alternative approach to the down-conversion (translation) of the received optical signals collected by the antenna of an all-fiber coherent Doppler lidar (CDL). The proposed method, widely known as image-reject, quadrature detection, or in-phase/quadrature-phase detection, utilizes the advances in fiber optic communications such that the received signal can be optically down-converted into baseband where not only the radial velocity but also the direction of the movement can be inferred. In addition, we show that by performing a cross-spectral analysis, enabled by the presence of two independent signal observations with uncorrelated noise, various noise sources can be suppressed and a more simplified velocity estimation algorithm can be employed in the spectral domain. Other benefits of this architecture include, but are not limited to, a more reliable measurement of radial velocities close to zero and an improved bandwidth. The claims are verified through laboratory implementation of a continuous wave CDL, where measurements both on a hard and diffuse target have been performed and analyzed.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A reconfigurable all-fiber polarization-diversity coherent Doppler lidar: principles and numerical simulations

Cyrus F. Abari, Xinzhao Chu, R. Michael Hardesty, and Jakob Mann
Appl. Opt. 54(30) 8999-9009 (2015)

Reduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization control

Peter John Rodrigo and Christian Pedersen
Opt. Express 18(5) 5320-5327 (2010)

Compact all-fiber pulsed coherent Doppler lidar system for wind sensing

S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka
Appl. Opt. 46(11) 1953-1962 (2007)

References

  • View by:
  • |
  • |
  • |

  1. G. Fiocco and L. D. Smullin, “Detection of scattering layers in the upper atmosphere (60–140 km) by optical radar,” Nature (London) 199(1), 1275–1276 (1963).
    [Crossref]
  2. A. V. Jelalian, Laser radar systems ( Artech, 1992).
  3. ZephIR 300 technical specifications, (ZephIR Lidar, 2014)., http://www.zephirlidar.com/resources/technical-specs .
  4. WINDCUBE V2, a 200m vertical wind Doppler lidar, (Leosphere, 2014)., http://www.leosphere.com/products/vertical-profiling/windcube-v2 .
  5. WINDAR functional specifications, (WINDAR PHOTONICS, 2014)., http://www.windarphotonics.com/product .
  6. F. Bingöl, J. Mann, and D. Foussekis, “Conically scanning lidar error in complex terrain,” Meteorologische Zeitschrift 18(2), 189–195 (2009).
    [Crossref]
  7. S. Lang and E. McKeogh, “Lidar and sodar measurements of wind speed and direction in upland terrain for wind energy purposes,” Remote Sens. 3(9), 1871–1901 (2011).
    [Crossref]
  8. T. Mikkelsen, N. Angelou, K. Hansen, M. Sjöholm, M. Harris, C. Slinger, P. Hadley, R. Scullion, G. Ellis, and G. Vives, “A spinner-integrated wind lidar for enhanced wind turbine control,” Wind Energy 16(4), 625–643 (2013).
    [Crossref]
  9. D. Schlipf, D. J. Schlipf, and M. Kühn, “Nonlinear model predictive control of wind turbines using lidar,” Wind Eng. 16(7), 1107–1129 (2012).
    [Crossref]
  10. I. Antoniou, S. M. Pedersen, and P. B. Enevoldsen, “Wind shear and uncertainties in power curve measurement and wind resources,” Wind Eng. 33(5), 449–468 (2010).
    [Crossref]
  11. C. J. Karlsson, F. A. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction continuous-wave coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements,” Appl. Opt. 39(21), 3716–3726 (2000).
    [Crossref]
  12. G. N. Pearson, P. J. Roberts, J. R. Eacock, and M. Harris, “Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications,” Appl. Opt. 41(30), 6442–6450 (2002).
    [Crossref] [PubMed]
  13. P. Lindelöw, “Fiber based coherent lidars for remote wind sensing,” PhD dissertation, Dept. of Photon. Eng., Tech. Univ. of Denmark, Lyngby, Denmark, 2007.
  14. S. F. Jacobs, “Optical heterodyne (coherent) detection,” Am. J. Phys. 56(3), 235–245 (1988).
    [Crossref]
  15. O. E. DeLange, “Optical heterodyne detection,” IEEE Spectrosc. 5(10), 77–85 (1968).
    [Crossref]
  16. B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 44(6), 428–435 (1997).
    [Crossref]
  17. L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
    [Crossref]
  18. M. Harris, G. N. Pearson, K. D. Ridley, C. J. Karlsson, F. A. Olsson, and D. Letalick, “Single-particle laser Doppler anemometry at 1.5 μm,” Appl. Opt. 40(6), 969–973 (2001).
    [Crossref]
  19. J. R. Barry and E. A. Lee, “Performance of coherent optical receivers,” Proc. IEEE 78(8), 1369–1394 (1990).
    [Crossref]
  20. A. Valle and L. Pesquera, “Relative intensity noise of multitransverse-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 13(4), 272–274 (2001).
    [Crossref]
  21. R. Stierlin, R. Bättig, P. D. Henchoz, and H. P. Weber, “Excess-noise suppression in a fiber-optic balanced heterodyne detection system,” Opt. Quantum Electron. 18(6), 445–454 (1986).
    [Crossref]
  22. L. Ma, Y. Hu, S. Xiong, Z. Meng, and Z. Hu, “Intensity noise and relaxation oscillation of a fiberlaser sensor array integrated in a single fiber,” Opt. Lett. 35(1), 1795–1797 (2010).
    [Crossref] [PubMed]
  23. G. A. Cranch, M. A. Englund, and C. K. Kirkendal, “Intensity noise characteristics of erbium-doped distributed-feedback lasers,” IEEE J. Quantum Electron. 39(12), 1579–1587 (2003).
    [Crossref]
  24. A. D. McCoy, L. B. Fu, M. Ibsen, B. C. Thomsen, and D. J. Richardson, “Relaxation oscillation noise suppression in fiber DFB lasers using a semiconductor optical amplifier,” in Conference on Lasers and Electro-Optics, 2004 OSA CLEO Poster Session II (Optical Society of America, 2004), page CWA56.
  25. P. J. Rodrigo and C. Pedersen., ”Comparative study of the performance of semiconductor laser based coherent Doppler lidars,” Proc. SPIE 8241, 824112 (2012).
    [Crossref]
  26. B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31(1), 16–27 (1993).
    [Crossref]
  27. J. M. B. Dias and J. M. N. Leitão, “Nonparametric estimation of mean Doppler and spectral width,” IEEE Trans. Geosci. Remote Sens. 38(1), 271–282 (2000).
    [Crossref]
  28. M. H. Hayes, Statistical Digital Signal Processing and Modeling (John Wiley & Sons, 1996).
  29. A. T. Pedersen, C. F. Abari, J. Mann, and T. Mikkelsen, “Theoretical and experimental signal-to-noise ratio assessment in new direction sensing continuous-wave Doppler lidar,” in J. Phys.: Conf. Ser., Vol. 524 (IOP Publishing, 2014), paper 012004.
  30. M. Harris, G. N. Pearson, J. M. Vaughan, and D. Letalick, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45(8), 1567–1581 (2009).
    [Crossref]
  31. B. Moslehi, “Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time,” J. Lightw. Technol. 4(9), 1334–1351 (1986).
    [Crossref]
  32. C. A. Hill, M. Harris, and K. D. Ridley, “Fiber-based 1.5 μm lidar vibrometer in pulsed and continuous modes,” Appl. Opt. 46(20), 4376–4385 (2007).
    [Crossref] [PubMed]
  33. C. Allen, Y. Cobanoglu, S. K. Chong, and S. Gogineni, “Development of a 1310-nm, coherent laser radar with RF pulse compression,” in Proceedings of IEEE Geoscience and Remote Sensing Symposium (IEEE, 2000), pp. 1784–1786.
  34. L. G. Kazovsky, L. Curtis, W. C. Young, and N. K. Cheung, “All-fiber 90° optical hybrid for coherent communications,” Appl. Opt. 26(3), 437–439 (1987).
    [Crossref] [PubMed]
  35. D. O. Hogenboom and C. A. DiMarzio, “Quadrature detection of a Doppler signal,” Appl. Opt. 37(13), 2569–2572 (1998).
    [Crossref]
  36. N. Angelou, C. F. Abari, J. Mann, T. Mikkelsen, and M. Sjöholm, “Challenges in noise removal from Doppler spectra acquired by a continuous-wave lidar,” Presented atthe 26th International Laser Radar Conference, Porto Heli, Greece, 25–29 June 2012.

2013 (1)

T. Mikkelsen, N. Angelou, K. Hansen, M. Sjöholm, M. Harris, C. Slinger, P. Hadley, R. Scullion, G. Ellis, and G. Vives, “A spinner-integrated wind lidar for enhanced wind turbine control,” Wind Energy 16(4), 625–643 (2013).
[Crossref]

2012 (2)

D. Schlipf, D. J. Schlipf, and M. Kühn, “Nonlinear model predictive control of wind turbines using lidar,” Wind Eng. 16(7), 1107–1129 (2012).
[Crossref]

P. J. Rodrigo and C. Pedersen., ”Comparative study of the performance of semiconductor laser based coherent Doppler lidars,” Proc. SPIE 8241, 824112 (2012).
[Crossref]

2011 (1)

S. Lang and E. McKeogh, “Lidar and sodar measurements of wind speed and direction in upland terrain for wind energy purposes,” Remote Sens. 3(9), 1871–1901 (2011).
[Crossref]

2010 (2)

I. Antoniou, S. M. Pedersen, and P. B. Enevoldsen, “Wind shear and uncertainties in power curve measurement and wind resources,” Wind Eng. 33(5), 449–468 (2010).
[Crossref]

L. Ma, Y. Hu, S. Xiong, Z. Meng, and Z. Hu, “Intensity noise and relaxation oscillation of a fiberlaser sensor array integrated in a single fiber,” Opt. Lett. 35(1), 1795–1797 (2010).
[Crossref] [PubMed]

2009 (2)

F. Bingöl, J. Mann, and D. Foussekis, “Conically scanning lidar error in complex terrain,” Meteorologische Zeitschrift 18(2), 189–195 (2009).
[Crossref]

M. Harris, G. N. Pearson, J. M. Vaughan, and D. Letalick, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45(8), 1567–1581 (2009).
[Crossref]

2007 (1)

2003 (1)

G. A. Cranch, M. A. Englund, and C. K. Kirkendal, “Intensity noise characteristics of erbium-doped distributed-feedback lasers,” IEEE J. Quantum Electron. 39(12), 1579–1587 (2003).
[Crossref]

2002 (1)

2001 (2)

A. Valle and L. Pesquera, “Relative intensity noise of multitransverse-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 13(4), 272–274 (2001).
[Crossref]

M. Harris, G. N. Pearson, K. D. Ridley, C. J. Karlsson, F. A. Olsson, and D. Letalick, “Single-particle laser Doppler anemometry at 1.5 μm,” Appl. Opt. 40(6), 969–973 (2001).
[Crossref]

2000 (2)

1998 (1)

1997 (1)

B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 44(6), 428–435 (1997).
[Crossref]

1993 (1)

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31(1), 16–27 (1993).
[Crossref]

1990 (1)

J. R. Barry and E. A. Lee, “Performance of coherent optical receivers,” Proc. IEEE 78(8), 1369–1394 (1990).
[Crossref]

1988 (1)

S. F. Jacobs, “Optical heterodyne (coherent) detection,” Am. J. Phys. 56(3), 235–245 (1988).
[Crossref]

1987 (1)

1986 (3)

B. Moslehi, “Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time,” J. Lightw. Technol. 4(9), 1334–1351 (1986).
[Crossref]

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

R. Stierlin, R. Bättig, P. D. Henchoz, and H. P. Weber, “Excess-noise suppression in a fiber-optic balanced heterodyne detection system,” Opt. Quantum Electron. 18(6), 445–454 (1986).
[Crossref]

1968 (1)

O. E. DeLange, “Optical heterodyne detection,” IEEE Spectrosc. 5(10), 77–85 (1968).
[Crossref]

1963 (1)

G. Fiocco and L. D. Smullin, “Detection of scattering layers in the upper atmosphere (60–140 km) by optical radar,” Nature (London) 199(1), 1275–1276 (1963).
[Crossref]

Abari, C. F.

A. T. Pedersen, C. F. Abari, J. Mann, and T. Mikkelsen, “Theoretical and experimental signal-to-noise ratio assessment in new direction sensing continuous-wave Doppler lidar,” in J. Phys.: Conf. Ser., Vol. 524 (IOP Publishing, 2014), paper 012004.

N. Angelou, C. F. Abari, J. Mann, T. Mikkelsen, and M. Sjöholm, “Challenges in noise removal from Doppler spectra acquired by a continuous-wave lidar,” Presented atthe 26th International Laser Radar Conference, Porto Heli, Greece, 25–29 June 2012.

Allen, C.

C. Allen, Y. Cobanoglu, S. K. Chong, and S. Gogineni, “Development of a 1310-nm, coherent laser radar with RF pulse compression,” in Proceedings of IEEE Geoscience and Remote Sensing Symposium (IEEE, 2000), pp. 1784–1786.

Angelou, N.

T. Mikkelsen, N. Angelou, K. Hansen, M. Sjöholm, M. Harris, C. Slinger, P. Hadley, R. Scullion, G. Ellis, and G. Vives, “A spinner-integrated wind lidar for enhanced wind turbine control,” Wind Energy 16(4), 625–643 (2013).
[Crossref]

N. Angelou, C. F. Abari, J. Mann, T. Mikkelsen, and M. Sjöholm, “Challenges in noise removal from Doppler spectra acquired by a continuous-wave lidar,” Presented atthe 26th International Laser Radar Conference, Porto Heli, Greece, 25–29 June 2012.

Antoniou, I.

I. Antoniou, S. M. Pedersen, and P. B. Enevoldsen, “Wind shear and uncertainties in power curve measurement and wind resources,” Wind Eng. 33(5), 449–468 (2010).
[Crossref]

Barry, J. R.

J. R. Barry and E. A. Lee, “Performance of coherent optical receivers,” Proc. IEEE 78(8), 1369–1394 (1990).
[Crossref]

Bättig, R.

R. Stierlin, R. Bättig, P. D. Henchoz, and H. P. Weber, “Excess-noise suppression in a fiber-optic balanced heterodyne detection system,” Opt. Quantum Electron. 18(6), 445–454 (1986).
[Crossref]

Bingöl, F.

F. Bingöl, J. Mann, and D. Foussekis, “Conically scanning lidar error in complex terrain,” Meteorologische Zeitschrift 18(2), 189–195 (2009).
[Crossref]

Cheung, N. K.

Chong, S. K.

C. Allen, Y. Cobanoglu, S. K. Chong, and S. Gogineni, “Development of a 1310-nm, coherent laser radar with RF pulse compression,” in Proceedings of IEEE Geoscience and Remote Sensing Symposium (IEEE, 2000), pp. 1784–1786.

Cobanoglu, Y.

C. Allen, Y. Cobanoglu, S. K. Chong, and S. Gogineni, “Development of a 1310-nm, coherent laser radar with RF pulse compression,” in Proceedings of IEEE Geoscience and Remote Sensing Symposium (IEEE, 2000), pp. 1784–1786.

Cranch, G. A.

G. A. Cranch, M. A. Englund, and C. K. Kirkendal, “Intensity noise characteristics of erbium-doped distributed-feedback lasers,” IEEE J. Quantum Electron. 39(12), 1579–1587 (2003).
[Crossref]

Curtis, L.

DeLange, O. E.

O. E. DeLange, “Optical heterodyne detection,” IEEE Spectrosc. 5(10), 77–85 (1968).
[Crossref]

Dias, J. M. B.

J. M. B. Dias and J. M. N. Leitão, “Nonparametric estimation of mean Doppler and spectral width,” IEEE Trans. Geosci. Remote Sens. 38(1), 271–282 (2000).
[Crossref]

DiMarzio, C. A.

Eacock, J. R.

Ellis, G.

T. Mikkelsen, N. Angelou, K. Hansen, M. Sjöholm, M. Harris, C. Slinger, P. Hadley, R. Scullion, G. Ellis, and G. Vives, “A spinner-integrated wind lidar for enhanced wind turbine control,” Wind Energy 16(4), 625–643 (2013).
[Crossref]

Enevoldsen, P. B.

I. Antoniou, S. M. Pedersen, and P. B. Enevoldsen, “Wind shear and uncertainties in power curve measurement and wind resources,” Wind Eng. 33(5), 449–468 (2010).
[Crossref]

Englund, M. A.

G. A. Cranch, M. A. Englund, and C. K. Kirkendal, “Intensity noise characteristics of erbium-doped distributed-feedback lasers,” IEEE J. Quantum Electron. 39(12), 1579–1587 (2003).
[Crossref]

Fiocco, G.

G. Fiocco and L. D. Smullin, “Detection of scattering layers in the upper atmosphere (60–140 km) by optical radar,” Nature (London) 199(1), 1275–1276 (1963).
[Crossref]

Foussekis, D.

F. Bingöl, J. Mann, and D. Foussekis, “Conically scanning lidar error in complex terrain,” Meteorologische Zeitschrift 18(2), 189–195 (2009).
[Crossref]

Fu, L. B.

A. D. McCoy, L. B. Fu, M. Ibsen, B. C. Thomsen, and D. J. Richardson, “Relaxation oscillation noise suppression in fiber DFB lasers using a semiconductor optical amplifier,” in Conference on Lasers and Electro-Optics, 2004 OSA CLEO Poster Session II (Optical Society of America, 2004), page CWA56.

Gogineni, S.

C. Allen, Y. Cobanoglu, S. K. Chong, and S. Gogineni, “Development of a 1310-nm, coherent laser radar with RF pulse compression,” in Proceedings of IEEE Geoscience and Remote Sensing Symposium (IEEE, 2000), pp. 1784–1786.

Hadley, P.

T. Mikkelsen, N. Angelou, K. Hansen, M. Sjöholm, M. Harris, C. Slinger, P. Hadley, R. Scullion, G. Ellis, and G. Vives, “A spinner-integrated wind lidar for enhanced wind turbine control,” Wind Energy 16(4), 625–643 (2013).
[Crossref]

Hansen, K.

T. Mikkelsen, N. Angelou, K. Hansen, M. Sjöholm, M. Harris, C. Slinger, P. Hadley, R. Scullion, G. Ellis, and G. Vives, “A spinner-integrated wind lidar for enhanced wind turbine control,” Wind Energy 16(4), 625–643 (2013).
[Crossref]

Hardesty, R. M.

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31(1), 16–27 (1993).
[Crossref]

Harris, M.

Hayes, M. H.

M. H. Hayes, Statistical Digital Signal Processing and Modeling (John Wiley & Sons, 1996).

Henchoz, P. D.

R. Stierlin, R. Bättig, P. D. Henchoz, and H. P. Weber, “Excess-noise suppression in a fiber-optic balanced heterodyne detection system,” Opt. Quantum Electron. 18(6), 445–454 (1986).
[Crossref]

Hill, C. A.

Hogenboom, D. O.

Hu, Y.

Hu, Z.

Ibsen, M.

A. D. McCoy, L. B. Fu, M. Ibsen, B. C. Thomsen, and D. J. Richardson, “Relaxation oscillation noise suppression in fiber DFB lasers using a semiconductor optical amplifier,” in Conference on Lasers and Electro-Optics, 2004 OSA CLEO Poster Session II (Optical Society of America, 2004), page CWA56.

Jacobs, S. F.

S. F. Jacobs, “Optical heterodyne (coherent) detection,” Am. J. Phys. 56(3), 235–245 (1988).
[Crossref]

Jelalian, A. V.

A. V. Jelalian, Laser radar systems ( Artech, 1992).

Karlsson, C. J.

Kazovsky, L. G.

Kirkendal, C. K.

G. A. Cranch, M. A. Englund, and C. K. Kirkendal, “Intensity noise characteristics of erbium-doped distributed-feedback lasers,” IEEE J. Quantum Electron. 39(12), 1579–1587 (2003).
[Crossref]

Kruger, M.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Kühn, M.

D. Schlipf, D. J. Schlipf, and M. Kühn, “Nonlinear model predictive control of wind turbines using lidar,” Wind Eng. 16(7), 1107–1129 (2012).
[Crossref]

Lang, S.

S. Lang and E. McKeogh, “Lidar and sodar measurements of wind speed and direction in upland terrain for wind energy purposes,” Remote Sens. 3(9), 1871–1901 (2011).
[Crossref]

Lee, E. A.

J. R. Barry and E. A. Lee, “Performance of coherent optical receivers,” Proc. IEEE 78(8), 1369–1394 (1990).
[Crossref]

Leitão, J. M. N.

J. M. B. Dias and J. M. N. Leitão, “Nonparametric estimation of mean Doppler and spectral width,” IEEE Trans. Geosci. Remote Sens. 38(1), 271–282 (2000).
[Crossref]

Letalick, D.

Lindelöw, P.

P. Lindelöw, “Fiber based coherent lidars for remote wind sensing,” PhD dissertation, Dept. of Photon. Eng., Tech. Univ. of Denmark, Lyngby, Denmark, 2007.

Ma, L.

Mandelberg, H.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Mann, J.

F. Bingöl, J. Mann, and D. Foussekis, “Conically scanning lidar error in complex terrain,” Meteorologische Zeitschrift 18(2), 189–195 (2009).
[Crossref]

A. T. Pedersen, C. F. Abari, J. Mann, and T. Mikkelsen, “Theoretical and experimental signal-to-noise ratio assessment in new direction sensing continuous-wave Doppler lidar,” in J. Phys.: Conf. Ser., Vol. 524 (IOP Publishing, 2014), paper 012004.

N. Angelou, C. F. Abari, J. Mann, T. Mikkelsen, and M. Sjöholm, “Challenges in noise removal from Doppler spectra acquired by a continuous-wave lidar,” Presented atthe 26th International Laser Radar Conference, Porto Heli, Greece, 25–29 June 2012.

McCoy, A. D.

A. D. McCoy, L. B. Fu, M. Ibsen, B. C. Thomsen, and D. J. Richardson, “Relaxation oscillation noise suppression in fiber DFB lasers using a semiconductor optical amplifier,” in Conference on Lasers and Electro-Optics, 2004 OSA CLEO Poster Session II (Optical Society of America, 2004), page CWA56.

McGrath, P.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

McKeogh, E.

S. Lang and E. McKeogh, “Lidar and sodar measurements of wind speed and direction in upland terrain for wind energy purposes,” Remote Sens. 3(9), 1871–1901 (2011).
[Crossref]

Meng, Z.

Mikkelsen, T.

T. Mikkelsen, N. Angelou, K. Hansen, M. Sjöholm, M. Harris, C. Slinger, P. Hadley, R. Scullion, G. Ellis, and G. Vives, “A spinner-integrated wind lidar for enhanced wind turbine control,” Wind Energy 16(4), 625–643 (2013).
[Crossref]

N. Angelou, C. F. Abari, J. Mann, T. Mikkelsen, and M. Sjöholm, “Challenges in noise removal from Doppler spectra acquired by a continuous-wave lidar,” Presented atthe 26th International Laser Radar Conference, Porto Heli, Greece, 25–29 June 2012.

A. T. Pedersen, C. F. Abari, J. Mann, and T. Mikkelsen, “Theoretical and experimental signal-to-noise ratio assessment in new direction sensing continuous-wave Doppler lidar,” in J. Phys.: Conf. Ser., Vol. 524 (IOP Publishing, 2014), paper 012004.

Moslehi, B.

B. Moslehi, “Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time,” J. Lightw. Technol. 4(9), 1334–1351 (1986).
[Crossref]

Olsson, F. A.

Pearson, G. N.

Pedersen, A. T.

A. T. Pedersen, C. F. Abari, J. Mann, and T. Mikkelsen, “Theoretical and experimental signal-to-noise ratio assessment in new direction sensing continuous-wave Doppler lidar,” in J. Phys.: Conf. Ser., Vol. 524 (IOP Publishing, 2014), paper 012004.

Pedersen, S. M.

I. Antoniou, S. M. Pedersen, and P. B. Enevoldsen, “Wind shear and uncertainties in power curve measurement and wind resources,” Wind Eng. 33(5), 449–468 (2010).
[Crossref]

Pedersen., C.

P. J. Rodrigo and C. Pedersen., ”Comparative study of the performance of semiconductor laser based coherent Doppler lidars,” Proc. SPIE 8241, 824112 (2012).
[Crossref]

Pesquera, L.

A. Valle and L. Pesquera, “Relative intensity noise of multitransverse-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 13(4), 272–274 (2001).
[Crossref]

Razavi, B.

B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 44(6), 428–435 (1997).
[Crossref]

Richardson, D. J.

A. D. McCoy, L. B. Fu, M. Ibsen, B. C. Thomsen, and D. J. Richardson, “Relaxation oscillation noise suppression in fiber DFB lasers using a semiconductor optical amplifier,” in Conference on Lasers and Electro-Optics, 2004 OSA CLEO Poster Session II (Optical Society of America, 2004), page CWA56.

Richter, L.

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

Ridley, K. D.

Roberts, P. J.

Rodrigo, P. J.

P. J. Rodrigo and C. Pedersen., ”Comparative study of the performance of semiconductor laser based coherent Doppler lidars,” Proc. SPIE 8241, 824112 (2012).
[Crossref]

Rye, B. J.

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31(1), 16–27 (1993).
[Crossref]

Schlipf, D.

D. Schlipf, D. J. Schlipf, and M. Kühn, “Nonlinear model predictive control of wind turbines using lidar,” Wind Eng. 16(7), 1107–1129 (2012).
[Crossref]

Schlipf, D. J.

D. Schlipf, D. J. Schlipf, and M. Kühn, “Nonlinear model predictive control of wind turbines using lidar,” Wind Eng. 16(7), 1107–1129 (2012).
[Crossref]

Scullion, R.

T. Mikkelsen, N. Angelou, K. Hansen, M. Sjöholm, M. Harris, C. Slinger, P. Hadley, R. Scullion, G. Ellis, and G. Vives, “A spinner-integrated wind lidar for enhanced wind turbine control,” Wind Energy 16(4), 625–643 (2013).
[Crossref]

Sjöholm, M.

T. Mikkelsen, N. Angelou, K. Hansen, M. Sjöholm, M. Harris, C. Slinger, P. Hadley, R. Scullion, G. Ellis, and G. Vives, “A spinner-integrated wind lidar for enhanced wind turbine control,” Wind Energy 16(4), 625–643 (2013).
[Crossref]

N. Angelou, C. F. Abari, J. Mann, T. Mikkelsen, and M. Sjöholm, “Challenges in noise removal from Doppler spectra acquired by a continuous-wave lidar,” Presented atthe 26th International Laser Radar Conference, Porto Heli, Greece, 25–29 June 2012.

Slinger, C.

T. Mikkelsen, N. Angelou, K. Hansen, M. Sjöholm, M. Harris, C. Slinger, P. Hadley, R. Scullion, G. Ellis, and G. Vives, “A spinner-integrated wind lidar for enhanced wind turbine control,” Wind Energy 16(4), 625–643 (2013).
[Crossref]

Smullin, L. D.

G. Fiocco and L. D. Smullin, “Detection of scattering layers in the upper atmosphere (60–140 km) by optical radar,” Nature (London) 199(1), 1275–1276 (1963).
[Crossref]

Stierlin, R.

R. Stierlin, R. Bättig, P. D. Henchoz, and H. P. Weber, “Excess-noise suppression in a fiber-optic balanced heterodyne detection system,” Opt. Quantum Electron. 18(6), 445–454 (1986).
[Crossref]

Thomsen, B. C.

A. D. McCoy, L. B. Fu, M. Ibsen, B. C. Thomsen, and D. J. Richardson, “Relaxation oscillation noise suppression in fiber DFB lasers using a semiconductor optical amplifier,” in Conference on Lasers and Electro-Optics, 2004 OSA CLEO Poster Session II (Optical Society of America, 2004), page CWA56.

Valle, A.

A. Valle and L. Pesquera, “Relative intensity noise of multitransverse-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 13(4), 272–274 (2001).
[Crossref]

Vaughan, J. M.

M. Harris, G. N. Pearson, J. M. Vaughan, and D. Letalick, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45(8), 1567–1581 (2009).
[Crossref]

Vives, G.

T. Mikkelsen, N. Angelou, K. Hansen, M. Sjöholm, M. Harris, C. Slinger, P. Hadley, R. Scullion, G. Ellis, and G. Vives, “A spinner-integrated wind lidar for enhanced wind turbine control,” Wind Energy 16(4), 625–643 (2013).
[Crossref]

Weber, H. P.

R. Stierlin, R. Bättig, P. D. Henchoz, and H. P. Weber, “Excess-noise suppression in a fiber-optic balanced heterodyne detection system,” Opt. Quantum Electron. 18(6), 445–454 (1986).
[Crossref]

Xiong, S.

Young, W. C.

Am. J. Phys. (1)

S. F. Jacobs, “Optical heterodyne (coherent) detection,” Am. J. Phys. 56(3), 235–245 (1988).
[Crossref]

Appl. Opt. (6)

IEEE J. Quantum Electron. (2)

L. Richter, H. Mandelberg, M. Kruger, and P. McGrath, “Linewidth determination from self-heterodyne measurements with subcoherence delay times,” IEEE J. Quantum Electron. 22(11), 2070–2074 (1986).
[Crossref]

G. A. Cranch, M. A. Englund, and C. K. Kirkendal, “Intensity noise characteristics of erbium-doped distributed-feedback lasers,” IEEE J. Quantum Electron. 39(12), 1579–1587 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Valle and L. Pesquera, “Relative intensity noise of multitransverse-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 13(4), 272–274 (2001).
[Crossref]

IEEE Spectrosc. (1)

O. E. DeLange, “Optical heterodyne detection,” IEEE Spectrosc. 5(10), 77–85 (1968).
[Crossref]

IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. (1)

B. Razavi, “Design considerations for direct-conversion receivers,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 44(6), 428–435 (1997).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (2)

B. J. Rye and R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sens. 31(1), 16–27 (1993).
[Crossref]

J. M. B. Dias and J. M. N. Leitão, “Nonparametric estimation of mean Doppler and spectral width,” IEEE Trans. Geosci. Remote Sens. 38(1), 271–282 (2000).
[Crossref]

J. Lightw. Technol. (1)

B. Moslehi, “Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time,” J. Lightw. Technol. 4(9), 1334–1351 (1986).
[Crossref]

J. Mod. Opt. (1)

M. Harris, G. N. Pearson, J. M. Vaughan, and D. Letalick, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45(8), 1567–1581 (2009).
[Crossref]

Meteorologische Zeitschrift (1)

F. Bingöl, J. Mann, and D. Foussekis, “Conically scanning lidar error in complex terrain,” Meteorologische Zeitschrift 18(2), 189–195 (2009).
[Crossref]

Nature (London) (1)

G. Fiocco and L. D. Smullin, “Detection of scattering layers in the upper atmosphere (60–140 km) by optical radar,” Nature (London) 199(1), 1275–1276 (1963).
[Crossref]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

R. Stierlin, R. Bättig, P. D. Henchoz, and H. P. Weber, “Excess-noise suppression in a fiber-optic balanced heterodyne detection system,” Opt. Quantum Electron. 18(6), 445–454 (1986).
[Crossref]

Proc. IEEE (1)

J. R. Barry and E. A. Lee, “Performance of coherent optical receivers,” Proc. IEEE 78(8), 1369–1394 (1990).
[Crossref]

Proc. SPIE (1)

P. J. Rodrigo and C. Pedersen., ”Comparative study of the performance of semiconductor laser based coherent Doppler lidars,” Proc. SPIE 8241, 824112 (2012).
[Crossref]

Remote Sens. (1)

S. Lang and E. McKeogh, “Lidar and sodar measurements of wind speed and direction in upland terrain for wind energy purposes,” Remote Sens. 3(9), 1871–1901 (2011).
[Crossref]

Wind Energy (1)

T. Mikkelsen, N. Angelou, K. Hansen, M. Sjöholm, M. Harris, C. Slinger, P. Hadley, R. Scullion, G. Ellis, and G. Vives, “A spinner-integrated wind lidar for enhanced wind turbine control,” Wind Energy 16(4), 625–643 (2013).
[Crossref]

Wind Eng. (2)

D. Schlipf, D. J. Schlipf, and M. Kühn, “Nonlinear model predictive control of wind turbines using lidar,” Wind Eng. 16(7), 1107–1129 (2012).
[Crossref]

I. Antoniou, S. M. Pedersen, and P. B. Enevoldsen, “Wind shear and uncertainties in power curve measurement and wind resources,” Wind Eng. 33(5), 449–468 (2010).
[Crossref]

Other (10)

A. V. Jelalian, Laser radar systems ( Artech, 1992).

ZephIR 300 technical specifications, (ZephIR Lidar, 2014)., http://www.zephirlidar.com/resources/technical-specs .

WINDCUBE V2, a 200m vertical wind Doppler lidar, (Leosphere, 2014)., http://www.leosphere.com/products/vertical-profiling/windcube-v2 .

WINDAR functional specifications, (WINDAR PHOTONICS, 2014)., http://www.windarphotonics.com/product .

P. Lindelöw, “Fiber based coherent lidars for remote wind sensing,” PhD dissertation, Dept. of Photon. Eng., Tech. Univ. of Denmark, Lyngby, Denmark, 2007.

C. Allen, Y. Cobanoglu, S. K. Chong, and S. Gogineni, “Development of a 1310-nm, coherent laser radar with RF pulse compression,” in Proceedings of IEEE Geoscience and Remote Sensing Symposium (IEEE, 2000), pp. 1784–1786.

N. Angelou, C. F. Abari, J. Mann, T. Mikkelsen, and M. Sjöholm, “Challenges in noise removal from Doppler spectra acquired by a continuous-wave lidar,” Presented atthe 26th International Laser Radar Conference, Porto Heli, Greece, 25–29 June 2012.

A. D. McCoy, L. B. Fu, M. Ibsen, B. C. Thomsen, and D. J. Richardson, “Relaxation oscillation noise suppression in fiber DFB lasers using a semiconductor optical amplifier,” in Conference on Lasers and Electro-Optics, 2004 OSA CLEO Poster Session II (Optical Society of America, 2004), page CWA56.

M. H. Hayes, Statistical Digital Signal Processing and Modeling (John Wiley & Sons, 1996).

A. T. Pedersen, C. F. Abari, J. Mann, and T. Mikkelsen, “Theoretical and experimental signal-to-noise ratio assessment in new direction sensing continuous-wave Doppler lidar,” in J. Phys.: Conf. Ser., Vol. 524 (IOP Publishing, 2014), paper 012004.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1:
Fig. 1: Homodyne receiver with real mixing. The LO is derived from the Fresnel reflections at the end facet of delivery fiber at the output of the circulator.
Fig. 2:
Fig. 2: Examples of the PSD associated with the baseband signal. (a) The spectra when CTFT has been performed to estimate the spectra. (b) The effect of estimation noise when a limited observation time is available for spectral processing after digitization.
Fig. 3:
Fig. 3: The schematic of the image-reject homodyne receiver.
Fig. 4:
Fig. 4: The schematic of the balanced mixer. The mixer consists of a balanced coupler and two balanced photo diodes connected in reverse.
Fig. 5:
Fig. 5: Examples of the estimated PSD associated with the baseband signal. (a) The spectra when the radial direction of travel associated with the target is positive. (b) Because the radial direction of travel is away from the telescope, a negative Doppler shift is measured.
Fig. 6:
Fig. 6: Examples of the estimated cross-spectra of the in-phase and quadrature-phase signal components in baseband. (a) Positive Doppler shift. (b) Negative Doppler shift.
Fig. 7:
Fig. 7: The schematic of the system set-up. All optical fibers are Panda polarization maintaining fibers. Also, all the optical components in this system are polarization maintaining and fiber coupled. Except the optical antenna (telescope), all the components are commercially available.
Fig. 8:
Fig. 8: The system set-up in the laboratory environment.
Fig. 9:
Fig. 9: The measurement on a moving hard target, i.e., a spinning disk. The leftmost plot illustrates the autospectrum of the complex signal, while the rightmost one refers to the one-sided cross-spectra between the in-phase and quadrature-phase signal components. Please note that single-sided cross-spectrum (the right-most plot) represents the left side of the spectrum in Figs. 6(a)–6(b), as it contains all the relevant information for the measurement of radial velocity as well as direction.
Fig. 10:
Fig. 10: The atmospheric measurement using the full output power of the laser. The measurement spectra is associated with the vertical component of the wind. The leftmost plot illustrates the autospectrum of the complex signal, while the rightmost one refers to the one-sided cross-spectra between the in-phase and quadrature-phase signal components. Please note that single-sided cross-spectrum (the right-most plot) represents the left side of the spectrum in Figs. 6(a)–6(b), as it contains all the relevant information for the measurement of radial velocity as well as direction.

Tables (1)

Tables Icon

Table 1: Experimental system parameters

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

L ( t ) = 2 p cos [ 2 π f c t + θ ( t ) ] + L R ( t ) ,
r ( t ) = [ 2 ( 1 ε ) p ] 1 / 2 l = 0 L 1 α l cos [ 2 π ( f c + Δ f l ) t + θ ( t ) + ϕ l ] ,
p r = π p t β ( π ) λ ,
r ( t ) = α [ 2 ( 1 ε ) p ] 1 / 2 cos [ 2 π ( f c + Δ f ) t + ϕ ] ,
L O ( t ) = 2 ε p cos ( 2 π f c t ) ,
i ( t ) [ r ( t ) + L o ( t ) ] 2 .
i ( t ) = 2 γ cos [ 2 π ( Δ f ) t + ϕ ] + η ( t ) ,
η ( t ) = η dc + η R ( t ) + η sn ( t ) + η f ( t ) ,
p η sn = 2 E R D p LO B ,
P i ( Ω ) = { 𝔼 [ i ( t ) i ( t + τ ) ¯ ] } = γ 2 δ ( Ω Δ Ω ) + γ 2 δ ( Ω + Δ Ω ) + P η ( Ω ) ,
P ^ i ( K ) = f s M m = 0 M 1 | I ( K ) | 2 ,
I ( K ) = 1 N n = 0 N 1 i ( n ) exp ( 2 π j n N K ) ,
P ^ i ( K ) = P i ( Ω K ) + η est ( K ) ,
μ η est ( K ) = 𝔼 { η est ( K ) } = η sn ( Ω K ) , σ η est ( K ) = P i ( Ω K ) M .
SENR i = P i ( K D ) P η ( K D ) σ η est ( K ) | ( K K D ) ,
SNR i = + P i ( Ω ) d Ω p η p η ,
SNR i = α 2 R D ( 1 ε ) p E B .
SENR i = M α 2 R D ( 1 ε ) p E = B M SNR i .
{ L O , I ( t ) = ε p cos ( 2 π f c t ) , L O , Q ( t ) = ε p sin ( 2 π f c t ) .
{ i I ( t ) = 2 γ cos [ 2 π ( Δ f ) t + ϕ ] + η I ( t ) , i Q ( t ) = 2 γ sin [ 2 π ( Δ f ) t + ϕ ] + η Q ( t ) ,
{ η I ( t ) = η sn , I ( t ) + η f , I ( t ) , η Q ( t ) = η sn , Q ( t ) + η f , Q ( t ) .
i I Q ( t ) = 2 γ cos ( 2 π Δ f t + ϕ ) + η I ( t ) + j [ 2 γ sin ( 2 π Δ f t + ϕ ) + η Q ( t ) ] ,
{ P i I Q ( Ω ) = 2 γ 2 δ ( Ω Δ Ω ) + P η I ( Ω ) + P η Q ( Ω ) , P ^ i I Q ( K ) = P i I Q ( Ω K ) + η est ( K ) ,
SENR i I Q = M SNR i I Q = M α 2 R D ( 1 ε ) p E .
[ P i I i Q ( Ω ) ] = 1 2 γ 2 [ δ ( Ω + Δ Ω ) δ ( Ω Δ Ω ) ] ,
P i I i Q ( Ω ) = ( 𝔼 [ I I ( Ω ) I Q ( Ω ) ¯ ] ) ,
P ^ i I i Q ( K ) = f s M m = 0 M 1 I I ( K ) I Q ( K ) ¯ = P i I i Q ( Ω K ) + η est , IQ ( K ) ,
SENR i I i Q = 2 M α 2 R D ( 1 ε ) p 2 E .

Metrics