Abstract

The chromaticity of unique white viewed in object mode and under dark adapted conditions was investigated for 3 luminance levels (200, 1000 and 2000 cd/m2) using two experimental methods: unique white setting and rating. The results of the two methods were found to agree well. Both showed quite large observer variation and an apparent shift of the average unique white (across observers) towards colder correlated color temperatures as the stimulus luminance was dropped from 2000 cd/m2 to 200 cd/m2, although no such trend was observable at the individual observer level. Unique white was shown to encompass a region in color space, mostly located below the blackbody locus at around 6000 K. The low and high color temperature ends of the CIE class A and B white regions tend to respectively over- and slightly underestimate the size of the chromaticity area perceived as white by the dark adapted average observer. However, the agreement along a direction approximately perpendicular to the blackbody locus was quite good. Finally, the unique white ratings were modeled by a bivariate Gaussian function, resulting in a simple empirical metric to predict the degree of neutrality of any object stimulus viewed under dark adapted conditions.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chromaticity of unique white in illumination mode

Kevin A.G. Smet, Geert Deconinck, and Peter Hanselaer
Opt. Express 23(10) 12488-12495 (2015)

Assessment of white for displays under dark- and chromatic-adapted conditions

Kyungah Choi and Hyeon-Jeong Suk
Opt. Express 24(25) 28945-28957 (2016)

White appearance of a tablet display under different ambient lighting conditions

Hsin-Pou Huang, Minchen Wei, and Li-Chen Ou
Opt. Express 26(4) 5018-5030 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. M. Hurvich and D. Jameson, “A psychophysical study of white. I. Neutral adaptation,” J. Opt. Soc. Am. 41(8), 521–527 (1951).
    [Crossref] [PubMed]
  2. I. G. Priest, “The spectral distribution of energy required to evoke the gray sensation,” Sci. Pap. U. S. Bur. Stand. 17, 231–265 (1921).
    [Crossref]
  3. H. Helson and W. C. Michels, “The effect of chromatic adaptation on achromaticity,” J. Opt. Soc. Am. 38(12), 1025–1032 (1948).
    [Crossref] [PubMed]
  4. K. Honjyo and M. Nonaka, “Perception of white in a 10 ° field,” J. Opt. Soc. Am. 60(12), 1690–1694 (1970).
    [Crossref] [PubMed]
  5. A. Valberg, “A method for the precise determination of achromatic colours including white,” Vision Res. 11(2), 157–160 (1971).
    [Crossref] [PubMed]
  6. J. Walraven and J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31(12), 2185–2193 (1991).
    [Crossref] [PubMed]
  7. I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
    [Crossref] [PubMed]
  8. K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy Build. 49, 216–225 (2012).
    [Crossref]
  9. M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
    [Crossref]
  10. Y. Ohno and M. Fein, “Vision experiment on white light chromaticity for lighting,” in CIE/USA-CNC/CIE Biennial Joint Meeting (Davis, USA, 2013).
  11. L. Whitehead, “Interpretation concerns regarding white light,” Color Res. Appl. 38(2), 93–95 (2013).
    [Crossref]
  12. T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: Effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
    [Crossref] [PubMed]
  13. H. Seetzen, H. Li, L. Ye, W. Heidrich, L. Whitehead, and G. Ward, “Observations of luminance, contrast and amplitude resolution of displays,” in SID Symposium 37 (Wiley, 2006), pp. 1229–1233.
    [Crossref]
  14. CIES004/E-2001, Colours of Light Signals (CIE, 2001).
  15. M. A. Webster and D. Leonard, “Adaptation and perceptual norms in color vision,” J. Opt. Soc. Am. A 25(11), 2817–2825 (2008).
    [Crossref] [PubMed]
  16. P. A. García, R. Huertas, M. Melgosa, and G. Cui, “Measurement of the relationship between perceived and computed color differences,” J. Opt. Soc. Am. A 24(7), 1823–1829 (2007).
    [Crossref] [PubMed]
  17. K. V. Mardia, “Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies,” Sankhya Ind. J. Stat. 36, 115–128 (1974).
  18. J. W. Mauchly, “Significance test for sphericity of a normal n-variate distribution,” Ann. Math. Stat. 11(2), 204–209 (1940).
    [Crossref]
  19. M. H. Kim, T. Weyrich, and J. Kautz, “Modeling human color perception under extended luminance levels,” ACM Trans. Graph. 28(27), 21–29 (2009).

2014 (1)

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: Effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

2013 (2)

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

L. Whitehead, “Interpretation concerns regarding white light,” Color Res. Appl. 38(2), 93–95 (2013).
[Crossref]

2012 (1)

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy Build. 49, 216–225 (2012).
[Crossref]

2009 (1)

M. H. Kim, T. Weyrich, and J. Kautz, “Modeling human color perception under extended luminance levels,” ACM Trans. Graph. 28(27), 21–29 (2009).

2008 (1)

2007 (1)

2006 (1)

I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
[Crossref] [PubMed]

1991 (1)

J. Walraven and J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31(12), 2185–2193 (1991).
[Crossref] [PubMed]

1974 (1)

K. V. Mardia, “Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies,” Sankhya Ind. J. Stat. 36, 115–128 (1974).

1971 (1)

A. Valberg, “A method for the precise determination of achromatic colours including white,” Vision Res. 11(2), 157–160 (1971).
[Crossref] [PubMed]

1970 (1)

1951 (1)

1948 (1)

1940 (1)

J. W. Mauchly, “Significance test for sphericity of a normal n-variate distribution,” Ann. Math. Stat. 11(2), 204–209 (1940).
[Crossref]

1921 (1)

I. G. Priest, “The spectral distribution of energy required to evoke the gray sensation,” Sci. Pap. U. S. Bur. Stand. 17, 231–265 (1921).
[Crossref]

Chauhan, T.

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: Effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Cui, G.

Deconinck, G.

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy Build. 49, 216–225 (2012).
[Crossref]

Freyssinier, J. P.

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

García, P. A.

Hanselaer, P.

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy Build. 49, 216–225 (2012).
[Crossref]

Heidrich, W.

H. Seetzen, H. Li, L. Ye, W. Heidrich, L. Whitehead, and G. Ward, “Observations of luminance, contrast and amplitude resolution of displays,” in SID Symposium 37 (Wiley, 2006), pp. 1229–1233.
[Crossref]

Helson, H.

Hird, E.

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: Effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Honjyo, K.

Huertas, R.

Hurvich, L. M.

Jameson, D.

Karatzas, D.

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: Effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Kautz, J.

M. H. Kim, T. Weyrich, and J. Kautz, “Modeling human color perception under extended luminance levels,” ACM Trans. Graph. 28(27), 21–29 (2009).

Kim, M. H.

M. H. Kim, T. Weyrich, and J. Kautz, “Modeling human color perception under extended luminance levels,” ACM Trans. Graph. 28(27), 21–29 (2009).

Kuriki, I.

I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
[Crossref] [PubMed]

Leonard, D.

Li, H.

H. Seetzen, H. Li, L. Ye, W. Heidrich, L. Whitehead, and G. Ward, “Observations of luminance, contrast and amplitude resolution of displays,” in SID Symposium 37 (Wiley, 2006), pp. 1229–1233.
[Crossref]

Mardia, K. V.

K. V. Mardia, “Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies,” Sankhya Ind. J. Stat. 36, 115–128 (1974).

Mauchly, J. W.

J. W. Mauchly, “Significance test for sphericity of a normal n-variate distribution,” Ann. Math. Stat. 11(2), 204–209 (1940).
[Crossref]

Melgosa, M.

Michels, W. C.

Nonaka, M.

Perales, E.

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: Effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Pointer, M. R.

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy Build. 49, 216–225 (2012).
[Crossref]

Priest, I. G.

I. G. Priest, “The spectral distribution of energy required to evoke the gray sensation,” Sci. Pap. U. S. Bur. Stand. 17, 231–265 (1921).
[Crossref]

Rea, M. S.

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

Ryckaert, W. R.

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy Build. 49, 216–225 (2012).
[Crossref]

Seetzen, H.

H. Seetzen, H. Li, L. Ye, W. Heidrich, L. Whitehead, and G. Ward, “Observations of luminance, contrast and amplitude resolution of displays,” in SID Symposium 37 (Wiley, 2006), pp. 1229–1233.
[Crossref]

Smet, K. A. G.

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy Build. 49, 216–225 (2012).
[Crossref]

Valberg, A.

A. Valberg, “A method for the precise determination of achromatic colours including white,” Vision Res. 11(2), 157–160 (1971).
[Crossref] [PubMed]

Walraven, J.

J. Walraven and J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31(12), 2185–2193 (1991).
[Crossref] [PubMed]

Ward, G.

H. Seetzen, H. Li, L. Ye, W. Heidrich, L. Whitehead, and G. Ward, “Observations of luminance, contrast and amplitude resolution of displays,” in SID Symposium 37 (Wiley, 2006), pp. 1229–1233.
[Crossref]

Webster, M. A.

Werner, J. S.

J. Walraven and J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31(12), 2185–2193 (1991).
[Crossref] [PubMed]

Weyrich, T.

M. H. Kim, T. Weyrich, and J. Kautz, “Modeling human color perception under extended luminance levels,” ACM Trans. Graph. 28(27), 21–29 (2009).

Whitehead, L.

L. Whitehead, “Interpretation concerns regarding white light,” Color Res. Appl. 38(2), 93–95 (2013).
[Crossref]

H. Seetzen, H. Li, L. Ye, W. Heidrich, L. Whitehead, and G. Ward, “Observations of luminance, contrast and amplitude resolution of displays,” in SID Symposium 37 (Wiley, 2006), pp. 1229–1233.
[Crossref]

Wuerger, S.

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: Effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Xiao, K.

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: Effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Ye, L.

H. Seetzen, H. Li, L. Ye, W. Heidrich, L. Whitehead, and G. Ward, “Observations of luminance, contrast and amplitude resolution of displays,” in SID Symposium 37 (Wiley, 2006), pp. 1229–1233.
[Crossref]

ACM Trans. Graph. (1)

M. H. Kim, T. Weyrich, and J. Kautz, “Modeling human color perception under extended luminance levels,” ACM Trans. Graph. 28(27), 21–29 (2009).

Ann. Math. Stat. (1)

J. W. Mauchly, “Significance test for sphericity of a normal n-variate distribution,” Ann. Math. Stat. 11(2), 204–209 (1940).
[Crossref]

Color Res. Appl. (2)

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

L. Whitehead, “Interpretation concerns regarding white light,” Color Res. Appl. 38(2), 93–95 (2013).
[Crossref]

Energy Build. (1)

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy Build. 49, 216–225 (2012).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (2)

J. Vis. (1)

T. Chauhan, E. Perales, K. Xiao, E. Hird, D. Karatzas, and S. Wuerger, “The achromatic locus: Effect of navigation direction in color space,” J. Vis. 14(1), 25 (2014).
[Crossref] [PubMed]

Sankhya Ind. J. Stat. (1)

K. V. Mardia, “Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies,” Sankhya Ind. J. Stat. 36, 115–128 (1974).

Sci. Pap. U. S. Bur. Stand. (1)

I. G. Priest, “The spectral distribution of energy required to evoke the gray sensation,” Sci. Pap. U. S. Bur. Stand. 17, 231–265 (1921).
[Crossref]

Vision Res. (3)

A. Valberg, “A method for the precise determination of achromatic colours including white,” Vision Res. 11(2), 157–160 (1971).
[Crossref] [PubMed]

J. Walraven and J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31(12), 2185–2193 (1991).
[Crossref] [PubMed]

I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46(19), 3055–3066 (2006).
[Crossref] [PubMed]

Other (3)

Y. Ohno and M. Fein, “Vision experiment on white light chromaticity for lighting,” in CIE/USA-CNC/CIE Biennial Joint Meeting (Davis, USA, 2013).

H. Seetzen, H. Li, L. Ye, W. Heidrich, L. Whitehead, and G. Ward, “Observations of luminance, contrast and amplitude resolution of displays,” in SID Symposium 37 (Wiley, 2006), pp. 1229–1233.
[Crossref]

CIES004/E-2001, Colours of Light Signals (CIE, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental Setup. Left: full setup. Right: view by an observer focused on the stimulus.
Fig. 2
Fig. 2 Unique white rating grid (black circles). The blackbody locus, the CIE daylight locus and the CIE class A and B white regions are also shown.
Fig. 3
Fig. 3 Unique whites obtained in the unique white setting experiment and the associated standard deviation ellipses for each observer (each color represents data of one observer): (a) 200 cd/m2, (b) 1000 cd/m2, (c) 2000 cd/m2 and (d) luminance invariance assumed. The average 3-SD-ellipse (solid black line) – a measure for the average intra-observer variability – and the 3-SD-ellipse of the average observer unique settings (dashed black line) – a measure of the inter-observer variability – are also plotted.
Fig. 4
Fig. 4 CCT (a) and Duv (b) versus luminance level. Colored solid lines: individual test subjects. Black dashed lines: ‘average’ observer.
Fig. 5
Fig. 5 Unique whites obtained in the rating experiment and the associated standard deviation ellipses for each observer (each color represents data of one observer): (a) 200 cd/m2, (b) 1000 cd/m2, (c) 2000 cd/m2 and (d) luminance invariance assumed. The average 3-SD-ellipse (solid black line) – a measure for the average intra-observer variability – and the 3-SD-ellipse of the average observer unique settings (dashed black line) – a measure of the inter-observer variability – are also plotted.
Fig. 6
Fig. 6 CCT (a) and Duv (b) versus luminance level. Colored solid lines: individual test subjects. Black dashed lines: ‘average’ observer.
Fig. 7
Fig. 7 Distribution of the neutrality scores for the ‘average’ observer. The 1-SD inter-observer variability ellipses of the unique white setting experiment and the rating experiment are plotted as a solid and dashed black line respectively. The dashed-dotted black line is the elliptical contour – at a Mahalanobis distance of 1 – of a bivariate Gaussian fit to the data. The centers of the three respective ellipses are marked with ‘ + ’, ‘x’, ‘o’.
Fig. 8
Fig. 8 Bivariate Gaussian model of the neutrality score of an ‘average’ observer. The chromaticity points of the 59 presented stimuli are shown as black dots.

Tables (5)

Tables Icon

Table 1 Intra (Average) and Inter Observer Variability Ellipses for the Adjustment Method

Tables Icon

Table 2 Maximum and Minimum of the CCT and Duv Corresponding to the Centers of the Individual Observer SD-ellipses and the CCT and Duv (and Their Standard Errors, SE) for the Average Observer as Obtained in the Adjustment Experiment

Tables Icon

Table 4 Maximum and Minimum of the CCT and Duv Corresponding to the Centers of the Individual Observer SD-ellipses and the CCT and Duv (and Their Standard Errors) for the Average Observer as Obtained in the Rating Experiment

Tables Icon

Table 3 Intra (Average) and Inter Observer Variability Ellipses for the Rating Method

Tables Icon

Table 5 Fitting Parameters of Bivariate Gaussian Fitted to the Neutrality Ratings of the Average Observer with the CCT and Duv Associated with the Center Also Given

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S n e u t r a l = a 6 · e 0.5 [ a 1 ( u ' a 3 ) 2 + a 2 ( v ' a 4 ) 2 + 2 a 5 ( u ' a 3 ) ( v ' a 4 ) ]

Metrics