Abstract

We study theoretically modal properties and parametric dependence of guided-mode resonance bandpass filters operating in the mid- and near-infrared spectral domains. We investigate three different device architectures consisting of single, double, and triple layers based on all-transparent dielectric and semiconductor thin films. The three device classes show high-performance bandpass filter profiles with broad, flat low-transmission sidebands accommodating sharp transmission peaks with their efficiencies approaching 100% with appropriate blending of multiple guided modes. We present three modal coupling configurations forming complex mixtures of two or three distinct leaky modes coupling at different evanescent diffraction orders. These modal compositions produce various widths of sidebands ranging from ~30 nm to ~2100 nm and transmission peak-linewidths ranging from ~1 pm to ~10 nm. Our modal analysis demonstrates key attributes of subwavelength periodic thin-film structures in multiple-modal blending to achieve desired transmission spectra. The design principle is applicable to various optical elements such as high-power optical filters, low-noise label-free biochemical sensor templates, and high-density display pixels.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Narrow-linewidth bandpass filters with diffractive thin-film layers

S. Tibuleac and R. Magnusson
Opt. Lett. 26(9) 584-586 (2001)

Reflection and transmission guided-mode resonance filters

S. Tibuleac and R. Magnusson
J. Opt. Soc. Am. A 14(7) 1617-1626 (1997)

High-efficiency guided-mode resonance filter

Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson
Opt. Lett. 23(19) 1556-1558 (1998)

References

  • View by:
  • |
  • |
  • |

  1. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
    [Crossref]
  2. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  3. S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
    [Crossref] [PubMed]
  4. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
    [Crossref] [PubMed]
  5. R. Magnusson, J. W. Yoon, M. S. Amin, T. Khaleque, and M. J. Uddin, “Extraordinary capabilities of optical devices incorporating guided-mode resonance gratings: Application summary and recent examples,” Proc. SPIE 8988, 898801 (2014).
  6. P. Vincent and M. Neviere, “Corrugated dielectric waveguides: A numerical study of the second-order stop bands,” Appl. Opt. 20(4), 345–351 (1979).
  7. L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
    [Crossref]
  8. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
    [Crossref]
  9. R. Magnusson and S. S. Wang, “Transmission bandpass guided-mode resonance filters,” Appl. Opt. 34(35), 8106–8109 (1995).
    [Crossref] [PubMed]
  10. S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14(7), 1617–1626 (1997).
    [Crossref]
  11. S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26(9), 584–586 (2001).
    [Crossref] [PubMed]
  12. S. Tibuleac, P. P. Young, R. Magnusson, and T. R. Holzheimer, “Experimental verification of waveguide-mode resonant transmission filters,” IEEE Microwave and Guided Wave Lett. 9(1), 19–21 (1999).
    [Crossref]
  13. Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
    [Crossref]
  14. T. Sang, Z. Wang, X. Zhou, and S. Cai, “Resonant enhancement transmission in a Ge subwavelength periodic membrane,” Appl. Phys. Lett. 97(7), 071107 (2010).
    [Crossref]
  15. T. Sang, T. Cai, S. Cai, and Z. Wang, “Tunable transmission filters based on double subwavelength periodic membrane structures with an air gap,” J. Opt. 13(12), 125706 (2011).
    [Crossref]
  16. M. S. Amin, J. W. Yoon, and R. Magnusson, “Optical transmission filters with coexisting guided-mode resonance and Rayleigh anomaly,” Appl. Phys. Lett. 103(13), 131106 (2013).
    [Crossref]
  17. J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103(7), 071107 (2013).
    [Crossref]
  18. R. McKeracher, L. Fu, H. H. Tan, and C. Jagadish, “Integration of bandpass guided-mode resonance filters with mid-wavelength infrared photodetectors,” J. Phys. D Appl. Phys. 46(9), 095104 (2013).
    [Crossref]
  19. Y. Ding and R. Magnusson, “Doubly resonant single-layer bandpass optical filters,” Opt. Lett. 29(10), 1135–1137 (2004).
    [Crossref] [PubMed]
  20. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  21. T. K. Gaylord and M. G. Moharam, “Analysis and Applications of Optical Diffraction by Gratings,” Proc. IEEE 73(5), 894–937 (1985).
    [Crossref]
  22. R. Magnusson, “Wideband reflectors with zero-contrast gratings,” Opt. Lett. 39(15), 4337–4340 (2014).
    [Crossref] [PubMed]
  23. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4(3), 379–440 (2012).
    [Crossref]
  24. Y. Ding, Resonant leaky-mode spectral-band engineering and device applications (Ph. D. dissertation, University of Connecticut, 2006).
  25. J. W. Yoon and R. Magnusson, “Fano resonance formula for lossy two-port systems,” Opt. Express 21(15), 17751–17759 (2013).
    [Crossref] [PubMed]
  26. J. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
    [Crossref]

2014 (2)

R. Magnusson, J. W. Yoon, M. S. Amin, T. Khaleque, and M. J. Uddin, “Extraordinary capabilities of optical devices incorporating guided-mode resonance gratings: Application summary and recent examples,” Proc. SPIE 8988, 898801 (2014).

R. Magnusson, “Wideband reflectors with zero-contrast gratings,” Opt. Lett. 39(15), 4337–4340 (2014).
[Crossref] [PubMed]

2013 (4)

J. W. Yoon and R. Magnusson, “Fano resonance formula for lossy two-port systems,” Opt. Express 21(15), 17751–17759 (2013).
[Crossref] [PubMed]

M. S. Amin, J. W. Yoon, and R. Magnusson, “Optical transmission filters with coexisting guided-mode resonance and Rayleigh anomaly,” Appl. Phys. Lett. 103(13), 131106 (2013).
[Crossref]

J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103(7), 071107 (2013).
[Crossref]

R. McKeracher, L. Fu, H. H. Tan, and C. Jagadish, “Integration of bandpass guided-mode resonance filters with mid-wavelength infrared photodetectors,” J. Phys. D Appl. Phys. 46(9), 095104 (2013).
[Crossref]

2012 (3)

J. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photon. 4(3), 379–440 (2012).
[Crossref]

2011 (1)

T. Sang, T. Cai, S. Cai, and Z. Wang, “Tunable transmission filters based on double subwavelength periodic membrane structures with an air gap,” J. Opt. 13(12), 125706 (2011).
[Crossref]

2010 (1)

T. Sang, Z. Wang, X. Zhou, and S. Cai, “Resonant enhancement transmission in a Ge subwavelength periodic membrane,” Appl. Phys. Lett. 97(7), 071107 (2010).
[Crossref]

2006 (1)

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

2004 (2)

2001 (1)

1999 (1)

S. Tibuleac, P. P. Young, R. Magnusson, and T. R. Holzheimer, “Experimental verification of waveguide-mode resonant transmission filters,” IEEE Microwave and Guided Wave Lett. 9(1), 19–21 (1999).
[Crossref]

1997 (1)

1995 (2)

1993 (1)

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

1989 (1)

A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[Crossref]

1985 (2)

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[Crossref]

T. K. Gaylord and M. G. Moharam, “Analysis and Applications of Optical Diffraction by Gratings,” Proc. IEEE 73(5), 894–937 (1985).
[Crossref]

1979 (1)

P. Vincent and M. Neviere, “Corrugated dielectric waveguides: A numerical study of the second-order stop bands,” Appl. Opt. 20(4), 345–351 (1979).

Amin, M. S.

R. Magnusson, J. W. Yoon, M. S. Amin, T. Khaleque, and M. J. Uddin, “Extraordinary capabilities of optical devices incorporating guided-mode resonance gratings: Application summary and recent examples,” Proc. SPIE 8988, 898801 (2014).

M. S. Amin, J. W. Yoon, and R. Magnusson, “Optical transmission filters with coexisting guided-mode resonance and Rayleigh anomaly,” Appl. Phys. Lett. 103(13), 131106 (2013).
[Crossref]

Avrutsky, A.

A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[Crossref]

Cai, S.

T. Sang, T. Cai, S. Cai, and Z. Wang, “Tunable transmission filters based on double subwavelength periodic membrane structures with an air gap,” J. Opt. 13(12), 125706 (2011).
[Crossref]

T. Sang, Z. Wang, X. Zhou, and S. Cai, “Resonant enhancement transmission in a Ge subwavelength periodic membrane,” Appl. Phys. Lett. 97(7), 071107 (2010).
[Crossref]

Cai, T.

T. Sang, T. Cai, S. Cai, and Z. Wang, “Tunable transmission filters based on double subwavelength periodic membrane structures with an air gap,” J. Opt. 13(12), 125706 (2011).
[Crossref]

Chang-Hasnain, C. J.

Collins, J. L.

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

Ding, Y.

Foley, J. M.

J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103(7), 071107 (2013).
[Crossref]

Fu, L.

R. McKeracher, L. Fu, H. H. Tan, and C. Jagadish, “Integration of bandpass guided-mode resonance filters with mid-wavelength infrared photodetectors,” J. Phys. D Appl. Phys. 46(9), 095104 (2013).
[Crossref]

Gaylord, T. K.

Grann, E. B.

Hane, K.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

Hilgenberg, J. D.

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

Holzheimer, T. R.

S. Tibuleac, P. P. Young, R. Magnusson, and T. R. Holzheimer, “Experimental verification of waveguide-mode resonant transmission filters,” IEEE Microwave and Guided Wave Lett. 9(1), 19–21 (1999).
[Crossref]

Jagadish, C.

R. McKeracher, L. Fu, H. H. Tan, and C. Jagadish, “Integration of bandpass guided-mode resonance filters with mid-wavelength infrared photodetectors,” J. Phys. D Appl. Phys. 46(9), 095104 (2013).
[Crossref]

Jung, M. J.

J. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

Kaja, S.

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

Kanamori, Y.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

Khaleque, T.

R. Magnusson, J. W. Yoon, M. S. Amin, T. Khaleque, and M. J. Uddin, “Extraordinary capabilities of optical devices incorporating guided-mode resonance gratings: Application summary and recent examples,” Proc. SPIE 8988, 898801 (2014).

Koulen, P.

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

Magnusson, R.

R. Magnusson, J. W. Yoon, M. S. Amin, T. Khaleque, and M. J. Uddin, “Extraordinary capabilities of optical devices incorporating guided-mode resonance gratings: Application summary and recent examples,” Proc. SPIE 8988, 898801 (2014).

R. Magnusson, “Wideband reflectors with zero-contrast gratings,” Opt. Lett. 39(15), 4337–4340 (2014).
[Crossref] [PubMed]

M. S. Amin, J. W. Yoon, and R. Magnusson, “Optical transmission filters with coexisting guided-mode resonance and Rayleigh anomaly,” Appl. Phys. Lett. 103(13), 131106 (2013).
[Crossref]

J. W. Yoon and R. Magnusson, “Fano resonance formula for lossy two-port systems,” Opt. Express 21(15), 17751–17759 (2013).
[Crossref] [PubMed]

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

J. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

Y. Ding and R. Magnusson, “Doubly resonant single-layer bandpass optical filters,” Opt. Lett. 29(10), 1135–1137 (2004).
[Crossref] [PubMed]

Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
[Crossref] [PubMed]

S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26(9), 584–586 (2001).
[Crossref] [PubMed]

S. Tibuleac, P. P. Young, R. Magnusson, and T. R. Holzheimer, “Experimental verification of waveguide-mode resonant transmission filters,” IEEE Microwave and Guided Wave Lett. 9(1), 19–21 (1999).
[Crossref]

S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14(7), 1617–1626 (1997).
[Crossref]

R. Magnusson and S. S. Wang, “Transmission bandpass guided-mode resonance filters,” Appl. Opt. 34(35), 8106–8109 (1995).
[Crossref] [PubMed]

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[Crossref] [PubMed]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

Mashev, L.

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[Crossref]

McKeracher, R.

R. McKeracher, L. Fu, H. H. Tan, and C. Jagadish, “Integration of bandpass guided-mode resonance filters with mid-wavelength infrared photodetectors,” J. Phys. D Appl. Phys. 46(9), 095104 (2013).
[Crossref]

Moharam, M. G.

Neviere, M.

P. Vincent and M. Neviere, “Corrugated dielectric waveguides: A numerical study of the second-order stop bands,” Appl. Opt. 20(4), 345–351 (1979).

Phillips, J. D.

J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103(7), 071107 (2013).
[Crossref]

Pommet, D. A.

Popov, E.

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[Crossref]

Sang, T.

T. Sang, T. Cai, S. Cai, and Z. Wang, “Tunable transmission filters based on double subwavelength periodic membrane structures with an air gap,” J. Opt. 13(12), 125706 (2011).
[Crossref]

T. Sang, Z. Wang, X. Zhou, and S. Cai, “Resonant enhancement transmission in a Ge subwavelength periodic membrane,” Appl. Phys. Lett. 97(7), 071107 (2010).
[Crossref]

Shah, A. A.

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

Shimono, M.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

Song, S. H.

J. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

Sychugov, V. A.

A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[Crossref]

Tan, H. H.

R. McKeracher, L. Fu, H. H. Tan, and C. Jagadish, “Integration of bandpass guided-mode resonance filters with mid-wavelength infrared photodetectors,” J. Phys. D Appl. Phys. 46(9), 095104 (2013).
[Crossref]

Tibuleac, S.

Uddin, M. J.

R. Magnusson, J. W. Yoon, M. S. Amin, T. Khaleque, and M. J. Uddin, “Extraordinary capabilities of optical devices incorporating guided-mode resonance gratings: Application summary and recent examples,” Proc. SPIE 8988, 898801 (2014).

Vincent, P.

P. Vincent and M. Neviere, “Corrugated dielectric waveguides: A numerical study of the second-order stop bands,” Appl. Opt. 20(4), 345–351 (1979).

Wang, S. S.

Wang, Z.

T. Sang, T. Cai, S. Cai, and Z. Wang, “Tunable transmission filters based on double subwavelength periodic membrane structures with an air gap,” J. Opt. 13(12), 125706 (2011).
[Crossref]

T. Sang, Z. Wang, X. Zhou, and S. Cai, “Resonant enhancement transmission in a Ge subwavelength periodic membrane,” Appl. Phys. Lett. 97(7), 071107 (2010).
[Crossref]

Wawro, D.

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

Yang, W.

Yoon, J.

J. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

Yoon, J. W.

R. Magnusson, J. W. Yoon, M. S. Amin, T. Khaleque, and M. J. Uddin, “Extraordinary capabilities of optical devices incorporating guided-mode resonance gratings: Application summary and recent examples,” Proc. SPIE 8988, 898801 (2014).

M. S. Amin, J. W. Yoon, and R. Magnusson, “Optical transmission filters with coexisting guided-mode resonance and Rayleigh anomaly,” Appl. Phys. Lett. 103(13), 131106 (2013).
[Crossref]

J. W. Yoon and R. Magnusson, “Fano resonance formula for lossy two-port systems,” Opt. Express 21(15), 17751–17759 (2013).
[Crossref] [PubMed]

Young, P. P.

S. Tibuleac, P. P. Young, R. Magnusson, and T. R. Holzheimer, “Experimental verification of waveguide-mode resonant transmission filters,” IEEE Microwave and Guided Wave Lett. 9(1), 19–21 (1999).
[Crossref]

Young, S. M.

J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103(7), 071107 (2013).
[Crossref]

Zhou, X.

T. Sang, Z. Wang, X. Zhou, and S. Cai, “Resonant enhancement transmission in a Ge subwavelength periodic membrane,” Appl. Phys. Lett. 97(7), 071107 (2010).
[Crossref]

Zimmerman, S.

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Appl. Opt. (3)

Appl. Phys. Lett. (4)

M. S. Amin, J. W. Yoon, and R. Magnusson, “Optical transmission filters with coexisting guided-mode resonance and Rayleigh anomaly,” Appl. Phys. Lett. 103(13), 131106 (2013).
[Crossref]

J. M. Foley, S. M. Young, and J. D. Phillips, “Narrowband mid-infrared transmission filtering of a single layer dielectric grating,” Appl. Phys. Lett. 103(7), 071107 (2013).
[Crossref]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

T. Sang, Z. Wang, X. Zhou, and S. Cai, “Resonant enhancement transmission in a Ge subwavelength periodic membrane,” Appl. Phys. Lett. 97(7), 071107 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Yoon, M. J. Jung, S. H. Song, and R. Magnusson, “Analytic theory of the resonance properties of metallic nanoslit arrays,” IEEE J. Quantum Electron. 48(7), 852–861 (2012).
[Crossref]

IEEE Microwave and Guided Wave Lett. (1)

S. Tibuleac, P. P. Young, R. Magnusson, and T. R. Holzheimer, “Experimental verification of waveguide-mode resonant transmission filters,” IEEE Microwave and Guided Wave Lett. 9(1), 19–21 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photon. Technol. Lett. 18(20), 2126–2128 (2006).
[Crossref]

J. Biomed. Opt. (1)

S. Kaja, J. D. Hilgenberg, J. L. Collins, A. A. Shah, D. Wawro, S. Zimmerman, R. Magnusson, and P. Koulen, “Detection of novel biomarkers for ovarian cancer with an optical nanotechnology detection system enabling label-free diagnostics,” J. Biomed. Opt. 17(8), 081412 (2012).
[Crossref] [PubMed]

J. Mod. Opt. (1)

A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989).
[Crossref]

J. Opt. (1)

T. Sang, T. Cai, S. Cai, and Z. Wang, “Tunable transmission filters based on double subwavelength periodic membrane structures with an air gap,” J. Opt. 13(12), 125706 (2011).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Phys. D Appl. Phys. (1)

R. McKeracher, L. Fu, H. H. Tan, and C. Jagadish, “Integration of bandpass guided-mode resonance filters with mid-wavelength infrared photodetectors,” J. Phys. D Appl. Phys. 46(9), 095104 (2013).
[Crossref]

Opt. Commun. (1)

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Proc. IEEE (1)

T. K. Gaylord and M. G. Moharam, “Analysis and Applications of Optical Diffraction by Gratings,” Proc. IEEE 73(5), 894–937 (1985).
[Crossref]

Proc. SPIE (1)

R. Magnusson, J. W. Yoon, M. S. Amin, T. Khaleque, and M. J. Uddin, “Extraordinary capabilities of optical devices incorporating guided-mode resonance gratings: Application summary and recent examples,” Proc. SPIE 8988, 898801 (2014).

Other (1)

Y. Ding, Resonant leaky-mode spectral-band engineering and device applications (Ph. D. dissertation, University of Connecticut, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Device schematic and (b) spectral performance of a single-layer GMR bandpass filter with period Λ = 6.91 µm, fill factor f = 0.42, and grating thickness d = 3.8 μm. Refractive indices are nC = 1 (air), nS = 1.4 (SiO2), nH = 4 (Ge), and nL = 2.64 (Se). T0 and R0 denote the zero-order transmittance and zero-order reflectance, respectively. The dashed line in (b) represents the optical response for the grating layer replaced with the effective homogeneous layer. The inset in (b) shows the distribution of the total electric field over 2Λ at the T0-peak wavelength. The TE polarization state prevails.

Fig. 2
Fig. 2

Amplitudes of different coupling orders at (a) 9.80 μm, (b) 10.40 μm, (c) 10.59 μm, (d) 10.60 μm, (e) 10.65 μm and (f) 11.20 μm. S0 (green line), S±1 (blue line), and S±2 (red line) represent the zero-, first-, and second-order amplitudes, respectively. The inset on the right-top side of each plot indicates the corresponding wavelength with respect to the transmission spectrum.

Fig. 3
Fig. 3

T0 spectrum as a function of (a) grating thickness and (b) fill factor of the device in Fig. 1(a). The white circles in Fig. 3(a) and 3(b) correspond to the filter in Fig. 1.

Fig. 4
Fig. 4

(a) Structure and (b) performance spectrum of a Si-based GMR bandpass filter with the following parameters: grating period Λ = 1.018 µm, fill factor f = 0.21, grating thickness d = 0.355 μm, and homogeneous sublayer thickness d1 = 0.297 μm. Refractive indices are nC = 1 (air), nS = 1.45 (SiO2), and nH = 3.48 (Si). The dashed line in (b) represents the optical response with the grating layer replaced with an effective homogeneous layer. The inset in (b) shows the total electric field at the T0-peak wavelength.

Fig. 5
Fig. 5

Amplitudes of coupling orders at (a) 1.50 μm, (b) 1.545 μm, (c) 1.549 μm, (d) 1.55 μm, (e) 1.552 μm and (f) 1.6 μm. S0 (green line), S±1 (blue line), and S±2 (red line) represent the zero-, first-, and second-order amplitudes, respectively. The inset in each plot indicates the corresponding wavelength with respect to the transmission spectrum.

Fig. 6
Fig. 6

T0 spectrum as a function of (a) grating layer thickness and (b) homogeneous layer thickness. The white circles in 6(a) and 6(b) denote the location of the device parameters.

Fig. 7
Fig. 7

(a) Structure and (b) T0 spectrum of the three-layer GMR transmission filter with the optimized parameters of grating period Λ = 1.029 µm, fill factor f = 0.152, grating thickness d = 0.262 μm, upper cladding thickness d1 = 1.460 μm, and embedded Si waveguide thickness d2 = 2.221 µm. Refractive indices are nC = 1 (air), nS = n1 = 1.45 (SiO2), and nH = n2 = 3.2 (Si). The dashed line in (b) represents the optical response for the grating layer replaced with the effective homogeneous layer. The inset in (b) shows the total electric field at the T0-peak wavelength.

Fig. 8
Fig. 8

Amplitudes of the main coupling orders at (a) 1.5470 μm, (b) 1.5496 μm, (c) 1.5499 μm, (d) 1.55 μm, (e) 1.5502 μm, and (f) 1.5600 μm. S0 (green line) and S±1 (blue line) represent the zero- and first-order amplitudes, respectively. The inset in each plot indicates the corresponding wavelength with respect to the transmission spectrum.

Fig. 9
Fig. 9

(a) Zero-order transmittance for different values of homogeneous Si layer thickness (d2) at λ = 1.550 μm and total field at T0 peak wavelength when the homogeneous Si layer thickness is: (b) d2 = 0.025 μm operating at TE0 mode, (c) d2 = 0.300 μm operating at TE1 mode, (d) d2 = 1.398 μm operating at TE4 mode, and (e) d2 = 2.495 μm operating at TE9 mode.

Fig. 10
Fig. 10

(a) Characteristic bandwidths and (b) selected T0 spectra of transmission peaks in Fig. 9(a). Inset in (b) provides passband comparison for the selected transmission states.

Fig. 11
Fig. 11

(a) T0 spectrum, (b) peak efficiency, and (c) peak linewidth (FWHM) as functions of homogeneous SiO2 layer thickness.

Tables (2)

Tables Icon

Table 1 List of Performance Parameters for the Three Devices Treated

Tables Icon

Table 2 Mode Configurations Discussed in the Paper*

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n O = [ n L 2 + f ( n H 2 n L 2 ) ] 1 / 2 .
E y ( x , z ) = q S q ( z ) exp ( i σ q r ) ,
Δ d = 0.5 λ [ n 2 2 ( q λ / Λ ) 2 ] 0.5 .

Metrics