Abstract

Innovations in laser engineering have yielded several novel configurations for high repetition rate, broad sweep range, and long coherence length wavelength swept lasers. Although these lasers have enabled high performance frequency-domain optical coherence tomography, they are typically complicated and costly and many require access to proprietary materials or devices. Here, we demonstrate a simplified ring resonator configuration that is straightforward to construct from readily available materials at a low total cost. It was enabled by an insight regarding the significance of isolation against bidirectional operation and by configuring the sweep range of the intracavity filter to exceed its free spectral range. The design can easily be optimized to meet a range of operating specifications while yielding robust and stable performance. As an example, we demonstrate 240 kHz operation with 125 nm sweep range and >70 mW of average output power and demonstrate high quality frequency domain OCT imaging. The complete component list and directions for assembly of the laser are posted on-line at www.octresearch.org.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extended bandwidth wavelength swept laser source for high resolution optical frequency domain imaging

Sahar Hosseinzadeh Kassani, Martin Villiger, Néstor Uribe-Patarroyo, Changsu Jun, Reza Khazaeinezhad, Norman Lippok, and Brett E. Bouma
Opt. Express 25(7) 8255-8266 (2017)

Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu
Opt. Express 13(9) 3513-3528 (2005)

High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs

Min Yong Jeon, Jun Zhang, Qiang Wang, and Zhongping Chen
Opt. Express 16(4) 2547-2554 (2008)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt. 49(16), D30–D61 (2010).
    [Crossref] [PubMed]
  3. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  4. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  5. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
    [Crossref] [PubMed]
  6. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
    [Crossref] [PubMed]
  7. S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16(1), 293–295 (2004).
    [Crossref] [PubMed]
  8. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
    [Crossref] [PubMed]
  9. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30(23), 3159–3161 (2005).
    [Crossref] [PubMed]
  10. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35(17), 2919–2921 (2010).
    [Crossref] [PubMed]
  11. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
    [Crossref] [PubMed]
  12. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
    [Crossref] [PubMed]
  13. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]
  14. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
    [Crossref] [PubMed]
  15. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
    [Crossref] [PubMed]
  16. Corning SMF28,” http://www.corning.com/opticalfiber/products/SMF-28e+_fiber.aspx .
  17. H. S. Cho, S.-J. Jang, K. Kim, A. V. Dan-Chin-Yu, M. Shishkov, B. E. Bouma, and W.-Y. Oh, “High frame-rate intravascular optical frequency-domain imaging in vivo,” Biomed. Opt. Express 5(1), 223–232 (2014).
    [Crossref] [PubMed]
  18. S. C. Schlachter, D. Kang, M. J. Gora, P. Vacas-Jacques, T. Wu, R. W. Carruth, E. J. Wilsterman, B. E. Bouma, K. Woods, and G. J. Tearney, “Spectrally encoded confocal microscopy of esophageal tissues at 100 kHz line rate,” Biomed. Opt. Express 4(9), 1636–1645 (2013).
    [Crossref] [PubMed]
  19. Arduino,” http://arduino.cc/ .
  20. A. E. Siegman, Lasers (University Science Books, 1986).
  21. K. Inoue, T. Mukai, and T. Saitoh, “Nearly degenerate four-wave mixing in a traveling-wave semiconductor laser amplifier,” Appl. Phys. Lett. 51(14), 1051–1053 (1987).
    [Crossref]
  22. G. P. Agrawal, “Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers,” J. Opt. Soc. Am. B 5(1), 147–159 (1988).
    [Crossref]
  23. S. S. Girard, M. M. Piche, H. Chen, G. G. Schinn, W.-Y. Oh, and B. B. Bouma, “SOA Fiber Ring Lasers: Single- Versus Multiple-Mode Oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
    [Crossref]
  24. R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Küller, E. Dietrich, and H.-G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14(3), 324–335 (1996).
    [Crossref]
  25. M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. G. Podoleanu, “Algorithm for Excitation Optimization of Fabry-Perot Filters Used in Swept Sources,” IEEE Photon. Technol. Lett. 25(5), 472–475 (2013).
    [Crossref]
  26. S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12(20), 4822–4828 (2004).
    [Crossref] [PubMed]
  27. E. Brinkmeyer and R. Ulrich, “High-resolution OCDR in dispersive waveguides,” Electron. Lett. 26(6), 413–414 (1990).
    [Crossref]
  28. M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
    [Crossref] [PubMed]
  29. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall PTR, 1998).
  30. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009).
    [Crossref] [PubMed]
  31. R. Steiner, “Laser-Tissue Interactions,” in Laser and IPL Technology in Dermatology and Aesthetic Medicine, C. Raulin and S. Karsai, eds. (Springer Berlin Heidelberg, 2011), pp. 23–36.
  32. ImageJ,” http://rsbweb.nih.gov/ij/ .

2014 (1)

2013 (3)

2012 (1)

2011 (1)

S. S. Girard, M. M. Piche, H. Chen, G. G. Schinn, W.-Y. Oh, and B. B. Bouma, “SOA Fiber Ring Lasers: Single- Versus Multiple-Mode Oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

2010 (3)

2009 (1)

2006 (2)

2005 (3)

2004 (2)

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16(1), 293–295 (2004).
[Crossref] [PubMed]

S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12(20), 4822–4828 (2004).
[Crossref] [PubMed]

2003 (4)

1996 (1)

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Küller, E. Dietrich, and H.-G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14(3), 324–335 (1996).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1990 (1)

E. Brinkmeyer and R. Ulrich, “High-resolution OCDR in dispersive waveguides,” Electron. Lett. 26(6), 413–414 (1990).
[Crossref]

1988 (1)

1987 (1)

K. Inoue, T. Mukai, and T. Saitoh, “Nearly degenerate four-wave mixing in a traveling-wave semiconductor laser amplifier,” Appl. Phys. Lett. 51(14), 1051–1053 (1987).
[Crossref]

Adler, D. C.

Agrawal, G. P.

Avanaki, M. R. N.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. G. Podoleanu, “Algorithm for Excitation Optimization of Fabry-Perot Filters Used in Swept Sources,” IEEE Photon. Technol. Lett. 25(5), 472–475 (2013).
[Crossref]

Biedermann, B. R.

Boudoux, C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16(1), 293–295 (2004).
[Crossref] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
[Crossref] [PubMed]

Bouma, B.

Bouma, B. B.

S. S. Girard, M. M. Piche, H. Chen, G. G. Schinn, W.-Y. Oh, and B. B. Bouma, “SOA Fiber Ring Lasers: Single- Versus Multiple-Mode Oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

Bouma, B. E.

H. S. Cho, S.-J. Jang, K. Kim, A. V. Dan-Chin-Yu, M. Shishkov, B. E. Bouma, and W.-Y. Oh, “High frame-rate intravascular optical frequency-domain imaging in vivo,” Biomed. Opt. Express 5(1), 223–232 (2014).
[Crossref] [PubMed]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
[Crossref] [PubMed]

S. C. Schlachter, D. Kang, M. J. Gora, P. Vacas-Jacques, T. Wu, R. W. Carruth, E. J. Wilsterman, B. E. Bouma, K. Woods, and G. J. Tearney, “Spectrally encoded confocal microscopy of esophageal tissues at 100 kHz line rate,” Biomed. Opt. Express 4(9), 1636–1645 (2013).
[Crossref] [PubMed]

W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35(17), 2919–2921 (2010).
[Crossref] [PubMed]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30(23), 3159–3161 (2005).
[Crossref] [PubMed]

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16(1), 293–295 (2004).
[Crossref] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
[Crossref] [PubMed]

Bradu, A.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. G. Podoleanu, “Algorithm for Excitation Optimization of Fabry-Perot Filters Used in Swept Sources,” IEEE Photon. Technol. Lett. 25(5), 472–475 (2013).
[Crossref]

Brinkmeyer, E.

E. Brinkmeyer and R. Ulrich, “High-resolution OCDR in dispersive waveguides,” Electron. Lett. 26(6), 413–414 (1990).
[Crossref]

Cable, A. E.

Carruth, R. W.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, H.

S. S. Girard, M. M. Piche, H. Chen, G. G. Schinn, W.-Y. Oh, and B. B. Bouma, “SOA Fiber Ring Lasers: Single- Versus Multiple-Mode Oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

Cho, H. S.

Choma, M.

Choma, M. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref] [PubMed]

Dan-Chin-Yu, A. V.

de Boer, J.

de Boer, J. F.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16(1), 293–295 (2004).
[Crossref] [PubMed]

Dietrich, E.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Küller, E. Dietrich, and H.-G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14(3), 324–335 (1996).
[Crossref]

Duker, J. S.

Eigenwillig, C. M.

Eiselt, M.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Küller, E. Dietrich, and H.-G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14(3), 324–335 (1996).
[Crossref]

Fercher, A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

Girard, S. S.

S. S. Girard, M. M. Piche, H. Chen, G. G. Schinn, W.-Y. Oh, and B. B. Bouma, “SOA Fiber Ring Lasers: Single- Versus Multiple-Mode Oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

Gora, M. J.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grosskopf, G.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Küller, E. Dietrich, and H.-G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14(3), 324–335 (1996).
[Crossref]

Grulkowski, I.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hitzenberger, C.

Hojjatoleslami, A.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. G. Podoleanu, “Algorithm for Excitation Optimization of Fabry-Perot Filters Used in Swept Sources,” IEEE Photon. Technol. Lett. 25(5), 472–475 (2013).
[Crossref]

Hsu, K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huber, R.

Iftimia, N.

Inoue, K.

K. Inoue, T. Mukai, and T. Saitoh, “Nearly degenerate four-wave mixing in a traveling-wave semiconductor laser amplifier,” Appl. Phys. Lett. 51(14), 1051–1053 (1987).
[Crossref]

Izatt, J.

Izatt, J. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref] [PubMed]

Jang, S.-J.

Jayaraman, V.

Jiang, J.

Kang, D.

Kim, K.

Klein, T.

Küller, L.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Küller, E. Dietrich, and H.-G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14(3), 324–335 (1996).
[Crossref]

Langenhorst, R.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Küller, E. Dietrich, and H.-G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14(3), 324–335 (1996).
[Crossref]

Leitgeb, R.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, J. J.

Lu, C. D.

Ludwig, R.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Küller, E. Dietrich, and H.-G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14(3), 324–335 (1996).
[Crossref]

Mukai, T.

K. Inoue, T. Mukai, and T. Saitoh, “Nearly degenerate four-wave mixing in a traveling-wave semiconductor laser amplifier,” Appl. Phys. Lett. 51(14), 1051–1053 (1987).
[Crossref]

Nadkarni, S. K.

Oh, W. Y.

Oh, W.-Y.

Piche, M. M.

S. S. Girard, M. M. Piche, H. Chen, G. G. Schinn, W.-Y. Oh, and B. B. Bouma, “SOA Fiber Ring Lasers: Single- Versus Multiple-Mode Oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

Pieper, W.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Küller, E. Dietrich, and H.-G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14(3), 324–335 (1996).
[Crossref]

Pierce, M. C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16(1), 293–295 (2004).
[Crossref] [PubMed]

Podoleanu, A. G.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. G. Podoleanu, “Algorithm for Excitation Optimization of Fabry-Perot Filters Used in Swept Sources,” IEEE Photon. Technol. Lett. 25(5), 472–475 (2013).
[Crossref]

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ribeiro, A. B. L.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. G. Podoleanu, “Algorithm for Excitation Optimization of Fabry-Perot Filters Used in Swept Sources,” IEEE Photon. Technol. Lett. 25(5), 472–475 (2013).
[Crossref]

Saitoh, T.

K. Inoue, T. Mukai, and T. Saitoh, “Nearly degenerate four-wave mixing in a traveling-wave semiconductor laser amplifier,” Appl. Phys. Lett. 51(14), 1051–1053 (1987).
[Crossref]

Sarunic, M.

Schinn, G. G.

S. S. Girard, M. M. Piche, H. Chen, G. G. Schinn, W.-Y. Oh, and B. B. Bouma, “SOA Fiber Ring Lasers: Single- Versus Multiple-Mode Oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

Schlachter, S. C.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Shishkov, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Taira, K.

Tearney, G.

Tearney, G. J.

Trifanov, I.

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. G. Podoleanu, “Algorithm for Excitation Optimization of Fabry-Perot Filters Used in Swept Sources,” IEEE Photon. Technol. Lett. 25(5), 472–475 (2013).
[Crossref]

Ulrich, R.

E. Brinkmeyer and R. Ulrich, “High-resolution OCDR in dispersive waveguides,” Electron. Lett. 26(6), 413–414 (1990).
[Crossref]

Vacas-Jacques, P.

Vakoc, B. J.

Villiger, M.

Weber, H.-G.

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Küller, E. Dietrich, and H.-G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14(3), 324–335 (1996).
[Crossref]

Wieser, W.

Wilsterman, E. J.

Wojtkowski, M.

Woods, K.

Wu, T.

Yang, C.

Yun, S.

Yun, S. H.

Zhang, E. Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Inoue, T. Mukai, and T. Saitoh, “Nearly degenerate four-wave mixing in a traveling-wave semiconductor laser amplifier,” Appl. Phys. Lett. 51(14), 1051–1053 (1987).
[Crossref]

Biomed. Opt. Express (3)

Electron. Lett. (1)

E. Brinkmeyer and R. Ulrich, “High-resolution OCDR in dispersive waveguides,” Electron. Lett. 26(6), 413–414 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. S. Girard, M. M. Piche, H. Chen, G. G. Schinn, W.-Y. Oh, and B. B. Bouma, “SOA Fiber Ring Lasers: Single- Versus Multiple-Mode Oscillation,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1513–1520 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (2)

M. R. N. Avanaki, A. Bradu, I. Trifanov, A. B. L. Ribeiro, A. Hojjatoleslami, and A. G. Podoleanu, “Algorithm for Excitation Optimization of Fabry-Perot Filters Used in Swept Sources,” IEEE Photon. Technol. Lett. 25(5), 472–475 (2013).
[Crossref]

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett. 16(1), 293–295 (2004).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig, L. Küller, E. Dietrich, and H.-G. Weber, “Fiber loop optical buffer,” J. Lightwave Technol. 14(3), 324–335 (1996).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (9)

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express 18(14), 14685–14704 (2010).
[Crossref] [PubMed]

S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express 12(20), 4822–4828 (2004).
[Crossref] [PubMed]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
[Crossref] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref] [PubMed]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
[Crossref] [PubMed]

Opt. Lett. (4)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (6)

R. Steiner, “Laser-Tissue Interactions,” in Laser and IPL Technology in Dermatology and Aesthetic Medicine, C. Raulin and S. Karsai, eds. (Springer Berlin Heidelberg, 2011), pp. 23–36.

ImageJ,” http://rsbweb.nih.gov/ij/ .

D. Derickson, Fiber Optic Test and Measurement (Prentice Hall PTR, 1998).

Corning SMF28,” http://www.corning.com/opticalfiber/products/SMF-28e+_fiber.aspx .

Arduino,” http://arduino.cc/ .

A. E. Siegman, Lasers (University Science Books, 1986).

Supplementary Material (2)

» Media 1: MP4 (1499 KB)     
» Media 2: MP4 (1551 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic setup of (a) 60 kHz laser oscillator and (b) interleaver for 4 × frequency multiplication followed by an amplifier SOA. (SOA: semiconductor optical amplifier, F-P: Fabry-Perot filter, CIRC: circulator, FRM: Faraday rotating mirror, SMF: single-mode fiber, PC: polarization controller).
Fig. 2
Fig. 2 Effect of laser cavity isolation. (a) Temporary setup to separately measure the swept spectrum (yellow dash) and the ASE back-reflected by the F-P (blue dash). (b) Yellow-filled spectrum is the desired swept spectrum and blue-colored spectrum is the reflected ASE. Thick red spectrum is the combined output. With sufficient isolation of >55 dB between F-P and SOA 2, the backward-propagating ASE no longer exists (black spectrum at bottom). The output spectra for various fixed (not swept) F-P voltages are depicted in with different colors (c) for 20 dB isolation and (d) for >55 dB isolation. The inset of Fig. 2(c) is the evolution of ASE up to 49 roundtrips. The swept spectrum is displayed in (e) for 20 dB isolation and (f) for >55 dB isolation. The evolved ASE is hidden as a spectral noise in Fig. 2(e) (grey spectrum).
Fig. 3
Fig. 3 (a) Diagram of overdriven F-P to increase the swept range in case of 25%-duty SOA modulation. The first column displays the wavelength axis, in which the nth FSR peak among n-1, n and n + 1 is sweeping the spectrum within the ASE bandwidth. The second and third columns show the sinusoidal voltage sweep as a function of time in case of normal and overdriven operation of the F-P, respectively. The sinusoidal voltage sweep determines the spectral position, and the relative phase of the 25%-duty square wave can select the swept range. The swept spectra are displayed when the cavity SOA is modulated with (b) 46% duty cycle for 60 × 2 kHz frequency, (c) 31% duty cycle for 60 × 3 kHz, (d) 25% duty cycle for 60 × 4 kHz and (e) 20% duty cycle for 60 × 5 kHz. The gray and red ones are the spectra before and after the amplifier SOA.
Fig. 4
Fig. 4 (a) Schematic of 240 kHz OFDI system. (b) Swept spectra at laser output (red), at detector coming from the sample arm mirror (green dot) and at detector coming from the reference arm mirror (blue dot). Spectra at detectors were measured with the reduced resolution of 0.5 nm to better display the spectral shape. (c) Relation of functions and signals in the time domain. (AO FS: acousto-optic frequency shifter, PD: photodiode, FBG: fiber Bragg grating, Pol: polarizer, BS: beam splitter, PBS: polarizing beam splitter).
Fig. 5
Fig. 5 Calibration of 240 kHz OFDI system. (a) Frequency sweep in a period. Inset is the enlarged view. Blue line is swept frequencies from reference mirror and red to green dots are time-delayed swept frequencies from sample depths of 1, 2, 3, 4, 5 mm, respectively. (b) Signal (or beating) frequency bandwidth from each depth. (c) Point spread functions (PSFs) before (gray) and after (red) the calibration of NL chirping and dispersion.
Fig. 6
Fig. 6 Performance of 240 kHz OFDI system. (a) Theoretical sensitivity as a function of reference arm power (red line) and the measured sensitivity values (red dots). 106.9 dB will be the theoretical max. sensitivity at the detector saturation power of -4 dBm (black dash dot). (b) Sensitivity roll-off (black dots) and its fitting (red line). Unaveraged noise (gray) and the averaged PSFs at each depth to measure the signal-to-noise ratio are depicted at the bottom. (c) Axial resolutions in air. Inset is the enlarged PSFs in linear scale.
Fig. 7
Fig. 7 Sample images at 240 kHz axial-scan rate of (a) a human fingertip (Media 1) and (b) its 3D rendering; (c) a nail fold (Media 2) and (d) its 3D rendering. In (a) and (b), Z 1024 × Y 1024 × X 512 voxels were imaged in 2.18 seconds (Z 4.5 mm × Y 10 mm × X 5 mm), and rescaled to have the same pixel size of 8.8 um in X-Y-Z directions, then cropped as shown. In (c) and (d), Z 1024 × Y 1024 × X 256 voxels were imaged in 1.09 seconds (Z 4.5 mm × Y 10 mm × X 5 mm), and rescaled to have the same pixel size of 8.8 µm in X-Y-Z directions, then cropped as shown. The unit length in (a) and (c) is the same. (with ImageJ [32])

Metrics