Abstract

A multiplexed multi-longitudinal mode fiber laser sensor system is proposed and demonstrated. By incorporating two matched wavelength division multiplexers (WDMs) and a semiconductor optical amplifier (SOA) into a fiber laser cavity, multiwavelength oscillation is established. Each wavelength corresponding to one channel of WDMs contains multi-longitudinal modes. The multiwavelength output of the laser is directed to another WDM which functions as a demultiplexer. By monitoring the longitudinal mode beat frequency generated at photodetectors following the WDM, the sensing information can be demodulated. Preliminary results for multiplexing two sensors measuring strain and temperature are presented to verify the principle of the system.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-longitudinal mode fiber laser sensor system with high signal-to-noise ratio based on laser modes control

Yu Guo, Shangjing Liu, Yi Ni, Haodong Wu, and Xiang Fei Chen
Opt. Express 27(8) 11776-11782 (2019)

Multi-functional fiber optic sensors based on mode division multiplexing

Yi Weng, Ting Wang, and Zhongqi Pan
Opt. Mater. Express 7(6) 1917-1933 (2017)

Detection of dynamic signals from multiplexed SOA-based fiber-ring laser sensors

Rong Chen, Chuanyi Tao, Xuhai Jiang, Junhua Cheng, Jing Zhang, Liming Mao, Na Li, and Xiangkai Zeng
Appl. Opt. 57(35) 10159-10163 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Li, X. Wang, J. Huang, and H. Gu, “Spatial-division-multiplexing addressed fiber laser hydrophone array,” Opt. Lett. 38(11), 1909–1911 (2013).
    [Crossref] [PubMed]
  2. Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).
    [Crossref]
  3. T. Liu, L. Hu, and M. Han, “Multiplexed fiber-ring laser sensors for ultrasonic detection,” Opt. Express 21(25), 30474–30480 (2013).
    [Crossref] [PubMed]
  4. W. Wang, Z. Hu, M. Ma, H. Lin, and Y. Hu, “Strong fiber Bragg grating based asymmetric Fabry–Perot sensor system with multiple reflections for high sensitivity enhancement,” Opt. Fiber Technol. 20(2), 95–99 (2014).
    [Crossref]
  5. J. Mandal, T. Sun, K. T. Grattan, R. T. Zheng, N. Q. Ngo, and A. T. Augousti, “A parallel multiplexed temperature sensor system using Bragg-grating-based fiber lasers,” IEEE Sens. J. 6(4), 986–995 (2006).
    [Crossref]
  6. U. Tiwari, K. Thyagarajan, M. R. Shenoy, and S. C. Jain, “EDF-based edge-filter interrogation scheme for FBG sensors,” IEEE Sens. J. 13(4), 1315–1319 (2013).
    [Crossref]
  7. T. Wei, J. Huang, X. Lan, Q. Han, and H. Xiao, “Optical fiber sensor based on a radio frequency Mach-Zehnder interferometer,” Opt. Lett. 37(4), 647–649 (2012).
    [Crossref] [PubMed]
  8. H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-frequency fiber Bragg grating sensing interrogation system using Sagnac-loop-based microwave photonic filtering,” IEEE Photon. Technol. Lett. 21(8), 519–521 (2009).
    [Crossref]
  9. S.-J. Choi, W. Mao, and J.-K. Pan, “Novel RF interrogation of a fiber Bragg grating sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator,” Sensors (Basel) 13(7), 8403–8411 (2013).
    [Crossref] [PubMed]
  10. A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21(23), 28175–28181 (2013).
    [Crossref] [PubMed]
  11. C. Lyu, C. Wu, H.-Y. Tam, C. Lu, and J. Ma, “Polarimetric heterodyning fiber laser sensor for directional acoustic signal measurement,” Opt. Express 21(15), 18273–18280 (2013).
    [Crossref] [PubMed]
  12. L. Jin, Y.-N. Tan, Z. Quan, M.-P. Li, and B.-O. Guan, “Strain-insensitive temperature sensing with a dual polarization fiber grating laser,” Opt. Express 20(6), 6021–6028 (2012).
    [Crossref] [PubMed]
  13. B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightwave Technol. 30(8), 1097–1112 (2012).
    [Crossref]
  14. T. Guo, A. C. Wong, W.-S. Liu, B.-O. Guan, C. Lu, and H.-Y. Tam, “Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection,” Opt. Express 19(3), 2485–2492 (2011).
    [Crossref] [PubMed]
  15. W. Liu, T. Guo, A. C. Wong, H.-Y. Tam, and S. He, “Highly sensitive bending sensor based on Er3+-doped DBR fiber laser,” Opt. Express 18(17), 17834–17840 (2010).
    [PubMed]
  16. J. C. Yong, S. H. Yun, M. L. Lee, and B. Y. Kim, “Frequency-division-multiplexed polarimetric fiber laser current-sensor array,” Opt. Lett. 24(16), 1097–1099 (1999).
    [Crossref] [PubMed]
  17. S. Liu, Z. Yin, L. Zhang, L. Gao, X. Chen, and J. Cheng, “Multilongitudinal mode fiber laser for strain measurement,” Opt. Lett. 35(6), 835–837 (2010).
    [Crossref] [PubMed]
  18. Z. Yin, L. Gao, S. Liu, L. Zhang, F. Wu, L. Chen, and X. Chen, “Fiber ring laser sensor for temperature measurement,” J. Lightwave Technol. 28(23), 3403–3408 (2010).
  19. L. Gao, S. Liu, Z. Yin, L. Zhang, L. Chen, and X. Chen, “Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques,” IEEE Photon. Technol. Lett. 23(1), 18–20 (2011).
    [Crossref]
  20. S. Kim, J. Kwon, S. Kim, and B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13(4), 350–351 (2001).
    [Crossref]
  21. H. Chen, “Multiwavelength fiber ring lasing by use of a semiconductor optical amplifier,” Opt. Lett. 30(6), 619–621 (2005).
    [Crossref] [PubMed]
  22. L. Gao, L. Huang, L. Chen, and X. Chen, “Study on fiber ring laser in sensing application with beat frequency demodulation,” Opt. Laser Technol. 45, 137–141 (2013).
    [Crossref]

2014 (1)

W. Wang, Z. Hu, M. Ma, H. Lin, and Y. Hu, “Strong fiber Bragg grating based asymmetric Fabry–Perot sensor system with multiple reflections for high sensitivity enhancement,” Opt. Fiber Technol. 20(2), 95–99 (2014).
[Crossref]

2013 (7)

U. Tiwari, K. Thyagarajan, M. R. Shenoy, and S. C. Jain, “EDF-based edge-filter interrogation scheme for FBG sensors,” IEEE Sens. J. 13(4), 1315–1319 (2013).
[Crossref]

S.-J. Choi, W. Mao, and J.-K. Pan, “Novel RF interrogation of a fiber Bragg grating sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator,” Sensors (Basel) 13(7), 8403–8411 (2013).
[Crossref] [PubMed]

L. Gao, L. Huang, L. Chen, and X. Chen, “Study on fiber ring laser in sensing application with beat frequency demodulation,” Opt. Laser Technol. 45, 137–141 (2013).
[Crossref]

R. Li, X. Wang, J. Huang, and H. Gu, “Spatial-division-multiplexing addressed fiber laser hydrophone array,” Opt. Lett. 38(11), 1909–1911 (2013).
[Crossref] [PubMed]

C. Lyu, C. Wu, H.-Y. Tam, C. Lu, and J. Ma, “Polarimetric heterodyning fiber laser sensor for directional acoustic signal measurement,” Opt. Express 21(15), 18273–18280 (2013).
[Crossref] [PubMed]

A. L. Ricchiuti, D. Barrera, S. Sales, L. Thevenaz, and J. Capmany, “Long fiber Bragg grating sensor interrogation using discrete-time microwave photonic filtering techniques,” Opt. Express 21(23), 28175–28181 (2013).
[Crossref] [PubMed]

T. Liu, L. Hu, and M. Han, “Multiplexed fiber-ring laser sensors for ultrasonic detection,” Opt. Express 21(25), 30474–30480 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (2)

T. Guo, A. C. Wong, W.-S. Liu, B.-O. Guan, C. Lu, and H.-Y. Tam, “Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection,” Opt. Express 19(3), 2485–2492 (2011).
[Crossref] [PubMed]

L. Gao, S. Liu, Z. Yin, L. Zhang, L. Chen, and X. Chen, “Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques,” IEEE Photon. Technol. Lett. 23(1), 18–20 (2011).
[Crossref]

2010 (3)

2009 (1)

H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-frequency fiber Bragg grating sensing interrogation system using Sagnac-loop-based microwave photonic filtering,” IEEE Photon. Technol. Lett. 21(8), 519–521 (2009).
[Crossref]

2008 (1)

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).
[Crossref]

2006 (1)

J. Mandal, T. Sun, K. T. Grattan, R. T. Zheng, N. Q. Ngo, and A. T. Augousti, “A parallel multiplexed temperature sensor system using Bragg-grating-based fiber lasers,” IEEE Sens. J. 6(4), 986–995 (2006).
[Crossref]

2005 (1)

2001 (1)

S. Kim, J. Kwon, S. Kim, and B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13(4), 350–351 (2001).
[Crossref]

1999 (1)

Augousti, A. T.

J. Mandal, T. Sun, K. T. Grattan, R. T. Zheng, N. Q. Ngo, and A. T. Augousti, “A parallel multiplexed temperature sensor system using Bragg-grating-based fiber lasers,” IEEE Sens. J. 6(4), 986–995 (2006).
[Crossref]

Barrera, D.

Bennion, I.

H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-frequency fiber Bragg grating sensing interrogation system using Sagnac-loop-based microwave photonic filtering,” IEEE Photon. Technol. Lett. 21(8), 519–521 (2009).
[Crossref]

Capmany, J.

Chen, H.

Chen, L.

L. Gao, L. Huang, L. Chen, and X. Chen, “Study on fiber ring laser in sensing application with beat frequency demodulation,” Opt. Laser Technol. 45, 137–141 (2013).
[Crossref]

L. Gao, S. Liu, Z. Yin, L. Zhang, L. Chen, and X. Chen, “Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques,” IEEE Photon. Technol. Lett. 23(1), 18–20 (2011).
[Crossref]

Z. Yin, L. Gao, S. Liu, L. Zhang, F. Wu, L. Chen, and X. Chen, “Fiber ring laser sensor for temperature measurement,” J. Lightwave Technol. 28(23), 3403–3408 (2010).

Chen, X.

L. Gao, L. Huang, L. Chen, and X. Chen, “Study on fiber ring laser in sensing application with beat frequency demodulation,” Opt. Laser Technol. 45, 137–141 (2013).
[Crossref]

L. Gao, S. Liu, Z. Yin, L. Zhang, L. Chen, and X. Chen, “Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques,” IEEE Photon. Technol. Lett. 23(1), 18–20 (2011).
[Crossref]

Z. Yin, L. Gao, S. Liu, L. Zhang, F. Wu, L. Chen, and X. Chen, “Fiber ring laser sensor for temperature measurement,” J. Lightwave Technol. 28(23), 3403–3408 (2010).

S. Liu, Z. Yin, L. Zhang, L. Gao, X. Chen, and J. Cheng, “Multilongitudinal mode fiber laser for strain measurement,” Opt. Lett. 35(6), 835–837 (2010).
[Crossref] [PubMed]

Cheng, J.

Choi, S.-J.

S.-J. Choi, W. Mao, and J.-K. Pan, “Novel RF interrogation of a fiber Bragg grating sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator,” Sensors (Basel) 13(7), 8403–8411 (2013).
[Crossref] [PubMed]

Fu, H.

H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-frequency fiber Bragg grating sensing interrogation system using Sagnac-loop-based microwave photonic filtering,” IEEE Photon. Technol. Lett. 21(8), 519–521 (2009).
[Crossref]

Gao, L.

L. Gao, L. Huang, L. Chen, and X. Chen, “Study on fiber ring laser in sensing application with beat frequency demodulation,” Opt. Laser Technol. 45, 137–141 (2013).
[Crossref]

L. Gao, S. Liu, Z. Yin, L. Zhang, L. Chen, and X. Chen, “Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques,” IEEE Photon. Technol. Lett. 23(1), 18–20 (2011).
[Crossref]

S. Liu, Z. Yin, L. Zhang, L. Gao, X. Chen, and J. Cheng, “Multilongitudinal mode fiber laser for strain measurement,” Opt. Lett. 35(6), 835–837 (2010).
[Crossref] [PubMed]

Z. Yin, L. Gao, S. Liu, L. Zhang, F. Wu, L. Chen, and X. Chen, “Fiber ring laser sensor for temperature measurement,” J. Lightwave Technol. 28(23), 3403–3408 (2010).

Grattan, K. T.

J. Mandal, T. Sun, K. T. Grattan, R. T. Zheng, N. Q. Ngo, and A. T. Augousti, “A parallel multiplexed temperature sensor system using Bragg-grating-based fiber lasers,” IEEE Sens. J. 6(4), 986–995 (2006).
[Crossref]

Gu, H.

Guan, B.-O.

Guo, T.

Han, M.

Han, Q.

He, S.

W. Liu, T. Guo, A. C. Wong, H.-Y. Tam, and S. He, “Highly sensitive bending sensor based on Er3+-doped DBR fiber laser,” Opt. Express 18(17), 17834–17840 (2010).
[PubMed]

H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-frequency fiber Bragg grating sensing interrogation system using Sagnac-loop-based microwave photonic filtering,” IEEE Photon. Technol. Lett. 21(8), 519–521 (2009).
[Crossref]

Hu, L.

Hu, Y.

W. Wang, Z. Hu, M. Ma, H. Lin, and Y. Hu, “Strong fiber Bragg grating based asymmetric Fabry–Perot sensor system with multiple reflections for high sensitivity enhancement,” Opt. Fiber Technol. 20(2), 95–99 (2014).
[Crossref]

Hu, Z.

W. Wang, Z. Hu, M. Ma, H. Lin, and Y. Hu, “Strong fiber Bragg grating based asymmetric Fabry–Perot sensor system with multiple reflections for high sensitivity enhancement,” Opt. Fiber Technol. 20(2), 95–99 (2014).
[Crossref]

Huang, J.

Huang, L.

L. Gao, L. Huang, L. Chen, and X. Chen, “Study on fiber ring laser in sensing application with beat frequency demodulation,” Opt. Laser Technol. 45, 137–141 (2013).
[Crossref]

Jain, S. C.

U. Tiwari, K. Thyagarajan, M. R. Shenoy, and S. C. Jain, “EDF-based edge-filter interrogation scheme for FBG sensors,” IEEE Sens. J. 13(4), 1315–1319 (2013).
[Crossref]

Jin, L.

Kim, B. Y.

Kim, S.

S. Kim, J. Kwon, S. Kim, and B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13(4), 350–351 (2001).
[Crossref]

S. Kim, J. Kwon, S. Kim, and B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13(4), 350–351 (2001).
[Crossref]

Kwon, J.

S. Kim, J. Kwon, S. Kim, and B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13(4), 350–351 (2001).
[Crossref]

Lan, X.

Lee, B.

S. Kim, J. Kwon, S. Kim, and B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13(4), 350–351 (2001).
[Crossref]

Lee, M. L.

Li, M.-P.

Li, R.

Lin, H.

W. Wang, Z. Hu, M. Ma, H. Lin, and Y. Hu, “Strong fiber Bragg grating based asymmetric Fabry–Perot sensor system with multiple reflections for high sensitivity enhancement,” Opt. Fiber Technol. 20(2), 95–99 (2014).
[Crossref]

Liu, D.

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).
[Crossref]

Liu, H.

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).
[Crossref]

Liu, S.

Liu, T.

Liu, W.

Liu, W.-S.

Lu, C.

Lyu, C.

Ma, J.

Ma, M.

W. Wang, Z. Hu, M. Ma, H. Lin, and Y. Hu, “Strong fiber Bragg grating based asymmetric Fabry–Perot sensor system with multiple reflections for high sensitivity enhancement,” Opt. Fiber Technol. 20(2), 95–99 (2014).
[Crossref]

Mandal, J.

J. Mandal, T. Sun, K. T. Grattan, R. T. Zheng, N. Q. Ngo, and A. T. Augousti, “A parallel multiplexed temperature sensor system using Bragg-grating-based fiber lasers,” IEEE Sens. J. 6(4), 986–995 (2006).
[Crossref]

Mao, W.

S.-J. Choi, W. Mao, and J.-K. Pan, “Novel RF interrogation of a fiber Bragg grating sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator,” Sensors (Basel) 13(7), 8403–8411 (2013).
[Crossref] [PubMed]

Mou, C.

H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-frequency fiber Bragg grating sensing interrogation system using Sagnac-loop-based microwave photonic filtering,” IEEE Photon. Technol. Lett. 21(8), 519–521 (2009).
[Crossref]

Ngo, N. Q.

J. Mandal, T. Sun, K. T. Grattan, R. T. Zheng, N. Q. Ngo, and A. T. Augousti, “A parallel multiplexed temperature sensor system using Bragg-grating-based fiber lasers,” IEEE Sens. J. 6(4), 986–995 (2006).
[Crossref]

Pan, J.-K.

S.-J. Choi, W. Mao, and J.-K. Pan, “Novel RF interrogation of a fiber Bragg grating sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator,” Sensors (Basel) 13(7), 8403–8411 (2013).
[Crossref] [PubMed]

Quan, Z.

Ricchiuti, A. L.

Sales, S.

Shenoy, M. R.

U. Tiwari, K. Thyagarajan, M. R. Shenoy, and S. C. Jain, “EDF-based edge-filter interrogation scheme for FBG sensors,” IEEE Sens. J. 13(4), 1315–1319 (2013).
[Crossref]

Shu, X.

H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-frequency fiber Bragg grating sensing interrogation system using Sagnac-loop-based microwave photonic filtering,” IEEE Photon. Technol. Lett. 21(8), 519–521 (2009).
[Crossref]

Shum, P.

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).
[Crossref]

Sun, Q.

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).
[Crossref]

Sun, T.

J. Mandal, T. Sun, K. T. Grattan, R. T. Zheng, N. Q. Ngo, and A. T. Augousti, “A parallel multiplexed temperature sensor system using Bragg-grating-based fiber lasers,” IEEE Sens. J. 6(4), 986–995 (2006).
[Crossref]

Tam, H.-Y.

Tan, Y.-N.

Thevenaz, L.

Thyagarajan, K.

U. Tiwari, K. Thyagarajan, M. R. Shenoy, and S. C. Jain, “EDF-based edge-filter interrogation scheme for FBG sensors,” IEEE Sens. J. 13(4), 1315–1319 (2013).
[Crossref]

Tiwari, U.

U. Tiwari, K. Thyagarajan, M. R. Shenoy, and S. C. Jain, “EDF-based edge-filter interrogation scheme for FBG sensors,” IEEE Sens. J. 13(4), 1315–1319 (2013).
[Crossref]

Wang, J.

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).
[Crossref]

Wang, W.

W. Wang, Z. Hu, M. Ma, H. Lin, and Y. Hu, “Strong fiber Bragg grating based asymmetric Fabry–Perot sensor system with multiple reflections for high sensitivity enhancement,” Opt. Fiber Technol. 20(2), 95–99 (2014).
[Crossref]

Wang, X.

Wei, T.

Wong, A. C.

Wu, C.

Wu, F.

Xia, L.

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).
[Crossref]

Xiao, H.

Yin, Z.

Yong, J. C.

Yun, S. H.

Zhang, L.

L. Gao, S. Liu, Z. Yin, L. Zhang, L. Chen, and X. Chen, “Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques,” IEEE Photon. Technol. Lett. 23(1), 18–20 (2011).
[Crossref]

S. Liu, Z. Yin, L. Zhang, L. Gao, X. Chen, and J. Cheng, “Multilongitudinal mode fiber laser for strain measurement,” Opt. Lett. 35(6), 835–837 (2010).
[Crossref] [PubMed]

Z. Yin, L. Gao, S. Liu, L. Zhang, F. Wu, L. Chen, and X. Chen, “Fiber ring laser sensor for temperature measurement,” J. Lightwave Technol. 28(23), 3403–3408 (2010).

H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-frequency fiber Bragg grating sensing interrogation system using Sagnac-loop-based microwave photonic filtering,” IEEE Photon. Technol. Lett. 21(8), 519–521 (2009).
[Crossref]

Zhang, W.

H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-frequency fiber Bragg grating sensing interrogation system using Sagnac-loop-based microwave photonic filtering,” IEEE Photon. Technol. Lett. 21(8), 519–521 (2009).
[Crossref]

Zhang, Y.

Zheng, R. T.

J. Mandal, T. Sun, K. T. Grattan, R. T. Zheng, N. Q. Ngo, and A. T. Augousti, “A parallel multiplexed temperature sensor system using Bragg-grating-based fiber lasers,” IEEE Sens. J. 6(4), 986–995 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (4)

Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Shum, “Experimental demonstration of multipoint temperature warning sensor using a multichannel matched fiber Bragg grating,” IEEE Photon. Technol. Lett. 20(11), 933–935 (2008).
[Crossref]

H. Fu, W. Zhang, C. Mou, X. Shu, L. Zhang, S. He, and I. Bennion, “High-frequency fiber Bragg grating sensing interrogation system using Sagnac-loop-based microwave photonic filtering,” IEEE Photon. Technol. Lett. 21(8), 519–521 (2009).
[Crossref]

L. Gao, S. Liu, Z. Yin, L. Zhang, L. Chen, and X. Chen, “Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques,” IEEE Photon. Technol. Lett. 23(1), 18–20 (2011).
[Crossref]

S. Kim, J. Kwon, S. Kim, and B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13(4), 350–351 (2001).
[Crossref]

IEEE Sens. J. (2)

J. Mandal, T. Sun, K. T. Grattan, R. T. Zheng, N. Q. Ngo, and A. T. Augousti, “A parallel multiplexed temperature sensor system using Bragg-grating-based fiber lasers,” IEEE Sens. J. 6(4), 986–995 (2006).
[Crossref]

U. Tiwari, K. Thyagarajan, M. R. Shenoy, and S. C. Jain, “EDF-based edge-filter interrogation scheme for FBG sensors,” IEEE Sens. J. 13(4), 1315–1319 (2013).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (6)

Opt. Fiber Technol. (1)

W. Wang, Z. Hu, M. Ma, H. Lin, and Y. Hu, “Strong fiber Bragg grating based asymmetric Fabry–Perot sensor system with multiple reflections for high sensitivity enhancement,” Opt. Fiber Technol. 20(2), 95–99 (2014).
[Crossref]

Opt. Laser Technol. (1)

L. Gao, L. Huang, L. Chen, and X. Chen, “Study on fiber ring laser in sensing application with beat frequency demodulation,” Opt. Laser Technol. 45, 137–141 (2013).
[Crossref]

Opt. Lett. (5)

Sensors (Basel) (1)

S.-J. Choi, W. Mao, and J.-K. Pan, “Novel RF interrogation of a fiber Bragg grating sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator,” Sensors (Basel) 13(7), 8403–8411 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic configuration of the proposed sensor system.
Fig. 2
Fig. 2 Optical spectra measured (a) before WDM3, (b) after Ch22 of the WDM3, (c) after Ch23 of the WDM3.
Fig. 3
Fig. 3 Frequency spectra of BFSs from 9950 to 10050 MHz (a) before WDM3, (b) after Ch22 of WDM3, (c) after Ch23 of WDM3.
Fig. 4
Fig. 4 Frequency spectra of BFSs from 0 to 6000 MHz (a) after Ch22 of WDM3, (b) after Ch23 of WDM3. The insets show the BFS selected for sensing.
Fig. 5
Fig. 5 (a) The responses of BFS in Ch22 and Ch23 to strain applied on Ch22. (b) The response of BFS in Ch22 and Ch23 to temperature applied on Ch23.
Fig. 6
Fig. 6 Stability of BFS in Ch22 and Ch23.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ν N i = ( p q ) c n ( L m + L i ) = N c n ( L m + L i )
Δ ν N i = N c n ( L m + L i ) ( Δ l i L m + L i + Δ n n ) = ν N i l i L m + L i ( 1 P ε ) Δ ε
Δ ν N i = N c n ( L m + L i ) ( Δ l i L m + L i + Δ n n ) = ν N i l i L m + L i ( α + ξ ) Δ T

Metrics