Abstract

We provide the experimental demonstration of the generation of multiple dispersive waves from a single soliton propagating in the vicinity of the first zero-dispersion wavelength of an axially-varying optical fiber. The fiber is designed such that the Raman-shifting soliton successively hits three times the longitudinally evolving zero-dispersion wavelength, which results in the emission of three distinct dispersive waves at different fiber lengths. These results illustrate how suitably controlled axially-varying fibers allow to tailor the soliton dynamics in a very accurate way.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamics of cascaded resonant radiations in a dispersion-varying optical fiber

A. Bendahmane, F. Braud, M. Conforti, B. Barviau, A. Mussot, and A. Kudlinski
Optica 1(4) 243-249 (2014)

Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber

A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. Martijn de Sterke
J. Opt. Soc. Am. B 26(11) 2064-2071 (2009)

Mid-IR multipeak and stepwise blueshifted dispersive wave generation in liquid-filled chalcogenide capillary optical fibers

Satya P. Singh, V. Mishra, and Shailendra K. Varshney
J. Opt. Soc. Am. B 33(11) D65-D71 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11, 464–466 (1986).
    [Crossref] [PubMed]
  2. P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-model fiber,” Opt. Lett. 12, 628–630 (1987).
    [Crossref] [PubMed]
  3. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [Crossref] [PubMed]
  4. D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontin-uum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
    [Crossref]
  5. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12, 124–135 (2004).
    [Crossref] [PubMed]
  6. C. Milián, A. Ferrando, and D. V. Skryabin, “Polychromatic Cherenkov radiation and supercontinuum in tapered optical fibers,” J. Opt. Soc. Am. B 29, 589–593 (2012).
    [Crossref]
  7. F. R. Arteaga-Sierra, C. Milián, I. Torres-Gómez, M. Torres-Cisneros, A. Ferrando, and A. Dávila, “Multi-peak-spectra generation with Cherenkov radiation in a non-uniform single mode fiber,” Opt. Express 22, 2451–2458 (2014).
    [Crossref] [PubMed]
  8. A. Bendahmane, F. Braud., M. Conforti, B. Barviau, A. Mussot, and A. Kudlinski, “Dynamics of cascaded resonant radiations in a dispersion-varying optical fiber,” to be published in Optica (2014).
  9. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
    [Crossref] [PubMed]
  10. G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2012).
  11. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  12. P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
    [Crossref]
  13. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002).
    [Crossref]

2014 (1)

2012 (1)

2010 (1)

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontin-uum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2004 (1)

2003 (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

2002 (1)

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

1987 (2)

P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-model fiber,” Opt. Lett. 12, 628–630 (1987).
[Crossref] [PubMed]

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[Crossref]

1986 (1)

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2012).

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Arteaga-Sierra, F. R.

Barviau, B.

A. Bendahmane, F. Braud., M. Conforti, B. Barviau, A. Mussot, and A. Kudlinski, “Dynamics of cascaded resonant radiations in a dispersion-varying optical fiber,” to be published in Optica (2014).

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[Crossref]

Bendahmane, A.

A. Bendahmane, F. Braud., M. Conforti, B. Barviau, A. Mussot, and A. Kudlinski, “Dynamics of cascaded resonant radiations in a dispersion-varying optical fiber,” to be published in Optica (2014).

Braud., F.

A. Bendahmane, F. Braud., M. Conforti, B. Barviau, A. Mussot, and A. Kudlinski, “Dynamics of cascaded resonant radiations in a dispersion-varying optical fiber,” to be published in Optica (2014).

Cantrell, C. D.

Chen, H. H.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Conforti, M.

A. Bendahmane, F. Braud., M. Conforti, B. Barviau, A. Mussot, and A. Kudlinski, “Dynamics of cascaded resonant radiations in a dispersion-varying optical fiber,” to be published in Optica (2014).

Cristiani, I.

Dávila, A.

Degiorgio, V.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Ferrando, A.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Gorbach, A. V.

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontin-uum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[Crossref]

Hollenbeck, D.

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Knight, J. C.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Kudlinski, A.

A. Bendahmane, F. Braud., M. Conforti, B. Barviau, A. Mussot, and A. Kudlinski, “Dynamics of cascaded resonant radiations in a dispersion-varying optical fiber,” to be published in Optica (2014).

Lee, Y. C.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Menyuk, C. R.

Milián, C.

Mussot, A.

A. Bendahmane, F. Braud., M. Conforti, B. Barviau, A. Mussot, and A. Kudlinski, “Dynamics of cascaded resonant radiations in a dispersion-varying optical fiber,” to be published in Optica (2014).

Russell, P. St. J.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Skryabin, D. V.

C. Milián, A. Ferrando, and D. V. Skryabin, “Polychromatic Cherenkov radiation and supercontinuum in tapered optical fibers,” J. Opt. Soc. Am. B 29, 589–593 (2012).
[Crossref]

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontin-uum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Tartara, L.

Tediosi, R.

Torres-Cisneros, M.

Torres-Gómez, I.

Wai, P. K. A.

Weber, H.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[Crossref]

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[Crossref]

IEEE J. Quantum Electron. (1)

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontin-uum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Other (2)

G. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2012).

A. Bendahmane, F. Braud., M. Conforti, B. Barviau, A. Mussot, and A. Kudlinski, “Dynamics of cascaded resonant radiations in a dispersion-varying optical fiber,” to be published in Optica (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Scheme of the concept of multiple DWs generation from a single Raman-shifting soliton. The black dotted line depicts the ZDW and star markers represents locations where DWs are generated. (b) Experimental setup. HWP: half-wave plate; P: polarizer; L: lens. (c) Evolution of the fiber outer diameter (markers, left axis) as a function of length measured during the fiber draw process. Right axis: corresponding simulated ZDW (red dashed line).
Fig. 2
Fig. 2 (a) Evolution of the spectrum with fiber length showing the multiple emission of DWs (experiments). The black solid line depicts the ZDW plotted in Fig. 1(c). Dashed lines correspond to spectra plotted in the right panel. (b-d) Output spectra recorded for fiber lengths of 6 m (d), 16 m (c) and 31 m (b). Arrows depict the DWs.
Fig. 3
Fig. 3 (a) Simulated evolution of the spectrum with fiber length, correpsonding to the experiment of Fig. 2(a). The black solid line depicts the ZDW. (b) Longitudinal evolution of the phase-matched wavelength of DWs obtained from Eq. (1) from the simulated evolution of the soliton (black line). Markers correspond to the emission of DWs observed in simulations (red squares) and experiments (blue circles). (c) Evolution of the ε parameter (representing the spectral overlap between the soliton and the normal disperison regime) with fiber length.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β 2 2 Ω 2 + β 3 6 Ω 3 = γ P 2
ε = β 3 ( ω S ) 6 T 0 | β 2 ( ω S ) |

Metrics