Abstract

Materials having tunable optical properties are of great interest for photonic applications. Promising candidates in that context are transparent nanoporous media whose optical properties change after infiltration of a liquid into the pores. Herein we present an all-optical method to tune the light scattering properties of a nanoporous glass based on the light-induced phase change of the fluid filling the pores. The thermodynamic state of the gas inside the nanopores determines the light scattering, thereby the light transmission. The extent of capillary condensation inside the nanoscale pores is controlled by heat generated from light absorption inside the medium. The material can be configured in such a way that a laser beam of sufficient intensity either opens up or shuts down its own light path on a time scale of a few seconds. The scattering events inside the medium change the beam profile from Gaussian to super-Gaussian with a more homogeneous intensity distribution close to the beam axis. Our results demonstrate a new way of tuning the light transmission properties of nanoporous materials that could find various applications in integrated optical systems and optofluidic devices.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adsorption of water on porous Vycor glass studied by ellipsometry

Alberto Álvarez-Herrero, Raquel L. Heredero, Eusebio Bernabeu, and David Levy
Appl. Opt. 40(4) 527-532 (2001)

Optical properties of reflective liquid crystal polarization volume gratings

Yun-Han Lee, Ziqian He, and Shin-Tson Wu
J. Opt. Soc. Am. B 36(5) D9-D12 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Innocenzi and B. Lebeau, “Organic-inorganic hybrid materials for non-linear optics,” J. Mater. Chem. 15(35-36), 3821–3831 (2005).
    [Crossref]
  2. S. Köber, M. Salvador, and K. Meerholz, “Organic Photorefractive Materials and Applications,” Adv. Mater. 23(41), 4725–4763 (2011).
    [Crossref]
  3. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
    [Crossref]
  4. R. J. Mortimer, “Electrochromic Materials,” Annu. Rev. Mater. Res. 41(1), 241–268 (2011).
    [Crossref]
  5. J. Zhang, Q. Zou, and H. Tian, “Photochromic Materials: More Than Meets The Eye,” Adv. Mater. 25(3), 378–399 (2013).
    [Crossref] [PubMed]
  6. R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energ. Mat. Sol. 94(2), 87–105 (2010).
    [Crossref]
  7. A. D. Kiselev, O. V. Yaroshchuk, and L. Dolgov, “Ordering of droplets and light scattering in polymer dispersed liquid crystal films,” J. Phys. Condens. Matter 16(41), 7183–7197 (2004).
    [Crossref]
  8. D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013).
    [Crossref]
  9. Y.-D. Chen, A. Y.-G. Fuh, and K.-T. Cheng, “Optically and thermally controllable light scattering based on dye-doped liquid crystals in poly(N-vinylcarbazole) films-coated liquid crystal cell,” Opt. Express 20(24), 26252–26260 (2012).
    [Crossref] [PubMed]
  10. J. W. Doane, N. A. Vaz, B. G. Wu, and S. Žumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
    [Crossref]
  11. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932–934 (1999).
    [Crossref]
  12. M. Hosseinpour, M. Ebnali-Heidari, M. Kamali, and H. Emami, “Optofluidic photonic crystal slow light coupler,” J. Opt. Soc. Am. B 30(3), 717–722 (2013).
    [Crossref]
  13. P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photonics 1(3), 172–175 (2007).
    [Crossref]
  14. X. Yao, Y. Hu, A. Grinthal, T.-S. Wong, L. Mahadevan, and J. Aizenberg, “Adaptive fluid-infused porous films with tunable transparency and wettability,” Nat. Mater. 12(6), 529–534 (2013).
    [Crossref] [PubMed]
  15. S. Ogawa, “1/λ4 scattering of light during the drying process in porous Vycor glass with nano-sized pores,” J. Opt. Soc. Am. A 30(2), 154–159 (2013).
    [Crossref]
  16. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
    [Crossref]
  17. T. Strudley, T. Zehender, C. Blejean, E. P. A. M. Bakkers, and O. L. Muskens, “Mesoscopic light transport by very strong collective multiple scattering in nanowire mats,” Nat. Photonics 7(5), 413–418 (2013).
    [Crossref]
  18. E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution,” Opt. Express 15(17), 10649–10665 (2007).
    [Crossref] [PubMed]
  19. S. Ogawa and J. Nakamura, “Hysteretic characteristics of 1/λ4scattering of light during adsorption anddesorption of water in porous Vycor glass with nanopores,” J. Opt. Soc. Am. A 30(10), 2079–2089 (2013).
    [Crossref]
  20. L. Rayleigh, “XXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Philos. Mag. Series 5 47(287), 375–384 (1899).
    [Crossref]
  21. P. Uchytil, R. Petrickovic, and A. Seidel-Morgenstern, “Study of capillary condensation of butane in a Vycor glass membrane,” J. Membr. Sci. 264(1-2), 27–36 (2005).
    [Crossref]
  22. A. V. Neimark, P. I. Ravikovitch, and A. Vishnyakov, “Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores,” J. Phys. Condens. Matter 15(3), 347–365 (2003).
    [Crossref]
  23. M. A. R.-M. Rolando, Adsorption and Diffusion in Nanoporous Materials (CRC Press, 2007), chapter 4.
  24. M. Thommes, “Physical Adsorption Characterization of Nanoporous Materials,” Chem. Ing. Tech. 82(7), 1059–1073 (2010).
    [Crossref]
  25. E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne, “Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation,” Opt. Express 17(16), 13792–13809 (2009).
    [Crossref] [PubMed]
  26. Y. Li, “Light beams with flat-topped profiles,” Opt. Lett. 27(12), 1007–1009 (2002).
    [Crossref] [PubMed]
  27. M. Anyfantakis, B. Loppinet, G. Fytas, C. Mantzaridis, S. Pispas, and H.-J. Butt, “Self-induced transparency in diblock copolymer dispersions,” Opt. Lett. 37(13), 2487–2489 (2012).
    [Crossref] [PubMed]

2013 (7)

J. Zhang, Q. Zou, and H. Tian, “Photochromic Materials: More Than Meets The Eye,” Adv. Mater. 25(3), 378–399 (2013).
[Crossref] [PubMed]

D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013).
[Crossref]

X. Yao, Y. Hu, A. Grinthal, T.-S. Wong, L. Mahadevan, and J. Aizenberg, “Adaptive fluid-infused porous films with tunable transparency and wettability,” Nat. Mater. 12(6), 529–534 (2013).
[Crossref] [PubMed]

T. Strudley, T. Zehender, C. Blejean, E. P. A. M. Bakkers, and O. L. Muskens, “Mesoscopic light transport by very strong collective multiple scattering in nanowire mats,” Nat. Photonics 7(5), 413–418 (2013).
[Crossref]

S. Ogawa, “1/λ4 scattering of light during the drying process in porous Vycor glass with nano-sized pores,” J. Opt. Soc. Am. A 30(2), 154–159 (2013).
[Crossref]

M. Hosseinpour, M. Ebnali-Heidari, M. Kamali, and H. Emami, “Optofluidic photonic crystal slow light coupler,” J. Opt. Soc. Am. B 30(3), 717–722 (2013).
[Crossref]

S. Ogawa and J. Nakamura, “Hysteretic characteristics of 1/λ4scattering of light during adsorption anddesorption of water in porous Vycor glass with nanopores,” J. Opt. Soc. Am. A 30(10), 2079–2089 (2013).
[Crossref]

2012 (2)

2011 (3)

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

S. Köber, M. Salvador, and K. Meerholz, “Organic Photorefractive Materials and Applications,” Adv. Mater. 23(41), 4725–4763 (2011).
[Crossref]

R. J. Mortimer, “Electrochromic Materials,” Annu. Rev. Mater. Res. 41(1), 241–268 (2011).
[Crossref]

2010 (2)

R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energ. Mat. Sol. 94(2), 87–105 (2010).
[Crossref]

M. Thommes, “Physical Adsorption Characterization of Nanoporous Materials,” Chem. Ing. Tech. 82(7), 1059–1073 (2010).
[Crossref]

2009 (1)

2007 (2)

2005 (2)

P. Uchytil, R. Petrickovic, and A. Seidel-Morgenstern, “Study of capillary condensation of butane in a Vycor glass membrane,” J. Membr. Sci. 264(1-2), 27–36 (2005).
[Crossref]

P. Innocenzi and B. Lebeau, “Organic-inorganic hybrid materials for non-linear optics,” J. Mater. Chem. 15(35-36), 3821–3831 (2005).
[Crossref]

2004 (1)

A. D. Kiselev, O. V. Yaroshchuk, and L. Dolgov, “Ordering of droplets and light scattering in polymer dispersed liquid crystal films,” J. Phys. Condens. Matter 16(41), 7183–7197 (2004).
[Crossref]

2003 (1)

A. V. Neimark, P. I. Ravikovitch, and A. Vishnyakov, “Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores,” J. Phys. Condens. Matter 15(3), 347–365 (2003).
[Crossref]

2002 (1)

1999 (1)

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932–934 (1999).
[Crossref]

1986 (1)

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Žumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

1899 (1)

L. Rayleigh, “XXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Philos. Mag. Series 5 47(287), 375–384 (1899).
[Crossref]

Aizenberg, J.

X. Yao, Y. Hu, A. Grinthal, T.-S. Wong, L. Mahadevan, and J. Aizenberg, “Adaptive fluid-infused porous films with tunable transparency and wettability,” Nat. Mater. 12(6), 529–534 (2013).
[Crossref] [PubMed]

Anyfantakis, M.

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Baetens, R.

R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energ. Mat. Sol. 94(2), 87–105 (2010).
[Crossref]

Bakkers, E. P. A. M.

T. Strudley, T. Zehender, C. Blejean, E. P. A. M. Bakkers, and O. L. Muskens, “Mesoscopic light transport by very strong collective multiple scattering in nanowire mats,” Nat. Photonics 7(5), 413–418 (2013).
[Crossref]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Barthelemy, P.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photonics 1(3), 172–175 (2007).
[Crossref]

Berrocal, E.

Blejean, C.

T. Strudley, T. Zehender, C. Blejean, E. P. A. M. Bakkers, and O. L. Muskens, “Mesoscopic light transport by very strong collective multiple scattering in nanowire mats,” Nat. Photonics 7(5), 413–418 (2013).
[Crossref]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Bromberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Butt, H.-J.

Chen, Y.-D.

Cheng, K.-T.

Doane, J. W.

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Žumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Dolgov, L.

A. D. Kiselev, O. V. Yaroshchuk, and L. Dolgov, “Ordering of droplets and light scattering in polymer dispersed liquid crystal films,” J. Phys. Condens. Matter 16(41), 7183–7197 (2004).
[Crossref]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Ebnali-Heidari, M.

Emami, H.

Fuh, A. Y.-G.

Fytas, G.

Gaburro, Z.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photonics 1(3), 172–175 (2007).
[Crossref]

Ghulinyan, M.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photonics 1(3), 172–175 (2007).
[Crossref]

Grinthal, A.

X. Yao, Y. Hu, A. Grinthal, T.-S. Wong, L. Mahadevan, and J. Aizenberg, “Adaptive fluid-infused porous films with tunable transparency and wettability,” Nat. Mater. 12(6), 529–534 (2013).
[Crossref] [PubMed]

Gustavsen, A.

R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energ. Mat. Sol. 94(2), 87–105 (2010).
[Crossref]

Hosseinpour, M.

Hu, Y.

X. Yao, Y. Hu, A. Grinthal, T.-S. Wong, L. Mahadevan, and J. Aizenberg, “Adaptive fluid-infused porous films with tunable transparency and wettability,” Nat. Mater. 12(6), 529–534 (2013).
[Crossref] [PubMed]

Innocenzi, P.

P. Innocenzi and B. Lebeau, “Organic-inorganic hybrid materials for non-linear optics,” J. Mater. Chem. 15(35-36), 3821–3831 (2005).
[Crossref]

Jelle, B. P.

R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energ. Mat. Sol. 94(2), 87–105 (2010).
[Crossref]

Kamali, M.

Katz, O.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Kawagishi, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932–934 (1999).
[Crossref]

Kiselev, A. D.

A. D. Kiselev, O. V. Yaroshchuk, and L. Dolgov, “Ordering of droplets and light scattering in polymer dispersed liquid crystal films,” J. Phys. Condens. Matter 16(41), 7183–7197 (2004).
[Crossref]

Köber, S.

S. Köber, M. Salvador, and K. Meerholz, “Organic Photorefractive Materials and Applications,” Adv. Mater. 23(41), 4725–4763 (2011).
[Crossref]

Lebeau, B.

P. Innocenzi and B. Lebeau, “Organic-inorganic hybrid materials for non-linear optics,” J. Mater. Chem. 15(35-36), 3821–3831 (2005).
[Crossref]

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Li, Y.

Linne, M. A.

Loppinet, B.

Mahadevan, L.

X. Yao, Y. Hu, A. Grinthal, T.-S. Wong, L. Mahadevan, and J. Aizenberg, “Adaptive fluid-infused porous films with tunable transparency and wettability,” Nat. Mater. 12(6), 529–534 (2013).
[Crossref] [PubMed]

Mantzaridis, C.

Meerholz, K.

S. Köber, M. Salvador, and K. Meerholz, “Organic Photorefractive Materials and Applications,” Adv. Mater. 23(41), 4725–4763 (2011).
[Crossref]

Meglinski, I. V.

Mortimer, R. J.

R. J. Mortimer, “Electrochromic Materials,” Annu. Rev. Mater. Res. 41(1), 241–268 (2011).
[Crossref]

Muskens, O. L.

T. Strudley, T. Zehender, C. Blejean, E. P. A. M. Bakkers, and O. L. Muskens, “Mesoscopic light transport by very strong collective multiple scattering in nanowire mats,” Nat. Photonics 7(5), 413–418 (2013).
[Crossref]

Nakamura, J.

Nakayama, K.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932–934 (1999).
[Crossref]

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Neimark, A. V.

A. V. Neimark, P. I. Ravikovitch, and A. Vishnyakov, “Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores,” J. Phys. Condens. Matter 15(3), 347–365 (2003).
[Crossref]

Ogawa, S.

Ozaki, M.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932–934 (1999).
[Crossref]

Paciaroni, M. E.

Pavesi, L.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photonics 1(3), 172–175 (2007).
[Crossref]

Petrickovic, R.

P. Uchytil, R. Petrickovic, and A. Seidel-Morgenstern, “Study of capillary condensation of butane in a Vycor glass membrane,” J. Membr. Sci. 264(1-2), 27–36 (2005).
[Crossref]

Pispas, S.

Ravikovitch, P. I.

A. V. Neimark, P. I. Ravikovitch, and A. Vishnyakov, “Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores,” J. Phys. Condens. Matter 15(3), 347–365 (2003).
[Crossref]

Rayleigh, L.

L. Rayleigh, “XXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Philos. Mag. Series 5 47(287), 375–384 (1899).
[Crossref]

Salvador, M.

S. Köber, M. Salvador, and K. Meerholz, “Organic Photorefractive Materials and Applications,” Adv. Mater. 23(41), 4725–4763 (2011).
[Crossref]

Sedarsky, D. L.

Seidel-Morgenstern, A.

P. Uchytil, R. Petrickovic, and A. Seidel-Morgenstern, “Study of capillary condensation of butane in a Vycor glass membrane,” J. Membr. Sci. 264(1-2), 27–36 (2005).
[Crossref]

Shimoda, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932–934 (1999).
[Crossref]

Silberberg, Y.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Small, E.

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

Strudley, T.

T. Strudley, T. Zehender, C. Blejean, E. P. A. M. Bakkers, and O. L. Muskens, “Mesoscopic light transport by very strong collective multiple scattering in nanowire mats,” Nat. Photonics 7(5), 413–418 (2013).
[Crossref]

Thommes, M.

M. Thommes, “Physical Adsorption Characterization of Nanoporous Materials,” Chem. Ing. Tech. 82(7), 1059–1073 (2010).
[Crossref]

Tian, H.

J. Zhang, Q. Zou, and H. Tian, “Photochromic Materials: More Than Meets The Eye,” Adv. Mater. 25(3), 378–399 (2013).
[Crossref] [PubMed]

Toninelli, C.

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photonics 1(3), 172–175 (2007).
[Crossref]

Uchytil, P.

P. Uchytil, R. Petrickovic, and A. Seidel-Morgenstern, “Study of capillary condensation of butane in a Vycor glass membrane,” J. Membr. Sci. 264(1-2), 27–36 (2005).
[Crossref]

Vaz, N. A.

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Žumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Vishnyakov, A.

A. V. Neimark, P. I. Ravikovitch, and A. Vishnyakov, “Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores,” J. Phys. Condens. Matter 15(3), 347–365 (2003).
[Crossref]

Wiersma, D. S.

D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013).
[Crossref]

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photonics 1(3), 172–175 (2007).
[Crossref]

Wong, T.-S.

X. Yao, Y. Hu, A. Grinthal, T.-S. Wong, L. Mahadevan, and J. Aizenberg, “Adaptive fluid-infused porous films with tunable transparency and wettability,” Nat. Mater. 12(6), 529–534 (2013).
[Crossref] [PubMed]

Wu, B. G.

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Žumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Yao, X.

X. Yao, Y. Hu, A. Grinthal, T.-S. Wong, L. Mahadevan, and J. Aizenberg, “Adaptive fluid-infused porous films with tunable transparency and wettability,” Nat. Mater. 12(6), 529–534 (2013).
[Crossref] [PubMed]

Yaroshchuk, O. V.

A. D. Kiselev, O. V. Yaroshchuk, and L. Dolgov, “Ordering of droplets and light scattering in polymer dispersed liquid crystal films,” J. Phys. Condens. Matter 16(41), 7183–7197 (2004).
[Crossref]

Yoshino, K.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932–934 (1999).
[Crossref]

Zehender, T.

T. Strudley, T. Zehender, C. Blejean, E. P. A. M. Bakkers, and O. L. Muskens, “Mesoscopic light transport by very strong collective multiple scattering in nanowire mats,” Nat. Photonics 7(5), 413–418 (2013).
[Crossref]

Zhang, J.

J. Zhang, Q. Zou, and H. Tian, “Photochromic Materials: More Than Meets The Eye,” Adv. Mater. 25(3), 378–399 (2013).
[Crossref] [PubMed]

Zou, Q.

J. Zhang, Q. Zou, and H. Tian, “Photochromic Materials: More Than Meets The Eye,” Adv. Mater. 25(3), 378–399 (2013).
[Crossref] [PubMed]

Žumer, S.

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Žumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

Adv. Mater. (2)

S. Köber, M. Salvador, and K. Meerholz, “Organic Photorefractive Materials and Applications,” Adv. Mater. 23(41), 4725–4763 (2011).
[Crossref]

J. Zhang, Q. Zou, and H. Tian, “Photochromic Materials: More Than Meets The Eye,” Adv. Mater. 25(3), 378–399 (2013).
[Crossref] [PubMed]

Annu. Rev. Mater. Res. (1)

R. J. Mortimer, “Electrochromic Materials,” Annu. Rev. Mater. Res. 41(1), 241–268 (2011).
[Crossref]

Appl. Phys. Lett. (3)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72–74 (1966).
[Crossref]

J. W. Doane, N. A. Vaz, B. G. Wu, and S. Žumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48(4), 269–271 (1986).
[Crossref]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75(7), 932–934 (1999).
[Crossref]

Chem. Ing. Tech. (1)

M. Thommes, “Physical Adsorption Characterization of Nanoporous Materials,” Chem. Ing. Tech. 82(7), 1059–1073 (2010).
[Crossref]

J. Mater. Chem. (1)

P. Innocenzi and B. Lebeau, “Organic-inorganic hybrid materials for non-linear optics,” J. Mater. Chem. 15(35-36), 3821–3831 (2005).
[Crossref]

J. Membr. Sci. (1)

P. Uchytil, R. Petrickovic, and A. Seidel-Morgenstern, “Study of capillary condensation of butane in a Vycor glass membrane,” J. Membr. Sci. 264(1-2), 27–36 (2005).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (2)

A. D. Kiselev, O. V. Yaroshchuk, and L. Dolgov, “Ordering of droplets and light scattering in polymer dispersed liquid crystal films,” J. Phys. Condens. Matter 16(41), 7183–7197 (2004).
[Crossref]

A. V. Neimark, P. I. Ravikovitch, and A. Vishnyakov, “Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores,” J. Phys. Condens. Matter 15(3), 347–365 (2003).
[Crossref]

Nat. Mater. (1)

X. Yao, Y. Hu, A. Grinthal, T.-S. Wong, L. Mahadevan, and J. Aizenberg, “Adaptive fluid-infused porous films with tunable transparency and wettability,” Nat. Mater. 12(6), 529–534 (2013).
[Crossref] [PubMed]

Nat. Photonics (4)

D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013).
[Crossref]

P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma, “Optical switching by capillary condensation,” Nat. Photonics 1(3), 172–175 (2007).
[Crossref]

O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5(6), 372–377 (2011).
[Crossref]

T. Strudley, T. Zehender, C. Blejean, E. P. A. M. Bakkers, and O. L. Muskens, “Mesoscopic light transport by very strong collective multiple scattering in nanowire mats,” Nat. Photonics 7(5), 413–418 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Philos. Mag. Series 5 (1)

L. Rayleigh, “XXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Philos. Mag. Series 5 47(287), 375–384 (1899).
[Crossref]

Sol. Energ. Mat. Sol. (1)

R. Baetens, B. P. Jelle, and A. Gustavsen, “Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review,” Sol. Energ. Mat. Sol. 94(2), 87–105 (2010).
[Crossref]

Other (1)

M. A. R.-M. Rolando, Adsorption and Diffusion in Nanoporous Materials (CRC Press, 2007), chapter 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Liquid-filled PVG as an optically switchable medium. (a). Artistic representation of PVG in its completely filled, partially filled and dry state. The liquid is colored in blue. (b). Concept of light-induced tuning of optical transmission.
Fig. 2
Fig. 2 Schematic of the experimental setup for controlling the condensation/evaporation of n-butane inside the porous glass.
Fig. 3
Fig. 3 Optical transmittance measurements. (a). Transmittance as a function of pressure at different temperatures. (b). Transmittance as a function of relative pressure at different temperatures. (c). Transmittance variation upon increasing the glass temperature from 5 to 20 °C, keeping the pressure at around 1200 mbar. The data shown here is the average of 4 to 5 individual measurements with the standard deviation as error bar.
Fig. 4
Fig. 4 Light-controlled tuning of optical transmittance of PVG filled with n-butane. All transmittance values are normalized by dividing through the maximum transmittance obtained. (a). Temporal variation of the transmittance at different laser intensities, starting from the filled state. (b). The same, but starting from the partially filled state. The data shown is the average of 4 to 5 measurements, the error bar corresponds to the standard deviation.
Fig. 5
Fig. 5 Beam profile diagnostics. (a). Beam profiles after passing through PVG in different states. (b). Corresponding intensity profiles and (Super)-Gaussian fits to these profiles. The pixel intensity is normalized to the maximum value.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

y = y 0 + A e 1 2 ( x w ) N ,

Metrics