Abstract

We report on the fabrication and characterization of silicon-on-insulator (SOI) photonic crystal slabs (PCS) with commensurately embedded germanium quantum dot (QD) emitters for near-infrared light emission. Substrate pre-patterning defines preferential nucleation sites for the self-assembly of Ge QDs during epitaxial growth. Aligned two-dimensional photonic crystal slabs are then etched into the SOI layer. QD ordering enhances the photoluminescence output as compared to PCSs with randomly embedded QDs. Rigorously coupled wave analysis shows that coupling of the QD emitters to leaky modes of the PCS can be tuned via their location within the unit cell of the PCS.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High quality factor photonic crystal filter at k ≈0 and its application for refractive index sensing

Yonghao Liu, Shuling Wang, Deyin Zhao, Weidong Zhou, and Yuze Sun
Opt. Express 25(9) 10536-10545 (2017)

Promising low-damage fabrication method for the photonic crystals with hexagonal or triangular air holes: selective area metal organic vapor phase epitaxy

Lin Yang, Junichi Motohisa, Junichiro Takeda, and Takashi Fukui
Opt. Express 13(26) 10823-10832 (2005)

Single germanium quantum dot embedded in photonic crystal nanocavity for light emitter on silicon chip

Cheng Zeng, Yingjie Ma, Yong Zhang, Danping Li, Zengzhi Huang, Yi Wang, Qingzhong Huang, Juntao Li, Zhenyang Zhong, Jinzhong Yu, Zuimin Jiang, and Jinsong Xia
Opt. Express 23(17) 22250-22261 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Tsybeskov and D. J. Lockwood, “Silicon-germanium nanostructures for light emitters and on-chip optical interconnects,” Proc. IEEE 97(7), 1284–1303 (2009).
    [Crossref]
  2. A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
    [Crossref]
  3. L. Pavesi and D. J. Lockwood, eds., Silicon photonics, (Springer, 2004), Vol. 1.
  4. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [Crossref]
  5. S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express 18(5), 4986–4999 (2010).
    [Crossref] [PubMed]
  6. S. Assefa, W. M. J. Green, A. Rylyakov, C. Schow, F. Horst, and Y. A. Vlasov, “CMOS integrated Nanophotonics – enabling technology for exascale computing systems,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMM6.
    [Crossref]
  7. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  8. Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factors exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
    [Crossref]
  9. M. El Kurdi, S. David, P. Boucaud, C. Kammer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3 - 1.5 µm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
    [Crossref]
  10. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
    [Crossref] [PubMed]
  11. J. S. Xia, K. Nemoto, Y. Ikegami, Y. Shiraki, and N. Usami, “Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks,” Appl. Phys. Lett. 91(1), 011104 (2007).
    [Crossref]
  12. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
    [Crossref] [PubMed]
  13. G. He and H. A. Atwater, “Interband transitions in Ge1-xSnx Alloys,” Phys. Rev. Lett. 79(10), 1937–1940 (1997).
    [Crossref]
  14. R. Ragan and H. A. Atwater, “Measurement of the direct energy gap of coherently strained SnxGe1-x/Ge (001) heterostructures,” Appl. Phys. Lett. 77(21), 3418–3420 (2000).
    [Crossref]
  15. M. J. Suess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
    [Crossref]
  16. L. Ondic, M. Varga, K. Hruska, A. Kromka, K. Herynkova, B. Hönerlage, and I. Pelant, “Two-dimensional photonic crystal slab with embedded silicon nanocrystals: Efficient photoluminescence extraction,” Appl. Phys. Lett. 102(25), 251111 (2013).
    [Crossref]
  17. A. Shakoor, R. L. Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelength,” Laser Photonics Rev. 7(1), 114–121 (2013).
    [Crossref]
  18. S. Boninelli, G. Franzò, P. Cardile, F. Priolo, R. Lo Savio, M. Galli, A. Shakoor, L. O’Faolain, T. F. Krauss, L. Vines, and B. G. Svensson, “Hydrogen induced optically-active defects in silicon photonic nanocavities,” Opt. Express 22(8), 8843–8855 (2014).
    [Crossref] [PubMed]
  19. J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
    [Crossref]
  20. J. Xia, R. Tominaga, S. Fukamitsu, N. Usami, and Y. Shiraki, “Generation and wavelength control of resonant luminescence from silicon photonic crystal microcavities with Ge dots,” Jpn. J. Appl. Phys. 48(2), 022102 (2009).
    [Crossref]
  21. T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-Temperature Electroluminescence from Ge Quantum Dots Embedded in Photonic Crystal Microcavities,” Appl. Phys. Express 5(5), 052101 (2012).
    [Crossref]
  22. X. Xu, T. Chiba, T. Nakama, T. Maruizumai, and Y. Shiraki, “High-quality-factor light-emitting diodes with modified photonic crystal nanocavities including Ge self-assembled quantum dots on silicon-on-insulator substrates,” Appl. Phys. Express 5(10), 102101 (2012).
    [Crossref]
  23. N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
    [Crossref]
  24. N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14(8), 083035 (2012).
    [Crossref]
  25. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  26. D. J. Eaglesham and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge on Si(100),” Phys. Rev. Lett. 64(16), 1943–1946 (1990).
    [Crossref] [PubMed]
  27. Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, “Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001),” Phys. Rev. Lett. 65(8), 1020–1023 (1990).
    [Crossref] [PubMed]
  28. Z. Zhong, A. Halilovic, T. Fromherz, F. Schäffler, and G. Bauer, “Two-dimensional periodic positioning of self-assembled Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett. 82(26), 4779–4781 (2003).
    [Crossref]
  29. Z. Zhong and G. Bauer, “Site-controlled and size-homogeneous Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett. 84(11), 1922–1924 (2004).
    [Crossref]
  30. T. Stoica, V. Shushunova, C. Dais, H. Solak, and D. Grützmacher, “Two-dimensional arrays of self-organized Ge islands obtained by chemical vapor deposition on prepatterned silicon substrates,” Nanotechnology 18(45), 455307 (2007).
    [Crossref]
  31. G. Chen, H. Lichtenberger, G. Bauer, W. Jantsch, and F. Schäffler, “Initial stage of the two-dimensional to three-dimensional transition of a strained SiGe layer on a pit-patterned Si (001) template,” Phys. Rev. B 74(3), 035302 (2006).
    [Crossref]
  32. M. Grydlik, G. Langer, T. Fromherz, F. Schäffler, and M. Brehm, “Recipes for the fabrication of strictly ordered Ge islands on pit-patterned Si(001) substrates,” Nanotechnology 24(10), 105601 (2013).
    [Crossref] [PubMed]
  33. F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
    [Crossref] [PubMed]
  34. E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si (001) island arrays,” Appl. Phys. Lett. 98(14), 143101 (2011).
    [Crossref]
  35. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
    [Crossref]
  36. K. Sakoda, “Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals,” Opt. Express 4(5), 167–176 (1999).
    [Crossref] [PubMed]
  37. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
    [Crossref]
  38. W. Kern, “The evolution of silicon wafer cleaning technology,” J. Electrochem. Soc. 137(6), 1887–1892 (1990).
    [Crossref]
  39. H. Lichtenberger, M. Mühlberger, and F. Schäffler, “Transient-enhanced Si diffusion on native-oxide-covered Si (001) nanostructures during vacuum annealing,” Appl. Phys. Lett. 82(21), 3650–3652 (2003).
    [Crossref]
  40. M. Brehm, M. Grydlik, H. Groiss, F. Hackl, F. Schäffler, T. Fromherz, and G. Bauer, “The influence of a Si cap on self-organized SiGe islands and the underlying wetting layer,” J. Appl. Phys. 109(12), 123505 (2011).
    [Crossref]
  41. J. J. Zhang, A. Rastelli, O. G. Schmidt, and G. Bauer, “Role of the wetting layer for the SiGe Stranski–Krastanow island growth on planar and pit-patterned substrates,” Semicond. Sci. Technol. 26(1), 014028 (2011).
    [Crossref]
  42. M. Grydlik, M. Brehm, F. Hackl, F. Schäffler, G. Bauer, and T. Fromherz, “Unrolling the evolution kinetics of ordered SiGe islands via Ge surface diffusion,” Phys. Rev. B 88(11), 115311 (2013).
    [Crossref]
  43. L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watkins, “Bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B Condens. Matter 42(9), 5765–5783 (1990).
    [Crossref] [PubMed]
  44. A more detailed description of the employed simulation technique and its comparison to reflectivity measurements will be published elsewhere.
  45. Note that in our experiments ω/c0 < 2π/a and therefore lies in the first Brillouin zone of our PCSs. Under these conditions diffraction is not possible and the in-plane component of the wave vector k of the incident plane wave is conserved, i.e. |k| = ω/c0⋅sin(θ).
  46. J.-M. Gérard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17(11), 2089–2095 (1999).
    [Crossref]
  47. Angle-resolved measurements of the far-field emission pattern are presently under way and will be published elsewhere.
  48. We found evidence for Fabry-Perot modes that shift systematically with the size of the PCS. A more detailed study will be published elsewhere.
  49. S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
    [Crossref]
  50. S. Nakayama, S. Iwamoto, S. Ishida, D. Bordel, E. Augendre, L. Clavelier, and Y. Arakawa, “Enhancement of photoluminescence from germanium by utilizing air-bridge-type photonic crystal slab,” Physica E 42(10), 2556–2559 (2010).
    [Crossref]

2014 (2)

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factors exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

S. Boninelli, G. Franzò, P. Cardile, F. Priolo, R. Lo Savio, M. Galli, A. Shakoor, L. O’Faolain, T. F. Krauss, L. Vines, and B. G. Svensson, “Hydrogen induced optically-active defects in silicon photonic nanocavities,” Opt. Express 22(8), 8843–8855 (2014).
[Crossref] [PubMed]

2013 (6)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

M. Grydlik, M. Brehm, F. Hackl, F. Schäffler, G. Bauer, and T. Fromherz, “Unrolling the evolution kinetics of ordered SiGe islands via Ge surface diffusion,” Phys. Rev. B 88(11), 115311 (2013).
[Crossref]

M. J. Suess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

L. Ondic, M. Varga, K. Hruska, A. Kromka, K. Herynkova, B. Hönerlage, and I. Pelant, “Two-dimensional photonic crystal slab with embedded silicon nanocrystals: Efficient photoluminescence extraction,” Appl. Phys. Lett. 102(25), 251111 (2013).
[Crossref]

A. Shakoor, R. L. Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelength,” Laser Photonics Rev. 7(1), 114–121 (2013).
[Crossref]

M. Grydlik, G. Langer, T. Fromherz, F. Schäffler, and M. Brehm, “Recipes for the fabrication of strictly ordered Ge islands on pit-patterned Si(001) substrates,” Nanotechnology 24(10), 105601 (2013).
[Crossref] [PubMed]

2012 (3)

T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-Temperature Electroluminescence from Ge Quantum Dots Embedded in Photonic Crystal Microcavities,” Appl. Phys. Express 5(5), 052101 (2012).
[Crossref]

X. Xu, T. Chiba, T. Nakama, T. Maruizumai, and Y. Shiraki, “High-quality-factor light-emitting diodes with modified photonic crystal nanocavities including Ge self-assembled quantum dots on silicon-on-insulator substrates,” Appl. Phys. Express 5(10), 102101 (2012).
[Crossref]

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14(8), 083035 (2012).
[Crossref]

2011 (4)

F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
[Crossref] [PubMed]

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si (001) island arrays,” Appl. Phys. Lett. 98(14), 143101 (2011).
[Crossref]

M. Brehm, M. Grydlik, H. Groiss, F. Hackl, F. Schäffler, T. Fromherz, and G. Bauer, “The influence of a Si cap on self-organized SiGe islands and the underlying wetting layer,” J. Appl. Phys. 109(12), 123505 (2011).
[Crossref]

J. J. Zhang, A. Rastelli, O. G. Schmidt, and G. Bauer, “Role of the wetting layer for the SiGe Stranski–Krastanow island growth on planar and pit-patterned substrates,” Semicond. Sci. Technol. 26(1), 014028 (2011).
[Crossref]

2010 (4)

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

S. Nakayama, S. Iwamoto, S. Ishida, D. Bordel, E. Augendre, L. Clavelier, and Y. Arakawa, “Enhancement of photoluminescence from germanium by utilizing air-bridge-type photonic crystal slab,” Physica E 42(10), 2556–2559 (2010).
[Crossref]

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
[Crossref] [PubMed]

S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express 18(5), 4986–4999 (2010).
[Crossref] [PubMed]

2009 (2)

J. Xia, R. Tominaga, S. Fukamitsu, N. Usami, and Y. Shiraki, “Generation and wavelength control of resonant luminescence from silicon photonic crystal microcavities with Ge dots,” Jpn. J. Appl. Phys. 48(2), 022102 (2009).
[Crossref]

L. Tsybeskov and D. J. Lockwood, “Silicon-germanium nanostructures for light emitters and on-chip optical interconnects,” Proc. IEEE 97(7), 1284–1303 (2009).
[Crossref]

2007 (4)

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

J. S. Xia, K. Nemoto, Y. Ikegami, Y. Shiraki, and N. Usami, “Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks,” Appl. Phys. Lett. 91(1), 011104 (2007).
[Crossref]

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[Crossref]

T. Stoica, V. Shushunova, C. Dais, H. Solak, and D. Grützmacher, “Two-dimensional arrays of self-organized Ge islands obtained by chemical vapor deposition on prepatterned silicon substrates,” Nanotechnology 18(45), 455307 (2007).
[Crossref]

2006 (2)

G. Chen, H. Lichtenberger, G. Bauer, W. Jantsch, and F. Schäffler, “Initial stage of the two-dimensional to three-dimensional transition of a strained SiGe layer on a pit-patterned Si (001) template,” Phys. Rev. B 74(3), 035302 (2006).
[Crossref]

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[Crossref]

2005 (2)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
[Crossref]

2004 (2)

M. El Kurdi, S. David, P. Boucaud, C. Kammer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3 - 1.5 µm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[Crossref]

Z. Zhong and G. Bauer, “Site-controlled and size-homogeneous Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett. 84(11), 1922–1924 (2004).
[Crossref]

2003 (2)

Z. Zhong, A. Halilovic, T. Fromherz, F. Schäffler, and G. Bauer, “Two-dimensional periodic positioning of self-assembled Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett. 82(26), 4779–4781 (2003).
[Crossref]

H. Lichtenberger, M. Mühlberger, and F. Schäffler, “Transient-enhanced Si diffusion on native-oxide-covered Si (001) nanostructures during vacuum annealing,” Appl. Phys. Lett. 82(21), 3650–3652 (2003).
[Crossref]

2000 (1)

R. Ragan and H. A. Atwater, “Measurement of the direct energy gap of coherently strained SnxGe1-x/Ge (001) heterostructures,” Appl. Phys. Lett. 77(21), 3418–3420 (2000).
[Crossref]

1999 (3)

1997 (1)

G. He and H. A. Atwater, “Interband transitions in Ge1-xSnx Alloys,” Phys. Rev. Lett. 79(10), 1937–1940 (1997).
[Crossref]

1994 (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

1990 (4)

W. Kern, “The evolution of silicon wafer cleaning technology,” J. Electrochem. Soc. 137(6), 1887–1892 (1990).
[Crossref]

L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watkins, “Bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B Condens. Matter 42(9), 5765–5783 (1990).
[Crossref] [PubMed]

D. J. Eaglesham and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge on Si(100),” Phys. Rev. Lett. 64(16), 1943–1946 (1990).
[Crossref] [PubMed]

Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, “Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001),” Phys. Rev. Lett. 65(8), 1020–1023 (1990).
[Crossref] [PubMed]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Abstreiter, G.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14(8), 083035 (2012).
[Crossref]

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

Alduino, A.

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

Arakawa, Y.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14(8), 083035 (2012).
[Crossref]

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

S. Nakayama, S. Iwamoto, S. Ishida, D. Bordel, E. Augendre, L. Clavelier, and Y. Arakawa, “Enhancement of photoluminescence from germanium by utilizing air-bridge-type photonic crystal slab,” Physica E 42(10), 2556–2559 (2010).
[Crossref]

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[Crossref]

Assefa, S.

Atwater, H. A.

R. Ragan and H. A. Atwater, “Measurement of the direct energy gap of coherently strained SnxGe1-x/Ge (001) heterostructures,” Appl. Phys. Lett. 77(21), 3418–3420 (2000).
[Crossref]

G. He and H. A. Atwater, “Interband transitions in Ge1-xSnx Alloys,” Phys. Rev. Lett. 79(10), 1937–1940 (1997).
[Crossref]

Augendre, E.

S. Nakayama, S. Iwamoto, S. Ishida, D. Bordel, E. Augendre, L. Clavelier, and Y. Arakawa, “Enhancement of photoluminescence from germanium by utilizing air-bridge-type photonic crystal slab,” Physica E 42(10), 2556–2559 (2010).
[Crossref]

Badolato, A.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factors exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Bauer, G.

M. Grydlik, M. Brehm, F. Hackl, F. Schäffler, G. Bauer, and T. Fromherz, “Unrolling the evolution kinetics of ordered SiGe islands via Ge surface diffusion,” Phys. Rev. B 88(11), 115311 (2013).
[Crossref]

J. J. Zhang, A. Rastelli, O. G. Schmidt, and G. Bauer, “Role of the wetting layer for the SiGe Stranski–Krastanow island growth on planar and pit-patterned substrates,” Semicond. Sci. Technol. 26(1), 014028 (2011).
[Crossref]

M. Brehm, M. Grydlik, H. Groiss, F. Hackl, F. Schäffler, T. Fromherz, and G. Bauer, “The influence of a Si cap on self-organized SiGe islands and the underlying wetting layer,” J. Appl. Phys. 109(12), 123505 (2011).
[Crossref]

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si (001) island arrays,” Appl. Phys. Lett. 98(14), 143101 (2011).
[Crossref]

F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
[Crossref] [PubMed]

G. Chen, H. Lichtenberger, G. Bauer, W. Jantsch, and F. Schäffler, “Initial stage of the two-dimensional to three-dimensional transition of a strained SiGe layer on a pit-patterned Si (001) template,” Phys. Rev. B 74(3), 035302 (2006).
[Crossref]

Z. Zhong and G. Bauer, “Site-controlled and size-homogeneous Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett. 84(11), 1922–1924 (2004).
[Crossref]

Z. Zhong, A. Halilovic, T. Fromherz, F. Schäffler, and G. Bauer, “Two-dimensional periodic positioning of self-assembled Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett. 82(26), 4779–4781 (2003).
[Crossref]

Bedell, S. W.

Benson, B. W.

L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watkins, “Bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B Condens. Matter 42(9), 5765–5783 (1990).
[Crossref] [PubMed]

Bergmair, I.

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si (001) island arrays,” Appl. Phys. Lett. 98(14), 143101 (2011).
[Crossref]

Bhat, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Boninelli, S.

S. Boninelli, G. Franzò, P. Cardile, F. Priolo, R. Lo Savio, M. Galli, A. Shakoor, L. O’Faolain, T. F. Krauss, L. Vines, and B. G. Svensson, “Hydrogen induced optically-active defects in silicon photonic nanocavities,” Opt. Express 22(8), 8843–8855 (2014).
[Crossref] [PubMed]

A. Shakoor, R. L. Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelength,” Laser Photonics Rev. 7(1), 114–121 (2013).
[Crossref]

Bordel, D.

S. Nakayama, S. Iwamoto, S. Ishida, D. Bordel, E. Augendre, L. Clavelier, and Y. Arakawa, “Enhancement of photoluminescence from germanium by utilizing air-bridge-type photonic crystal slab,” Physica E 42(10), 2556–2559 (2010).
[Crossref]

Boroditsky, M.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

Boucaud, P.

M. El Kurdi, S. David, P. Boucaud, C. Kammer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3 - 1.5 µm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[Crossref]

Bougeard, D.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14(8), 083035 (2012).
[Crossref]

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Brehm, M.

M. Grydlik, M. Brehm, F. Hackl, F. Schäffler, G. Bauer, and T. Fromherz, “Unrolling the evolution kinetics of ordered SiGe islands via Ge surface diffusion,” Phys. Rev. B 88(11), 115311 (2013).
[Crossref]

M. Grydlik, G. Langer, T. Fromherz, F. Schäffler, and M. Brehm, “Recipes for the fabrication of strictly ordered Ge islands on pit-patterned Si(001) substrates,” Nanotechnology 24(10), 105601 (2013).
[Crossref] [PubMed]

F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
[Crossref] [PubMed]

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si (001) island arrays,” Appl. Phys. Lett. 98(14), 143101 (2011).
[Crossref]

M. Brehm, M. Grydlik, H. Groiss, F. Hackl, F. Schäffler, T. Fromherz, and G. Bauer, “The influence of a Si cap on self-organized SiGe islands and the underlying wetting layer,” J. Appl. Phys. 109(12), 123505 (2011).
[Crossref]

Camacho-Aguilera, R.

Cardile, P.

S. Boninelli, G. Franzò, P. Cardile, F. Priolo, R. Lo Savio, M. Galli, A. Shakoor, L. O’Faolain, T. F. Krauss, L. Vines, and B. G. Svensson, “Hydrogen induced optically-active defects in silicon photonic nanocavities,” Opt. Express 22(8), 8843–8855 (2014).
[Crossref] [PubMed]

A. Shakoor, R. L. Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelength,” Laser Photonics Rev. 7(1), 114–121 (2013).
[Crossref]

Cerullo, M.

D. J. Eaglesham and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge on Si(100),” Phys. Rev. Lett. 64(16), 1943–1946 (1990).
[Crossref] [PubMed]

Chen, G.

G. Chen, H. Lichtenberger, G. Bauer, W. Jantsch, and F. Schäffler, “Initial stage of the two-dimensional to three-dimensional transition of a strained SiGe layer on a pit-patterned Si (001) template,” Phys. Rev. B 74(3), 035302 (2006).
[Crossref]

Chiba, T.

X. Xu, T. Chiba, T. Nakama, T. Maruizumai, and Y. Shiraki, “High-quality-factor light-emitting diodes with modified photonic crystal nanocavities including Ge self-assembled quantum dots on silicon-on-insulator substrates,” Appl. Phys. Express 5(10), 102101 (2012).
[Crossref]

Chrastina, D.

M. J. Suess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Clavelier, L.

S. Nakayama, S. Iwamoto, S. Ishida, D. Bordel, E. Augendre, L. Clavelier, and Y. Arakawa, “Enhancement of photoluminescence from germanium by utilizing air-bridge-type photonic crystal slab,” Physica E 42(10), 2556–2559 (2010).
[Crossref]

Coccioli, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

Cohen, O.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Dais, C.

T. Stoica, V. Shushunova, C. Dais, H. Solak, and D. Grützmacher, “Two-dimensional arrays of self-organized Ge islands obtained by chemical vapor deposition on prepatterned silicon substrates,” Nanotechnology 18(45), 455307 (2007).
[Crossref]

David, S.

M. El Kurdi, S. David, P. Boucaud, C. Kammer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3 - 1.5 µm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[Crossref]

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Eaglesham, D. J.

D. J. Eaglesham and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge on Si(100),” Phys. Rev. Lett. 64(16), 1943–1946 (1990).
[Crossref] [PubMed]

El Kurdi, M.

M. El Kurdi, S. David, P. Boucaud, C. Kammer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3 - 1.5 µm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[Crossref]

Faist, J.

M. J. Suess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Fang, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Finley, J. J.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14(8), 083035 (2012).
[Crossref]

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

Franzò, G.

S. Boninelli, G. Franzò, P. Cardile, F. Priolo, R. Lo Savio, M. Galli, A. Shakoor, L. O’Faolain, T. F. Krauss, L. Vines, and B. G. Svensson, “Hydrogen induced optically-active defects in silicon photonic nanocavities,” Opt. Express 22(8), 8843–8855 (2014).
[Crossref] [PubMed]

A. Shakoor, R. L. Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelength,” Laser Photonics Rev. 7(1), 114–121 (2013).
[Crossref]

Frigerio, J.

M. J. Suess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Fromherz, T.

M. Grydlik, G. Langer, T. Fromherz, F. Schäffler, and M. Brehm, “Recipes for the fabrication of strictly ordered Ge islands on pit-patterned Si(001) substrates,” Nanotechnology 24(10), 105601 (2013).
[Crossref] [PubMed]

M. Grydlik, M. Brehm, F. Hackl, F. Schäffler, G. Bauer, and T. Fromherz, “Unrolling the evolution kinetics of ordered SiGe islands via Ge surface diffusion,” Phys. Rev. B 88(11), 115311 (2013).
[Crossref]

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si (001) island arrays,” Appl. Phys. Lett. 98(14), 143101 (2011).
[Crossref]

M. Brehm, M. Grydlik, H. Groiss, F. Hackl, F. Schäffler, T. Fromherz, and G. Bauer, “The influence of a Si cap on self-organized SiGe islands and the underlying wetting layer,” J. Appl. Phys. 109(12), 123505 (2011).
[Crossref]

F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
[Crossref] [PubMed]

Z. Zhong, A. Halilovic, T. Fromherz, F. Schäffler, and G. Bauer, “Two-dimensional periodic positioning of self-assembled Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett. 82(26), 4779–4781 (2003).
[Crossref]

Fukamitsu, S.

J. Xia, R. Tominaga, S. Fukamitsu, N. Usami, and Y. Shiraki, “Generation and wavelength control of resonant luminescence from silicon photonic crystal microcavities with Ge dots,” Jpn. J. Appl. Phys. 48(2), 022102 (2009).
[Crossref]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Galli, M.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factors exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

S. Boninelli, G. Franzò, P. Cardile, F. Priolo, R. Lo Savio, M. Galli, A. Shakoor, L. O’Faolain, T. F. Krauss, L. Vines, and B. G. Svensson, “Hydrogen induced optically-active defects in silicon photonic nanocavities,” Opt. Express 22(8), 8843–8855 (2014).
[Crossref] [PubMed]

A. Shakoor, R. L. Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelength,” Laser Photonics Rev. 7(1), 114–121 (2013).
[Crossref]

Gayral, B.

Geiger, R.

M. J. Suess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Gerace, D.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factors exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

A. Shakoor, R. L. Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelength,” Laser Photonics Rev. 7(1), 114–121 (2013).
[Crossref]

Gérard, J.-M.

Gomyo, A.

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[Crossref]

Groiss, H.

M. Brehm, M. Grydlik, H. Groiss, F. Hackl, F. Schäffler, T. Fromherz, and G. Bauer, “The influence of a Si cap on self-organized SiGe islands and the underlying wetting layer,” J. Appl. Phys. 109(12), 123505 (2011).
[Crossref]

F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
[Crossref] [PubMed]

Grützmacher, D.

T. Stoica, V. Shushunova, C. Dais, H. Solak, and D. Grützmacher, “Two-dimensional arrays of self-organized Ge islands obtained by chemical vapor deposition on prepatterned silicon substrates,” Nanotechnology 18(45), 455307 (2007).
[Crossref]

Grydlik, M.

M. Grydlik, G. Langer, T. Fromherz, F. Schäffler, and M. Brehm, “Recipes for the fabrication of strictly ordered Ge islands on pit-patterned Si(001) substrates,” Nanotechnology 24(10), 105601 (2013).
[Crossref] [PubMed]

M. Grydlik, M. Brehm, F. Hackl, F. Schäffler, G. Bauer, and T. Fromherz, “Unrolling the evolution kinetics of ordered SiGe islands via Ge surface diffusion,” Phys. Rev. B 88(11), 115311 (2013).
[Crossref]

M. Brehm, M. Grydlik, H. Groiss, F. Hackl, F. Schäffler, T. Fromherz, and G. Bauer, “The influence of a Si cap on self-organized SiGe islands and the underlying wetting layer,” J. Appl. Phys. 109(12), 123505 (2011).
[Crossref]

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si (001) island arrays,” Appl. Phys. Lett. 98(14), 143101 (2011).
[Crossref]

F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
[Crossref] [PubMed]

Hackl, F.

M. Grydlik, M. Brehm, F. Hackl, F. Schäffler, G. Bauer, and T. Fromherz, “Unrolling the evolution kinetics of ordered SiGe islands via Ge surface diffusion,” Phys. Rev. B 88(11), 115311 (2013).
[Crossref]

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si (001) island arrays,” Appl. Phys. Lett. 98(14), 143101 (2011).
[Crossref]

M. Brehm, M. Grydlik, H. Groiss, F. Hackl, F. Schäffler, T. Fromherz, and G. Bauer, “The influence of a Si cap on self-organized SiGe islands and the underlying wetting layer,” J. Appl. Phys. 109(12), 123505 (2011).
[Crossref]

F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
[Crossref] [PubMed]

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Halilovic, A.

Z. Zhong, A. Halilovic, T. Fromherz, F. Schäffler, and G. Bauer, “Two-dimensional periodic positioning of self-assembled Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett. 82(26), 4779–4781 (2003).
[Crossref]

Hauke, N.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14(8), 083035 (2012).
[Crossref]

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

He, G.

G. He and H. A. Atwater, “Interband transitions in Ge1-xSnx Alloys,” Phys. Rev. Lett. 79(10), 1937–1940 (1997).
[Crossref]

Herynkova, K.

L. Ondic, M. Varga, K. Hruska, A. Kromka, K. Herynkova, B. Hönerlage, and I. Pelant, “Two-dimensional photonic crystal slab with embedded silicon nanocrystals: Efficient photoluminescence extraction,” Appl. Phys. Lett. 102(25), 251111 (2013).
[Crossref]

Hönerlage, B.

L. Ondic, M. Varga, K. Hruska, A. Kromka, K. Herynkova, B. Hönerlage, and I. Pelant, “Two-dimensional photonic crystal slab with embedded silicon nanocrystals: Efficient photoluminescence extraction,” Appl. Phys. Lett. 102(25), 251111 (2013).
[Crossref]

Hruska, K.

L. Ondic, M. Varga, K. Hruska, A. Kromka, K. Herynkova, B. Hönerlage, and I. Pelant, “Two-dimensional photonic crystal slab with embedded silicon nanocrystals: Efficient photoluminescence extraction,” Appl. Phys. Lett. 102(25), 251111 (2013).
[Crossref]

Ikegami, Y.

J. S. Xia, K. Nemoto, Y. Ikegami, Y. Shiraki, and N. Usami, “Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks,” Appl. Phys. Lett. 91(1), 011104 (2007).
[Crossref]

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[Crossref]

Isella, G.

M. J. Suess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Ishida, S.

S. Nakayama, S. Iwamoto, S. Ishida, D. Bordel, E. Augendre, L. Clavelier, and Y. Arakawa, “Enhancement of photoluminescence from germanium by utilizing air-bridge-type photonic crystal slab,” Physica E 42(10), 2556–2559 (2010).
[Crossref]

Iwamoto, S.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14(8), 083035 (2012).
[Crossref]

S. Nakayama, S. Iwamoto, S. Ishida, D. Bordel, E. Augendre, L. Clavelier, and Y. Arakawa, “Enhancement of photoluminescence from germanium by utilizing air-bridge-type photonic crystal slab,” Physica E 42(10), 2556–2559 (2010).
[Crossref]

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[Crossref]

Jantsch, W.

G. Chen, H. Lichtenberger, G. Bauer, W. Jantsch, and F. Schäffler, “Initial stage of the two-dimensional to three-dimensional transition of a strained SiGe layer on a pit-patterned Si (001) template,” Phys. Rev. B 74(3), 035302 (2006).
[Crossref]

Jones, R.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Kammer, C.

M. El Kurdi, S. David, P. Boucaud, C. Kammer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3 - 1.5 µm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[Crossref]

Kaniber, M.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14(8), 083035 (2012).
[Crossref]

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

Kern, W.

W. Kern, “The evolution of silicon wafer cleaning technology,” J. Electrochem. Soc. 137(6), 1887–1892 (1990).
[Crossref]

Kimerling, L. C.

Krauss, T. F.

S. Boninelli, G. Franzò, P. Cardile, F. Priolo, R. Lo Savio, M. Galli, A. Shakoor, L. O’Faolain, T. F. Krauss, L. Vines, and B. G. Svensson, “Hydrogen induced optically-active defects in silicon photonic nanocavities,” Opt. Express 22(8), 8843–8855 (2014).
[Crossref] [PubMed]

A. Shakoor, R. L. Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelength,” Laser Photonics Rev. 7(1), 114–121 (2013).
[Crossref]

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

Kromka, A.

L. Ondic, M. Varga, K. Hruska, A. Kromka, K. Herynkova, B. Hönerlage, and I. Pelant, “Two-dimensional photonic crystal slab with embedded silicon nanocrystals: Efficient photoluminescence extraction,” Appl. Phys. Lett. 102(25), 251111 (2013).
[Crossref]

Lagally, M. G.

Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, “Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001),” Phys. Rev. Lett. 65(8), 1020–1023 (1990).
[Crossref] [PubMed]

Lai, Y.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factors exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Langer, G.

M. Grydlik, G. Langer, T. Fromherz, F. Schäffler, and M. Brehm, “Recipes for the fabrication of strictly ordered Ge islands on pit-patterned Si(001) substrates,” Nanotechnology 24(10), 105601 (2013).
[Crossref] [PubMed]

Laucht, A.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

Lausecker, E.

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si (001) island arrays,” Appl. Phys. Lett. 98(14), 143101 (2011).
[Crossref]

Le Thanh, V.

M. El Kurdi, S. David, P. Boucaud, C. Kammer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3 - 1.5 µm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[Crossref]

Li, X.

M. El Kurdi, S. David, P. Boucaud, C. Kammer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3 - 1.5 µm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[Crossref]

Lichtenberger, H.

G. Chen, H. Lichtenberger, G. Bauer, W. Jantsch, and F. Schäffler, “Initial stage of the two-dimensional to three-dimensional transition of a strained SiGe layer on a pit-patterned Si (001) template,” Phys. Rev. B 74(3), 035302 (2006).
[Crossref]

H. Lichtenberger, M. Mühlberger, and F. Schäffler, “Transient-enhanced Si diffusion on native-oxide-covered Si (001) nanostructures during vacuum annealing,” Appl. Phys. Lett. 82(21), 3650–3652 (2003).
[Crossref]

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
[Crossref]

Liu, A.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Liu, J.

Lo Savio, R.

Lockwood, D. J.

L. Tsybeskov and D. J. Lockwood, “Silicon-germanium nanostructures for light emitters and on-chip optical interconnects,” Proc. IEEE 97(7), 1284–1303 (2009).
[Crossref]

Lourtioz, J.-M.

M. El Kurdi, S. David, P. Boucaud, C. Kammer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3 - 1.5 µm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[Crossref]

Maruizumai, T.

X. Xu, T. Chiba, T. Nakama, T. Maruizumai, and Y. Shiraki, “High-quality-factor light-emitting diodes with modified photonic crystal nanocavities including Ge self-assembled quantum dots on silicon-on-insulator substrates,” Appl. Phys. Express 5(10), 102101 (2012).
[Crossref]

Maruizumi, T.

T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-Temperature Electroluminescence from Ge Quantum Dots Embedded in Photonic Crystal Microcavities,” Appl. Phys. Express 5(5), 052101 (2012).
[Crossref]

Michel, J.

Minamisawa, R. A.

M. J. Suess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Minkov, M.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factors exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Mo, Y.-W.

Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, “Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001),” Phys. Rev. Lett. 65(8), 1020–1023 (1990).
[Crossref] [PubMed]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Mühlberger, M.

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si (001) island arrays,” Appl. Phys. Lett. 98(14), 143101 (2011).
[Crossref]

H. Lichtenberger, M. Mühlberger, and F. Schäffler, “Transient-enhanced Si diffusion on native-oxide-covered Si (001) nanostructures during vacuum annealing,” Appl. Phys. Lett. 82(21), 3650–3652 (2003).
[Crossref]

Müller, K.

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

Nakama, T.

X. Xu, T. Chiba, T. Nakama, T. Maruizumai, and Y. Shiraki, “High-quality-factor light-emitting diodes with modified photonic crystal nanocavities including Ge self-assembled quantum dots on silicon-on-insulator substrates,” Appl. Phys. Express 5(10), 102101 (2012).
[Crossref]

Nakata, Y.

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[Crossref]

Nakayama, S.

S. Nakayama, S. Iwamoto, S. Ishida, D. Bordel, E. Augendre, L. Clavelier, and Y. Arakawa, “Enhancement of photoluminescence from germanium by utilizing air-bridge-type photonic crystal slab,” Physica E 42(10), 2556–2559 (2010).
[Crossref]

Nemoto, K.

J. S. Xia, K. Nemoto, Y. Ikegami, Y. Shiraki, and N. Usami, “Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks,” Appl. Phys. Lett. 91(1), 011104 (2007).
[Crossref]

O’Faolain, L.

S. Boninelli, G. Franzò, P. Cardile, F. Priolo, R. Lo Savio, M. Galli, A. Shakoor, L. O’Faolain, T. F. Krauss, L. Vines, and B. G. Svensson, “Hydrogen induced optically-active defects in silicon photonic nanocavities,” Opt. Express 22(8), 8843–8855 (2014).
[Crossref] [PubMed]

A. Shakoor, R. L. Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelength,” Laser Photonics Rev. 7(1), 114–121 (2013).
[Crossref]

Ondic, L.

L. Ondic, M. Varga, K. Hruska, A. Kromka, K. Herynkova, B. Hönerlage, and I. Pelant, “Two-dimensional photonic crystal slab with embedded silicon nanocrystals: Efficient photoluminescence extraction,” Appl. Phys. Lett. 102(25), 251111 (2013).
[Crossref]

Paniccia, M.

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Pelant, I.

L. Ondic, M. Varga, K. Hruska, A. Kromka, K. Herynkova, B. Hönerlage, and I. Pelant, “Two-dimensional photonic crystal slab with embedded silicon nanocrystals: Efficient photoluminescence extraction,” Appl. Phys. Lett. 102(25), 251111 (2013).
[Crossref]

Pirotta, S.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factors exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Portalupi, S. L.

A. Shakoor, R. L. Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelength,” Laser Photonics Rev. 7(1), 114–121 (2013).
[Crossref]

Priolo, F.

S. Boninelli, G. Franzò, P. Cardile, F. Priolo, R. Lo Savio, M. Galli, A. Shakoor, L. O’Faolain, T. F. Krauss, L. Vines, and B. G. Svensson, “Hydrogen induced optically-active defects in silicon photonic nanocavities,” Opt. Express 22(8), 8843–8855 (2014).
[Crossref] [PubMed]

A. Shakoor, R. L. Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelength,” Laser Photonics Rev. 7(1), 114–121 (2013).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Ragan, R.

R. Ragan and H. A. Atwater, “Measurement of the direct energy gap of coherently strained SnxGe1-x/Ge (001) heterostructures,” Appl. Phys. Lett. 77(21), 3418–3420 (2000).
[Crossref]

Rastelli, A.

J. J. Zhang, A. Rastelli, O. G. Schmidt, and G. Bauer, “Role of the wetting layer for the SiGe Stranski–Krastanow island growth on planar and pit-patterned substrates,” Semicond. Sci. Technol. 26(1), 014028 (2011).
[Crossref]

Reichert, T.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14(8), 083035 (2012).
[Crossref]

Rice, P. M.

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

Sakoda, K.

Sauvage, S.

M. El Kurdi, S. David, P. Boucaud, C. Kammer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3 - 1.5 µm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[Crossref]

Savage, D. E.

Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, “Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001),” Phys. Rev. Lett. 65(8), 1020–1023 (1990).
[Crossref] [PubMed]

Savio, R. L.

A. Shakoor, R. L. Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelength,” Laser Photonics Rev. 7(1), 114–121 (2013).
[Crossref]

Savona, V.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factors exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

Schäffler, F.

M. Grydlik, M. Brehm, F. Hackl, F. Schäffler, G. Bauer, and T. Fromherz, “Unrolling the evolution kinetics of ordered SiGe islands via Ge surface diffusion,” Phys. Rev. B 88(11), 115311 (2013).
[Crossref]

M. Grydlik, G. Langer, T. Fromherz, F. Schäffler, and M. Brehm, “Recipes for the fabrication of strictly ordered Ge islands on pit-patterned Si(001) substrates,” Nanotechnology 24(10), 105601 (2013).
[Crossref] [PubMed]

F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
[Crossref] [PubMed]

M. Brehm, M. Grydlik, H. Groiss, F. Hackl, F. Schäffler, T. Fromherz, and G. Bauer, “The influence of a Si cap on self-organized SiGe islands and the underlying wetting layer,” J. Appl. Phys. 109(12), 123505 (2011).
[Crossref]

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si (001) island arrays,” Appl. Phys. Lett. 98(14), 143101 (2011).
[Crossref]

G. Chen, H. Lichtenberger, G. Bauer, W. Jantsch, and F. Schäffler, “Initial stage of the two-dimensional to three-dimensional transition of a strained SiGe layer on a pit-patterned Si (001) template,” Phys. Rev. B 74(3), 035302 (2006).
[Crossref]

Z. Zhong, A. Halilovic, T. Fromherz, F. Schäffler, and G. Bauer, “Two-dimensional periodic positioning of self-assembled Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett. 82(26), 4779–4781 (2003).
[Crossref]

H. Lichtenberger, M. Mühlberger, and F. Schäffler, “Transient-enhanced Si diffusion on native-oxide-covered Si (001) nanostructures during vacuum annealing,” Appl. Phys. Lett. 82(21), 3650–3652 (2003).
[Crossref]

Schiefler, G.

M. J. Suess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Schmidt, O. G.

J. J. Zhang, A. Rastelli, O. G. Schmidt, and G. Bauer, “Role of the wetting layer for the SiGe Stranski–Krastanow island growth on planar and pit-patterned substrates,” Semicond. Sci. Technol. 26(1), 014028 (2011).
[Crossref]

Shakoor, A.

S. Boninelli, G. Franzò, P. Cardile, F. Priolo, R. Lo Savio, M. Galli, A. Shakoor, L. O’Faolain, T. F. Krauss, L. Vines, and B. G. Svensson, “Hydrogen induced optically-active defects in silicon photonic nanocavities,” Opt. Express 22(8), 8843–8855 (2014).
[Crossref] [PubMed]

A. Shakoor, R. L. Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelength,” Laser Photonics Rev. 7(1), 114–121 (2013).
[Crossref]

Shiraki, Y.

T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-Temperature Electroluminescence from Ge Quantum Dots Embedded in Photonic Crystal Microcavities,” Appl. Phys. Express 5(5), 052101 (2012).
[Crossref]

X. Xu, T. Chiba, T. Nakama, T. Maruizumai, and Y. Shiraki, “High-quality-factor light-emitting diodes with modified photonic crystal nanocavities including Ge self-assembled quantum dots on silicon-on-insulator substrates,” Appl. Phys. Express 5(10), 102101 (2012).
[Crossref]

J. Xia, R. Tominaga, S. Fukamitsu, N. Usami, and Y. Shiraki, “Generation and wavelength control of resonant luminescence from silicon photonic crystal microcavities with Ge dots,” Jpn. J. Appl. Phys. 48(2), 022102 (2009).
[Crossref]

J. S. Xia, K. Nemoto, Y. Ikegami, Y. Shiraki, and N. Usami, “Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks,” Appl. Phys. Lett. 91(1), 011104 (2007).
[Crossref]

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[Crossref]

Shushunova, V.

T. Stoica, V. Shushunova, C. Dais, H. Solak, and D. Grützmacher, “Two-dimensional arrays of self-organized Ge islands obtained by chemical vapor deposition on prepatterned silicon substrates,” Nanotechnology 18(45), 455307 (2007).
[Crossref]

Sigg, H.

M. J. Suess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Solak, H.

T. Stoica, V. Shushunova, C. Dais, H. Solak, and D. Grützmacher, “Two-dimensional arrays of self-organized Ge islands obtained by chemical vapor deposition on prepatterned silicon substrates,” Nanotechnology 18(45), 455307 (2007).
[Crossref]

Song, L. W.

L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watkins, “Bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B Condens. Matter 42(9), 5765–5783 (1990).
[Crossref] [PubMed]

Spolenak, R.

M. J. Suess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Stoica, T.

T. Stoica, V. Shushunova, C. Dais, H. Solak, and D. Grützmacher, “Two-dimensional arrays of self-organized Ge islands obtained by chemical vapor deposition on prepatterned silicon substrates,” Nanotechnology 18(45), 455307 (2007).
[Crossref]

Suess, M. J.

M. J. Suess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Sun, X.

Svensson, B. G.

Swartzentruber, B. S.

Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, “Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001),” Phys. Rev. Lett. 65(8), 1020–1023 (1990).
[Crossref] [PubMed]

Takagi, H.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14(8), 083035 (2012).
[Crossref]

Tandaechanurat, A.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14(8), 083035 (2012).
[Crossref]

Tominaga, R.

J. Xia, R. Tominaga, S. Fukamitsu, N. Usami, and Y. Shiraki, “Generation and wavelength control of resonant luminescence from silicon photonic crystal microcavities with Ge dots,” Jpn. J. Appl. Phys. 48(2), 022102 (2009).
[Crossref]

Topuria, T.

Tsuboi, T.

T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-Temperature Electroluminescence from Ge Quantum Dots Embedded in Photonic Crystal Microcavities,” Appl. Phys. Express 5(5), 052101 (2012).
[Crossref]

Tsybeskov, L.

L. Tsybeskov and D. J. Lockwood, “Silicon-germanium nanostructures for light emitters and on-chip optical interconnects,” Proc. IEEE 97(7), 1284–1303 (2009).
[Crossref]

Urbinati, G.

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factors exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

Usami, N.

T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-Temperature Electroluminescence from Ge Quantum Dots Embedded in Photonic Crystal Microcavities,” Appl. Phys. Express 5(5), 052101 (2012).
[Crossref]

J. Xia, R. Tominaga, S. Fukamitsu, N. Usami, and Y. Shiraki, “Generation and wavelength control of resonant luminescence from silicon photonic crystal microcavities with Ge dots,” Jpn. J. Appl. Phys. 48(2), 022102 (2009).
[Crossref]

J. S. Xia, K. Nemoto, Y. Ikegami, Y. Shiraki, and N. Usami, “Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks,” Appl. Phys. Lett. 91(1), 011104 (2007).
[Crossref]

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[Crossref]

Varga, M.

L. Ondic, M. Varga, K. Hruska, A. Kromka, K. Herynkova, B. Hönerlage, and I. Pelant, “Two-dimensional photonic crystal slab with embedded silicon nanocrystals: Efficient photoluminescence extraction,” Appl. Phys. Lett. 102(25), 251111 (2013).
[Crossref]

Vines, L.

Vlasov, Y. A.

Vrijen, R.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

Watkins, G. D.

L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watkins, “Bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B Condens. Matter 42(9), 5765–5783 (1990).
[Crossref] [PubMed]

Welna, K.

A. Shakoor, R. L. Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelength,” Laser Photonics Rev. 7(1), 114–121 (2013).
[Crossref]

Xia, F.

Xia, J.

T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-Temperature Electroluminescence from Ge Quantum Dots Embedded in Photonic Crystal Microcavities,” Appl. Phys. Express 5(5), 052101 (2012).
[Crossref]

J. Xia, R. Tominaga, S. Fukamitsu, N. Usami, and Y. Shiraki, “Generation and wavelength control of resonant luminescence from silicon photonic crystal microcavities with Ge dots,” Jpn. J. Appl. Phys. 48(2), 022102 (2009).
[Crossref]

Xia, J. S.

J. S. Xia, K. Nemoto, Y. Ikegami, Y. Shiraki, and N. Usami, “Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks,” Appl. Phys. Lett. 91(1), 011104 (2007).
[Crossref]

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[Crossref]

Xu, X.

T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-Temperature Electroluminescence from Ge Quantum Dots Embedded in Photonic Crystal Microcavities,” Appl. Phys. Express 5(5), 052101 (2012).
[Crossref]

X. Xu, T. Chiba, T. Nakama, T. Maruizumai, and Y. Shiraki, “High-quality-factor light-emitting diodes with modified photonic crystal nanocavities including Ge self-assembled quantum dots on silicon-on-insulator substrates,” Appl. Phys. Express 5(10), 102101 (2012).
[Crossref]

Yablonovitch, E.

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

Zabel, T.

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14(8), 083035 (2012).
[Crossref]

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

Zhan, X. D.

L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watkins, “Bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B Condens. Matter 42(9), 5765–5783 (1990).
[Crossref] [PubMed]

Zhang, J. J.

J. J. Zhang, A. Rastelli, O. G. Schmidt, and G. Bauer, “Role of the wetting layer for the SiGe Stranski–Krastanow island growth on planar and pit-patterned substrates,” Semicond. Sci. Technol. 26(1), 014028 (2011).
[Crossref]

Zhang, Y.

Zhong, Z.

Z. Zhong and G. Bauer, “Site-controlled and size-homogeneous Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett. 84(11), 1922–1924 (2004).
[Crossref]

Z. Zhong, A. Halilovic, T. Fromherz, F. Schäffler, and G. Bauer, “Two-dimensional periodic positioning of self-assembled Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett. 82(26), 4779–4781 (2003).
[Crossref]

Appl. Phys. Express (2)

T. Tsuboi, X. Xu, J. Xia, N. Usami, T. Maruizumi, and Y. Shiraki, “Room-Temperature Electroluminescence from Ge Quantum Dots Embedded in Photonic Crystal Microcavities,” Appl. Phys. Express 5(5), 052101 (2012).
[Crossref]

X. Xu, T. Chiba, T. Nakama, T. Maruizumai, and Y. Shiraki, “High-quality-factor light-emitting diodes with modified photonic crystal nanocavities including Ge self-assembled quantum dots on silicon-on-insulator substrates,” Appl. Phys. Express 5(10), 102101 (2012).
[Crossref]

Appl. Phys. Lett. (11)

Z. Zhong, A. Halilovic, T. Fromherz, F. Schäffler, and G. Bauer, “Two-dimensional periodic positioning of self-assembled Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett. 82(26), 4779–4781 (2003).
[Crossref]

Z. Zhong and G. Bauer, “Site-controlled and size-homogeneous Ge islands on prepatterned Si (001) substrates,” Appl. Phys. Lett. 84(11), 1922–1924 (2004).
[Crossref]

E. Lausecker, M. Brehm, M. Grydlik, F. Hackl, I. Bergmair, M. Mühlberger, T. Fromherz, F. Schäffler, and G. Bauer, “UV nanoimprint lithography for the realization of large-area ordered SiGe/Si (001) island arrays,” Appl. Phys. Lett. 98(14), 143101 (2011).
[Crossref]

M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett. 75(8), 1036–1038 (1999).
[Crossref]

H. Lichtenberger, M. Mühlberger, and F. Schäffler, “Transient-enhanced Si diffusion on native-oxide-covered Si (001) nanostructures during vacuum annealing,” Appl. Phys. Lett. 82(21), 3650–3652 (2003).
[Crossref]

Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, and M. Galli, “Genetically designed L3 photonic crystal nanocavities with measured quality factors exceeding one million,” Appl. Phys. Lett. 104(24), 241101 (2014).
[Crossref]

J. S. Xia, K. Nemoto, Y. Ikegami, Y. Shiraki, and N. Usami, “Silicon-based light emitters fabricated by embedding Ge self-assembled quantum dots in microdisks,” Appl. Phys. Lett. 91(1), 011104 (2007).
[Crossref]

R. Ragan and H. A. Atwater, “Measurement of the direct energy gap of coherently strained SnxGe1-x/Ge (001) heterostructures,” Appl. Phys. Lett. 77(21), 3418–3420 (2000).
[Crossref]

L. Ondic, M. Varga, K. Hruska, A. Kromka, K. Herynkova, B. Hönerlage, and I. Pelant, “Two-dimensional photonic crystal slab with embedded silicon nanocrystals: Efficient photoluminescence extraction,” Appl. Phys. Lett. 102(25), 251111 (2013).
[Crossref]

J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, “Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature,” Appl. Phys. Lett. 89(20), 201102 (2006).
[Crossref]

S. Iwamoto, Y. Arakawa, and A. Gomyo, “Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature,” Appl. Phys. Lett. 91(21), 211104 (2007).
[Crossref]

J. Appl. Phys. (3)

M. El Kurdi, S. David, P. Boucaud, C. Kammer, X. Li, V. Le Thanh, S. Sauvage, and J.-M. Lourtioz, “Strong 1.3 - 1.5 µm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator,” J. Appl. Phys. 96(2), 997–1000 (2004).
[Crossref]

M. Brehm, M. Grydlik, H. Groiss, F. Hackl, F. Schäffler, T. Fromherz, and G. Bauer, “The influence of a Si cap on self-organized SiGe islands and the underlying wetting layer,” J. Appl. Phys. 109(12), 123505 (2011).
[Crossref]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[Crossref]

J. Electrochem. Soc. (1)

W. Kern, “The evolution of silicon wafer cleaning technology,” J. Electrochem. Soc. 137(6), 1887–1892 (1990).
[Crossref]

J. Lightwave Technol. (2)

Jpn. J. Appl. Phys. (1)

J. Xia, R. Tominaga, S. Fukamitsu, N. Usami, and Y. Shiraki, “Generation and wavelength control of resonant luminescence from silicon photonic crystal microcavities with Ge dots,” Jpn. J. Appl. Phys. 48(2), 022102 (2009).
[Crossref]

Laser Photonics Rev. (1)

A. Shakoor, R. L. Savio, P. Cardile, S. L. Portalupi, D. Gerace, K. Welna, S. Boninelli, G. Franzò, F. Priolo, T. F. Krauss, M. Galli, and L. O’Faolain, “Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelength,” Laser Photonics Rev. 7(1), 114–121 (2013).
[Crossref]

Nanotechnology (3)

M. Grydlik, G. Langer, T. Fromherz, F. Schäffler, and M. Brehm, “Recipes for the fabrication of strictly ordered Ge islands on pit-patterned Si(001) substrates,” Nanotechnology 24(10), 105601 (2013).
[Crossref] [PubMed]

F. Hackl, M. Grydlik, M. Brehm, H. Groiss, F. Schäffler, T. Fromherz, and G. Bauer, “Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates,” Nanotechnology 22(16), 165302 (2011).
[Crossref] [PubMed]

T. Stoica, V. Shushunova, C. Dais, H. Solak, and D. Grützmacher, “Two-dimensional arrays of self-organized Ge islands obtained by chemical vapor deposition on prepatterned silicon substrates,” Nanotechnology 18(45), 455307 (2007).
[Crossref]

Nat. Photonics (3)

M. J. Suess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155 (2007).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Nature (1)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref] [PubMed]

New J. Phys. (2)

N. Hauke, T. Zabel, K. Müller, M. Kaniber, A. Laucht, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, “Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities,” New J. Phys. 12(5), 053005 (2010).
[Crossref]

N. Hauke, A. Tandaechanurat, T. Zabel, T. Reichert, H. Takagi, M. Kaniber, S. Iwamoto, D. Bougeard, J. J. Finley, G. Abstreiter, and Y. Arakawa, “A three-dimensional silicon photonic crystal nanocavity with enhanced emission from embedded germanium islands,” New J. Phys. 14(8), 083035 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (2)

G. Chen, H. Lichtenberger, G. Bauer, W. Jantsch, and F. Schäffler, “Initial stage of the two-dimensional to three-dimensional transition of a strained SiGe layer on a pit-patterned Si (001) template,” Phys. Rev. B 74(3), 035302 (2006).
[Crossref]

M. Grydlik, M. Brehm, F. Hackl, F. Schäffler, G. Bauer, and T. Fromherz, “Unrolling the evolution kinetics of ordered SiGe islands via Ge surface diffusion,” Phys. Rev. B 88(11), 115311 (2013).
[Crossref]

Phys. Rev. B Condens. Matter (1)

L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watkins, “Bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B Condens. Matter 42(9), 5765–5783 (1990).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

D. J. Eaglesham and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge on Si(100),” Phys. Rev. Lett. 64(16), 1943–1946 (1990).
[Crossref] [PubMed]

Y.-W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, “Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001),” Phys. Rev. Lett. 65(8), 1020–1023 (1990).
[Crossref] [PubMed]

G. He and H. A. Atwater, “Interband transitions in Ge1-xSnx Alloys,” Phys. Rev. Lett. 79(10), 1937–1940 (1997).
[Crossref]

Physica E (1)

S. Nakayama, S. Iwamoto, S. Ishida, D. Bordel, E. Augendre, L. Clavelier, and Y. Arakawa, “Enhancement of photoluminescence from germanium by utilizing air-bridge-type photonic crystal slab,” Physica E 42(10), 2556–2559 (2010).
[Crossref]

Proc. IEEE (1)

L. Tsybeskov and D. J. Lockwood, “Silicon-germanium nanostructures for light emitters and on-chip optical interconnects,” Proc. IEEE 97(7), 1284–1303 (2009).
[Crossref]

Semicond. Sci. Technol. (1)

J. J. Zhang, A. Rastelli, O. G. Schmidt, and G. Bauer, “Role of the wetting layer for the SiGe Stranski–Krastanow island growth on planar and pit-patterned substrates,” Semicond. Sci. Technol. 26(1), 014028 (2011).
[Crossref]

Other (6)

S. Assefa, W. M. J. Green, A. Rylyakov, C. Schow, F. Horst, and Y. A. Vlasov, “CMOS integrated Nanophotonics – enabling technology for exascale computing systems,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OMM6.
[Crossref]

L. Pavesi and D. J. Lockwood, eds., Silicon photonics, (Springer, 2004), Vol. 1.

Angle-resolved measurements of the far-field emission pattern are presently under way and will be published elsewhere.

We found evidence for Fabry-Perot modes that shift systematically with the size of the PCS. A more detailed study will be published elsewhere.

A more detailed description of the employed simulation technique and its comparison to reflectivity measurements will be published elsewhere.

Note that in our experiments ω/c0 < 2π/a and therefore lies in the first Brillouin zone of our PCSs. Under these conditions diffraction is not possible and the in-plane component of the wave vector k of the incident plane wave is conserved, i.e. |k| = ω/c0⋅sin(θ).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a - d): Process flow for the fabrication of PCSs with commensurably embedded Ge QDs. The inset in (d) shows a focused-ion-beam cut through the PCS revealing the perpendicular sidewalls of the holes with a slight undercut at the interface to the BOX. (e): SEM image of a completely processed PCS with 30 periods. The inset shows the location of the QDs with respect to the air holes. The positions of the ordered Ge QDs outside the PCS are highlighted in the upper left corner.
Fig. 2
Fig. 2 Near infrared PL signal intensity from PCSs with embedded Ge QDs. (a) PCSs with randomly located QDs for periods a varying between 800 and 900 nm and a fixed aspect ratio r/a = 0.28. (b) Comparison between ordered dots in the center position (red) and randomly oriented QDs with the same density (blue), recorded at 10K. The green and black reference curves represent the PL intensity of ordered (o-QD) and random (r-QD) quantum dots without PCS, respectively, both up-scaled by a factor of five. (c) Similar as (b), but measured at 300K and on a magnified intensity scale to compensate the reduced signal intensity at 300K of about a factor of 15 – 20 as compared to 10 K. Inserts show the locations of ordered and random QDs within the PCS unit cell. For better visibility, the QDs positions are marked by yellow circles.
Fig. 3
Fig. 3 Comparison of the PL spectra of ordered (red) and randomly nucleated (blue) QDs with different degrees of alignment precision. (a) PCS with a = 842 nm and a noticeable shift (inset) of the aligned QDs off the center positions. (b) PCS with a = 818 nm and substantial misalignment (inset). Half of the QDs are shifted into bridge positions between two adjacent air holes (yellow circles in the inset), whereas the other half is shifted very close to the air holes (white circles). The PL signal becomes filled in between the central and the high-energy peak. Spectra for random QDs are the ones from Fig. 2(a) for the respective periods plotted in the same intensity scale as the respective spectra from the ordered dots.
Fig. 4
Fig. 4 RCWA results of a PCS slab with the geometry parameters of the experiments in Fig. 2. (a): Dispersion relation above the light line of the PCS bands in Γ-K direction and for p-polarization. The intensity scale represents the normalized emission probability integrated over the acceptance angle of the pick-up lens. The strongest modes in the emission range of the Ge dots are labeled A to C. (b): Corresponding amplitudes of the electric field within a rectangular real-space unit cell of the PCS. Asterisks and triangles identify the center and bridge positions, respectively. The field distributions are to scale with the color code from (a). Mode C has its field maxima mainly in and near the air holes of the PCS, mode B has the field concentrated in the solid part of the PCS with a slight preference for the bridge positions. Two field distributions are shown for mode A: one with maxima in the center the other in the bridge positions. These have substantially different far field emission characteristics, as shown in (c). The topmost frame in (b) shows schematically the employed unit cell, the main k-space directions and the two high-symmetry positions in real space.
Fig. 5
Fig. 5 Simulated emission per dot integrated over all azimuthal angles and the experimentally accessible polar angles for s and p-polarization. (a): Emitters in the center position; (b): same for the bridge position. The energies A – C refer to the mode assignment in Fig. 4.

Metrics