Abstract

We report widely tunable (≈260 nm) Tm3+ and Ho3+ doped fluorozirconate (ZBLAN) glass waveguide extended cavity lasers with close to diffraction limited beam quality (M2≈1.3). The waveguides are based on ultrafast laser inscribed depressed claddings. A Ti:sapphire laser pumped Tm3+-doped chip laser continuously tunes from 1725 nm to 1975 nm, and a Tm3+-sensitized Tm3+:Ho3+ chip laser displays tuning across both ions evidenced by a red enhanced tuning range of 1810 to 2053 nm. We also demonstrate a compact 790 nm diode laser pumped Tm3+-doped chip laser which tunes from 1750 nm to 1998 nm at a 14% incident slope efficiency, and a beam quality of M2≈1.2 for a large mode-area waveguide with 70 µm core diameter.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers

D. G. Lancaster, S. Gross, A. Fuerbach, H. Ebendorff Heidepriem, T. M. Monro, and M. J. Withford
Opt. Express 20(25) 27503-27509 (2012)

Efficient 2.9 μm fluorozirconate glass waveguide chip laser

David G. Lancaster, Simon Gross, Heike Ebendorff-Heidepriem, Michael J. Withford, Tanya M. Monro, and Stuart D. Jackson
Opt. Lett. 38(14) 2588-2591 (2013)

Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 2.1 μm

Philipp Koopmann, Samir Lamrini, Karsten Scholle, Michael Schäfer, Peter Fuhrberg, and Günter Huber
Opt. Express 21(3) 3926-3931 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. Grivas, “Optically pumped planar waveguide lasers, Part 1: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
    [Crossref]
  2. M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17(1), 44–59 (1981).
    [Crossref]
  3. W. L. Barnes and J. E. Townsend, “Highly tunable and efficient diode pumped operation of Tm3+ doped fibre lasers,” Electron. Lett. 26(11), 746–747 (1990).
    [Crossref]
  4. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 µm,” Opt. Express 14(13), 6084–6090 (2006).
    [Crossref] [PubMed]
  5. A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett. 46(24), 1617–1618 (2010).
    [Crossref]
  6. T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, V. Sudesh, L. Shah, and M. Richardson, “High-power widely tunable thulium fiber lasers,” Appl. Opt. 49(32), 6236–6242 (2010).
    [Crossref] [PubMed]
  7. F. Wang, D. Y. Shen, D. Y. Fan, and Q. S. Lu, “High power widely tunable Tm:fiber laser with spectral linewidth of 10 pm,” Laser Phys. Lett. 7(6), 450–453 (2010).
    [Crossref]
  8. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser in a monoclinic double tungstate with 70% slope efficiency,” Opt. Lett. 37(5), 887–889 (2012).
    [Crossref] [PubMed]
  9. J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
    [Crossref]
  10. W. Bolanos, F. Starecki, A. Benayad, G. Brasse, V. Ménard, J. L. Doualan, A. Braud, R. Moncorgé, and P. Camy, “Tm:LiYF4 planar waveguide laser at 1.9 μm,” Opt. Lett. 37(19), 4032–4034 (2012).
    [Crossref] [PubMed]
  11. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
    [Crossref] [PubMed]
  12. D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20(25), 27503–27509 (2012).
    [Crossref] [PubMed]
  13. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, “2.1 μm waveguide laser fabricated by femtosecond laser direct-writing in Ho3+, Tm3+:ZBLAN glass,” Opt. Lett. 37(6), 996–998 (2012).
    [Crossref] [PubMed]
  14. Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
    [Crossref] [PubMed]
  15. R. R. Thomson, G. Jose, F. Bain, A. A. Lagatsky, N. D. Psaila, A. K. Kar, A. Hja, W. Sibbett, and C. T. A. Brown, ‘Ultrafast laser inscribed Tm3+:Germanate glass waveguide laser at 1.9µm,’ Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (Optical Society of America, 2010), paper CtuU5.
  16. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  17. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser and Photon. Rev. (2014).
  18. S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
    [Crossref]
  19. J. R. Macdonald, S. J. Beecher, A. Lancaster, P. A. Berry, K. L. Schepler, and A. K. Kar, “Ultrabroad mid-infrared tuanble Cr:ZnSe channel waveguide laser,” IEEE Sel. Topics Quantum Electron. (2014).
  20. N. Coluccelli, D. Gatti, G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, M. Tonelli, and P. Laporta, “Tunability range of 245 nm in a diode-pumped Tm:BaY2F8 laser at 1.9 μm: a theoretical and experimental investigation,” Appl. Phys. B 85(4), 553–555 (2006).
    [Crossref]
  21. N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, and P. Laporta, “High-efficiency diode-pumped Tm:GdLiF4 laser at 1.9 µm,” Opt. Lett. 34(22), 3559–3561 (2009).
    [Crossref] [PubMed]
  22. S. Gross, D. G. Lancaster, H. Ebendorff-Heidepriem, T. M. Monro, A. Fuerbach, and M. J. Withford, “Femtosecond laser induced structural changes in fluorozirconate glass,” Opt. Mater. Express 3(5), 574 (2013).
    [Crossref]
  23. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38(14), 2588–2591 (2013).
    [Crossref] [PubMed]
  24. C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477–4479 (2001).
    [Crossref]
  25. M. G. Littman and H. J. Metcalf, “Spectrally narrow pulsed dye laser without beam expander,” Appl. Opt. 17(14), 2224–2227 (1978).
    [Crossref] [PubMed]
  26. H. Loh, Y. J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Opt. 45(36), 9191–9197 (2006).
    [Crossref] [PubMed]
  27. J. Y. Long, D. Y. Shen, Y. Sh. Wang, J. Zhang, and D. Y. Tang, “Compact single-frequency Tm:YAG ceramic laser with a volume Bragg grating,” Laser Phys. Lett. 10, 075805 (2013).

2013 (4)

2012 (5)

2011 (2)

2010 (3)

T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, V. Sudesh, L. Shah, and M. Richardson, “High-power widely tunable thulium fiber lasers,” Appl. Opt. 49(32), 6236–6242 (2010).
[Crossref] [PubMed]

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

F. Wang, D. Y. Shen, D. Y. Fan, and Q. S. Lu, “High power widely tunable Tm:fiber laser with spectral linewidth of 10 pm,” Laser Phys. Lett. 7(6), 450–453 (2010).
[Crossref]

2009 (1)

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2006 (3)

2001 (2)

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477–4479 (2001).
[Crossref]

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

1990 (1)

W. L. Barnes and J. E. Townsend, “Highly tunable and efficient diode pumped operation of Tm3+ doped fibre lasers,” Electron. Lett. 26(11), 746–747 (1990).
[Crossref]

1981 (1)

M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17(1), 44–59 (1981).
[Crossref]

1978 (1)

Alam, S. U.

Ams, M.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
[Crossref] [PubMed]

Aravazhi, S.

Barnes, W. L.

W. L. Barnes and J. E. Townsend, “Highly tunable and efficient diode pumped operation of Tm3+ doped fibre lasers,” Electron. Lett. 26(11), 746–747 (1990).
[Crossref]

Beach, R. J.

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

Benayad, A.

Bennetts, S.

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

Bolanos, W.

Brasse, G.

Braud, A.

Camy, P.

Cetina, M.

Clarkson, W. A.

Coluccelli, N.

N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, and P. Laporta, “High-efficiency diode-pumped Tm:GdLiF4 laser at 1.9 µm,” Opt. Lett. 34(22), 3559–3561 (2009).
[Crossref] [PubMed]

N. Coluccelli, D. Gatti, G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, M. Tonelli, and P. Laporta, “Tunability range of 245 nm in a diode-pumped Tm:BaY2F8 laser at 1.9 μm: a theoretical and experimental investigation,” Appl. Phys. B 85(4), 553–555 (2006).
[Crossref]

Cornacchia, F.

N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, and P. Laporta, “High-efficiency diode-pumped Tm:GdLiF4 laser at 1.9 µm,” Opt. Lett. 34(22), 3559–3561 (2009).
[Crossref] [PubMed]

N. Coluccelli, D. Gatti, G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, M. Tonelli, and P. Laporta, “Tunability range of 245 nm in a diode-pumped Tm:BaY2F8 laser at 1.9 μm: a theoretical and experimental investigation,” Appl. Phys. B 85(4), 553–555 (2006).
[Crossref]

Daniel, J. M. O.

Di Lieto, A.

Doualan, J. L.

Ebendorff-Heidepriem, H.

Fan, D. Y.

F. Wang, D. Y. Shen, D. Y. Fan, and Q. S. Lu, “High power widely tunable Tm:fiber laser with spectral linewidth of 10 pm,” Laser Phys. Lett. 7(6), 450–453 (2010).
[Crossref]

Fleming, M. W.

M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17(1), 44–59 (1981).
[Crossref]

Fuerbach, A.

Galzerano, G.

N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, and P. Laporta, “High-efficiency diode-pumped Tm:GdLiF4 laser at 1.9 µm,” Opt. Lett. 34(22), 3559–3561 (2009).
[Crossref] [PubMed]

N. Coluccelli, D. Gatti, G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, M. Tonelli, and P. Laporta, “Tunability range of 245 nm in a diode-pumped Tm:BaY2F8 laser at 1.9 μm: a theoretical and experimental investigation,” Appl. Phys. B 85(4), 553–555 (2006).
[Crossref]

García-Blanco, S. M.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gatti, D.

N. Coluccelli, D. Gatti, G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, M. Tonelli, and P. Laporta, “Tunability range of 245 nm in a diode-pumped Tm:BaY2F8 laser at 1.9 μm: a theoretical and experimental investigation,” Appl. Phys. B 85(4), 553–555 (2006).
[Crossref]

Grivas, C.

Gross, S.

S. Gross, D. G. Lancaster, H. Ebendorff-Heidepriem, T. M. Monro, A. Fuerbach, and M. J. Withford, “Femtosecond laser induced structural changes in fluorozirconate glass,” Opt. Mater. Express 3(5), 574 (2013).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38(14), 2588–2591 (2013).
[Crossref] [PubMed]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20(25), 27503–27509 (2012).
[Crossref] [PubMed]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, “2.1 μm waveguide laser fabricated by femtosecond laser direct-writing in Ho3+, Tm3+:ZBLAN glass,” Opt. Lett. 37(6), 996–998 (2012).
[Crossref] [PubMed]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
[Crossref] [PubMed]

Hawthorn, C. J.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477–4479 (2001).
[Crossref]

Heidepriem, H. E.

Heidt, A. M.

Hemming, A.

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

Jackson, S. D.

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38(14), 2588–2591 (2013).
[Crossref] [PubMed]

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

Jung, Y.

Kadwani, P.

Kuan, K.

Lancaster, D. G.

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38(14), 2588–2591 (2013).
[Crossref] [PubMed]

S. Gross, D. G. Lancaster, H. Ebendorff-Heidepriem, T. M. Monro, A. Fuerbach, and M. J. Withford, “Femtosecond laser induced structural changes in fluorozirconate glass,” Opt. Mater. Express 3(5), 574 (2013).
[Crossref]

D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20(25), 27503–27509 (2012).
[Crossref] [PubMed]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, “2.1 μm waveguide laser fabricated by femtosecond laser direct-writing in Ho3+, Tm3+:ZBLAN glass,” Opt. Lett. 37(6), 996–998 (2012).
[Crossref] [PubMed]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
[Crossref] [PubMed]

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

Laporta, P.

N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, and P. Laporta, “High-efficiency diode-pumped Tm:GdLiF4 laser at 1.9 µm,” Opt. Lett. 34(22), 3559–3561 (2009).
[Crossref] [PubMed]

N. Coluccelli, D. Gatti, G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, M. Tonelli, and P. Laporta, “Tunability range of 245 nm in a diode-pumped Tm:BaY2F8 laser at 1.9 μm: a theoretical and experimental investigation,” Appl. Phys. B 85(4), 553–555 (2006).
[Crossref]

Li, Z.

Lin, Y. J.

Littman, M. G.

Loh, H.

Long, J. Y.

J. Y. Long, D. Y. Shen, Y. Sh. Wang, J. Zhang, and D. Y. Tang, “Compact single-frequency Tm:YAG ceramic laser with a volume Bragg grating,” Laser Phys. Lett. 10, 075805 (2013).

Lu, Q. S.

F. Wang, D. Y. Shen, D. Y. Fan, and Q. S. Lu, “High power widely tunable Tm:fiber laser with spectral linewidth of 10 pm,” Laser Phys. Lett. 7(6), 450–453 (2010).
[Crossref]

Mackenzie, J. I.

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

Marshall, G. D.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

McComb, T. S.

Meissner, H. E.

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

Ménard, V.

Metcalf, H. J.

Miese, C. T.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Mitchell, S. C.

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

Moncorgé, R.

Monro, T. M.

Mooradian, A.

M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17(1), 44–59 (1981).
[Crossref]

Palmer, G.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Parisi, D.

N. Coluccelli, D. Gatti, G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, M. Tonelli, and P. Laporta, “Tunability range of 245 nm in a diode-pumped Tm:BaY2F8 laser at 1.9 μm: a theoretical and experimental investigation,” Appl. Phys. B 85(4), 553–555 (2006).
[Crossref]

Pollnau, M.

Richardson, D. J.

Richardson, M.

Sabella, A.

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

Sahu, J. K.

Scholten, R. E.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477–4479 (2001).
[Crossref]

Shah, L.

Shen, D. Y.

J. Y. Long, D. Y. Shen, Y. Sh. Wang, J. Zhang, and D. Y. Tang, “Compact single-frequency Tm:YAG ceramic laser with a volume Bragg grating,” Laser Phys. Lett. 10, 075805 (2013).

F. Wang, D. Y. Shen, D. Y. Fan, and Q. S. Lu, “High power widely tunable Tm:fiber laser with spectral linewidth of 10 pm,” Laser Phys. Lett. 7(6), 450–453 (2010).
[Crossref]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 µm,” Opt. Express 14(13), 6084–6090 (2006).
[Crossref] [PubMed]

Shepherd, D. P.

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

Simon, J.

Sims, R. A.

Starecki, F.

Sudesh, V.

Tang, D. Y.

J. Y. Long, D. Y. Shen, Y. Sh. Wang, J. Zhang, and D. Y. Tang, “Compact single-frequency Tm:YAG ceramic laser with a volume Bragg grating,” Laser Phys. Lett. 10, 075805 (2013).

Teper, I.

Thompson, J. K.

Toncelli, A.

N. Coluccelli, D. Gatti, G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, M. Tonelli, and P. Laporta, “Tunability range of 245 nm in a diode-pumped Tm:BaY2F8 laser at 1.9 μm: a theoretical and experimental investigation,” Appl. Phys. B 85(4), 553–555 (2006).
[Crossref]

Tonelli, M.

N. Coluccelli, G. Galzerano, F. Cornacchia, A. Di Lieto, M. Tonelli, and P. Laporta, “High-efficiency diode-pumped Tm:GdLiF4 laser at 1.9 µm,” Opt. Lett. 34(22), 3559–3561 (2009).
[Crossref] [PubMed]

N. Coluccelli, D. Gatti, G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, M. Tonelli, and P. Laporta, “Tunability range of 245 nm in a diode-pumped Tm:BaY2F8 laser at 1.9 μm: a theoretical and experimental investigation,” Appl. Phys. B 85(4), 553–555 (2006).
[Crossref]

Townsend, J. E.

W. L. Barnes and J. E. Townsend, “Highly tunable and efficient diode pumped operation of Tm3+ doped fibre lasers,” Electron. Lett. 26(11), 746–747 (1990).
[Crossref]

van Dalfsen, K.

Vuletic, V.

Wang, F.

F. Wang, D. Y. Shen, D. Y. Fan, and Q. S. Lu, “High power widely tunable Tm:fiber laser with spectral linewidth of 10 pm,” Laser Phys. Lett. 7(6), 450–453 (2010).
[Crossref]

Wang, Y. Sh.

J. Y. Long, D. Y. Shen, Y. Sh. Wang, J. Zhang, and D. Y. Tang, “Compact single-frequency Tm:YAG ceramic laser with a volume Bragg grating,” Laser Phys. Lett. 10, 075805 (2013).

Weber, K. P.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477–4479 (2001).
[Crossref]

Williams, R. J.

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Willis, C. C. C.

Withford, M. J.

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38(14), 2588–2591 (2013).
[Crossref] [PubMed]

S. Gross, D. G. Lancaster, H. Ebendorff-Heidepriem, T. M. Monro, A. Fuerbach, and M. J. Withford, “Femtosecond laser induced structural changes in fluorozirconate glass,” Opt. Mater. Express 3(5), 574 (2013).
[Crossref]

D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20(25), 27503–27509 (2012).
[Crossref] [PubMed]

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, “2.1 μm waveguide laser fabricated by femtosecond laser direct-writing in Ho3+, Tm3+:ZBLAN glass,” Opt. Lett. 37(6), 996–998 (2012).
[Crossref] [PubMed]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
[Crossref] [PubMed]

Zhang, J.

J. Y. Long, D. Y. Shen, Y. Sh. Wang, J. Zhang, and D. Y. Tang, “Compact single-frequency Tm:YAG ceramic laser with a volume Bragg grating,” Laser Phys. Lett. 10, 075805 (2013).

Appl. Opt. (3)

Appl. Phys. B (1)

N. Coluccelli, D. Gatti, G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, M. Tonelli, and P. Laporta, “Tunability range of 245 nm in a diode-pumped Tm:BaY2F8 laser at 1.9 μm: a theoretical and experimental investigation,” Appl. Phys. B 85(4), 553–555 (2006).
[Crossref]

Electron. Lett. (3)

J. I. Mackenzie, S. C. Mitchell, R. J. Beach, H. E. Meissner, and D. P. Shepherd, “15 W diode-side-pumped Tm:YAG waveguide laser at 2 µm,” Electron. Lett. 37(14), 898–899 (2001).
[Crossref]

W. L. Barnes and J. E. Townsend, “Highly tunable and efficient diode pumped operation of Tm3+ doped fibre lasers,” Electron. Lett. 26(11), 746–747 (1990).
[Crossref]

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fibre laser,” Electron. Lett. 46(24), 1617–1618 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17(1), 44–59 (1981).
[Crossref]

Int. J. Appl. Glass Sci. (1)

S. Gross, M. Ams, G. Palmer, C. T. Miese, R. J. Williams, G. D. Marshall, A. Fuerbach, D. G. Lancaster, H. Ebendorff-Heidepriem, and M. J. Withford, “Ultrafast Laser Inscription in Soft Glasses: A Comparative Study of Athermal and Thermal Processing Regimes for Guided Wave Optics,” Int. J. Appl. Glass Sci. 3(4), 332–348 (2012).
[Crossref]

Laser Phys. Lett. (2)

F. Wang, D. Y. Shen, D. Y. Fan, and Q. S. Lu, “High power widely tunable Tm:fiber laser with spectral linewidth of 10 pm,” Laser Phys. Lett. 7(6), 450–453 (2010).
[Crossref]

J. Y. Long, D. Y. Shen, Y. Sh. Wang, J. Zhang, and D. Y. Tang, “Compact single-frequency Tm:YAG ceramic laser with a volume Bragg grating,” Laser Phys. Lett. 10, 075805 (2013).

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Opt. Mater. Express (1)

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers, Part 1: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

Rev. Sci. Instrum. (1)

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477–4479 (2001).
[Crossref]

Other (3)

J. R. Macdonald, S. J. Beecher, A. Lancaster, P. A. Berry, K. L. Schepler, and A. K. Kar, “Ultrabroad mid-infrared tuanble Cr:ZnSe channel waveguide laser,” IEEE Sel. Topics Quantum Electron. (2014).

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser and Photon. Rev. (2014).

R. R. Thomson, G. Jose, F. Bain, A. A. Lagatsky, N. D. Psaila, A. K. Kar, A. Hja, W. Sibbett, and C. T. A. Brown, ‘Ultrafast laser inscribed Tm3+:Germanate glass waveguide laser at 1.9µm,’ Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (Optical Society of America, 2010), paper CtuU5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a): Tm:ZBLAN waveguide laser configured for external cavity operation using an output coupler mirror. Figure 1(b). A Littrow configured cavity containing a diffraction grating. Inset: A microscope end view of the depressed cladding waveguide. Figure 1c. Measured slope efficiency for the Ti:sapphire pumped external cavity Tm:ZBLAN laser and Littrow configured external cavity laser.
Fig. 2
Fig. 2 (a). Measured tuning range of the Tm:ZBLAN chip with the thulium fluorescence spectrum overlaid. Fig. 2(b). A typical lineshape of the Littrow configured cavity. The fringes correspond to the L = 9 mm waveguide chip acting as a Fabry-Pérot etalon.
Fig. 3
Fig. 3 (a). Modified Littrow external cavity Tm,Ho:ZBLAN waveguide laser using a R = 77% OC intra-cavity for additional cavity feedback. Fig. 3(b). Tuning curve for the Tm,Ho:ZBLAN waveguide laser. Fig. 3(c). Representative spectra across the tuning curve.
Fig. 4
Fig. 4 Schematic of the twin 790nm diode-laser pumped Tm:ZBLAN waveguide laser.
Fig. 5
Fig. 5 (a). Slope efficiencies of the laser diode pumped L = 12 mm Tm: ZBLAN waveguide laser configured for external operation using either a R = 77% OC or a 600 lines/mm diffraction grating. Fig. 5(b). Measured tuning range of the Littrow configured Tm:ZBLAN laser for an incident pump power of 475 mW. For reference the fluorescence emission of Tm:ZBLAN is overlaid.
Fig. 6
Fig. 6 (a). Time-averaged spectrum of the tuned output of the Littrow configured extended cavity chip laser. Fig. 6(b). Measured beam quality (M2) of the Littrow configured extended cavity chip laser.

Metrics