Abstract

Long manipulation length is critical for optical fiber tweezers to enhance the flexibility of non-contact trapping. In this paper a long manipulation distance of more than 40 μm is demonstrated experimentally by the graded-index fiber (GIF) tweezers, which is fabricated by chemically etching a GIF taper with a large cone angle of 58°. The long manipulation distance is obtained by introducing an air cavity between the lead-in single mode fiber and the GIF as well as by adjusting the laser power in the existence of a constant background flow. The influence of the cavity length and the GIF length on the light distribution and the focusing length of the GIF taper is investigated numerically, which is helpful for optimizing the parameters to perform stable optical trapping. This kind of optical fiber tweezers has advantages including low-cost, easy-to-fabricate and easy-to-use.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity

Yuan Gong, Chenlin Zhang, Qun-Feng Liu, Yu Wu, Huijuan Wu, Yunjiang Rao, and Gang-Ding Peng
Opt. Express 23(3) 3762-3769 (2015)

Graded-index fiber tip optical tweezers: Numerical simulation and trapping experiment

Yuan Gong, Ai-Yan Ye, Yu Wu, Yun-Jiang Rao, Yao Yao, and Song Xiao
Opt. Express 21(13) 16181-16190 (2013)

Fabrication and application of a non-contact double-tapered optical fiber tweezers

Z.L. Liu, Y.X. Liu, Y. Tang, N. Zhang, F.P. Wu, and B. Zhang
Opt. Express 25(19) 22480-22489 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  3. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [Crossref] [PubMed]
  4. K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
    [Crossref]
  5. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  6. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
    [Crossref] [PubMed]
  7. Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14(25), 12510–12516 (2006).
    [Crossref] [PubMed]
  8. L. Yuan, Z. Liu, J. Yang, and C. Guan, “Twin-core fiber optical tweezers,” Opt. Express 16(7), 4559–4566 (2008).
    [Crossref] [PubMed]
  9. Y. X. Liu and M. Yu, “Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing,” Opt. Express 17(16), 13624–13638 (2009).
    [Crossref] [PubMed]
  10. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light-force trap,” Opt. Lett. 18(21), 1867–1869 (1993).
    [Crossref] [PubMed]
  11. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
    [Crossref] [PubMed]
  12. C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
    [Crossref]
  13. F. Bragheri, P. Minzioni, C. Liberale, E. Di Fabrizio, and I. Cristiani, “Design and optimization of a reflection-based fiber-optic tweezers,” Opt. Express 16(22), 17647–17653 (2008).
    [Crossref] [PubMed]
  14. C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258–1263 (2013).
    [PubMed]
  15. H. B. Xin, R. Xu, and B. J. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2, 818–825 (2012).
    [Crossref] [PubMed]
  16. H. Xin, Y. Li, X. Liu, and B. J. Li, “Escherichia Coli-based biophotonic waveguides,” Nano Lett. 13(7), 3408–3413 (2013).
    [Crossref] [PubMed]
  17. S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett. 33(18), 2155–2157 (2008).
    [Crossref] [PubMed]
  18. K. Dholakia and P. Zemanek, “Colloquium: Gripped by light: Optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
    [Crossref]
  19. P. Guo, Y. J. Rao, D. Y. Li, Y. Gong, G. D. Peng, and Y. Wu, “Inscription of Bragg gratings in few-mode optical fibers,” Chin. Opt. Lett. 11, 020606 (2013).
  20. A. Mafi, P. Hofmann, C. J. Salvin, and A. Schülzgen, “Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber,” Opt. Lett. 36(18), 3596–3598 (2011).
    [Crossref] [PubMed]
  21. Y. Gong, T. Zhao, Y. J. Rao, Y. Wu, and Y. Guo, “A ray-transfer-matrix model for hybrid fiber Fabry-Perot sensor based on graded-index multimode fiber,” Opt. Express 18(15), 15844–15852 (2010).
    [Crossref] [PubMed]
  22. Y. Gong, A. Y. Ye, Y. Wu, Y. J. Rao, Y. Yao, and S. Xiao, “Graded-index fiber tip optical tweezers: Numerical simulation and trapping experiment,” Opt. Express 21(13), 16181–16190 (2013).
    [Crossref] [PubMed]
  23. S. Mononobe, R. U. Maheswari, and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe with a nanometric protrusion from a metal film for near-field optical microscopy,” Opt. Express 1(8), 229–233 (1997).
    [Crossref] [PubMed]
  24. S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt. 13(5), 054049 (2008).
    [Crossref] [PubMed]
  25. S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Organization of microscale objects using a microfabricated optical fiber,” Opt. Lett. 33(18), 2155–2157 (2008).
    [Crossref] [PubMed]
  26. Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
    [Crossref]
  27. Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Perot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photon. Technol. Lett. 22(23), 1708–1710 (2010).
    [Crossref]

2013 (4)

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258–1263 (2013).
[PubMed]

H. Xin, Y. Li, X. Liu, and B. J. Li, “Escherichia Coli-based biophotonic waveguides,” Nano Lett. 13(7), 3408–3413 (2013).
[Crossref] [PubMed]

P. Guo, Y. J. Rao, D. Y. Li, Y. Gong, G. D. Peng, and Y. Wu, “Inscription of Bragg gratings in few-mode optical fibers,” Chin. Opt. Lett. 11, 020606 (2013).

Y. Gong, A. Y. Ye, Y. Wu, Y. J. Rao, Y. Yao, and S. Xiao, “Graded-index fiber tip optical tweezers: Numerical simulation and trapping experiment,” Opt. Express 21(13), 16181–16190 (2013).
[Crossref] [PubMed]

2012 (1)

H. B. Xin, R. Xu, and B. J. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2, 818–825 (2012).
[Crossref] [PubMed]

2011 (3)

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

A. Mafi, P. Hofmann, C. J. Salvin, and A. Schülzgen, “Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber,” Opt. Lett. 36(18), 3596–3598 (2011).
[Crossref] [PubMed]

2010 (3)

Y. Gong, T. Zhao, Y. J. Rao, Y. Wu, and Y. Guo, “A ray-transfer-matrix model for hybrid fiber Fabry-Perot sensor based on graded-index multimode fiber,” Opt. Express 18(15), 15844–15852 (2010).
[Crossref] [PubMed]

K. Dholakia and P. Zemanek, “Colloquium: Gripped by light: Optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
[Crossref]

Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Perot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photon. Technol. Lett. 22(23), 1708–1710 (2010).
[Crossref]

2009 (2)

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[Crossref] [PubMed]

Y. X. Liu and M. Yu, “Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing,” Opt. Express 17(16), 13624–13638 (2009).
[Crossref] [PubMed]

2008 (5)

2007 (1)

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

2006 (1)

2004 (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

2001 (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

1998 (1)

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

1997 (1)

1993 (1)

1986 (1)

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Ashkin, A.

Berns, M. W.

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Bragheri, F.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258–1263 (2013).
[PubMed]

F. Bragheri, P. Minzioni, C. Liberale, E. Di Fabrizio, and I. Cristiani, “Design and optimization of a reflection-based fiber-optic tweezers,” Opt. Express 16(22), 17647–17653 (2008).
[Crossref] [PubMed]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Chen, L.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[Crossref] [PubMed]

Chu, S.

Chuang, Y. H.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

Cizmar, T.

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

Cojoc, G.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258–1263 (2013).
[PubMed]

Constable, A.

Cristiani, I.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258–1263 (2013).
[PubMed]

F. Bragheri, P. Minzioni, C. Liberale, E. Di Fabrizio, and I. Cristiani, “Design and optimization of a reflection-based fiber-optic tweezers,” Opt. Express 16(22), 17647–17653 (2008).
[Crossref] [PubMed]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

De Angelis, F.

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Dholakia, K.

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

K. Dholakia and P. Zemanek, “Colloquium: Gripped by light: Optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
[Crossref]

Di Fabrizio, E.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258–1263 (2013).
[PubMed]

F. Bragheri, P. Minzioni, C. Liberale, E. Di Fabrizio, and I. Cristiani, “Design and optimization of a reflection-based fiber-optic tweezers,” Opt. Express 16(22), 17647–17653 (2008).
[Crossref] [PubMed]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Dziedzic, J. M.

Ferrara, L.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258–1263 (2013).
[PubMed]

Gondarenko, A.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[Crossref] [PubMed]

Gong, Y.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Guan, C.

Guck, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Guo, C.

Guo, P.

Guo, Y.

Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Perot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photon. Technol. Lett. 22(23), 1708–1710 (2010).
[Crossref]

Y. Gong, T. Zhao, Y. J. Rao, Y. Wu, and Y. Guo, “A ray-transfer-matrix model for hybrid fiber Fabry-Perot sensor based on graded-index multimode fiber,” Opt. Express 18(15), 15844–15852 (2010).
[Crossref] [PubMed]

Hofmann, P.

Huang, J. Y.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Käs, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Kim, J.

La Rocca, R.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258–1263 (2013).
[PubMed]

Li, B. J.

H. Xin, Y. Li, X. Liu, and B. J. Li, “Escherichia Coli-based biophotonic waveguides,” Nano Lett. 13(7), 3408–3413 (2013).
[Crossref] [PubMed]

H. B. Xin, R. Xu, and B. J. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2, 818–825 (2012).
[Crossref] [PubMed]

Li, D. Y.

Li, Y.

H. Xin, Y. Li, X. Liu, and B. J. Li, “Escherichia Coli-based biophotonic waveguides,” Nano Lett. 13(7), 3408–3413 (2013).
[Crossref] [PubMed]

Liberale, C.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258–1263 (2013).
[PubMed]

F. Bragheri, P. Minzioni, C. Liberale, E. Di Fabrizio, and I. Cristiani, “Design and optimization of a reflection-based fiber-optic tweezers,” Opt. Express 16(22), 17647–17653 (2008).
[Crossref] [PubMed]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Lipson, M.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[Crossref] [PubMed]

Liu, X.

H. Xin, Y. Li, X. Liu, and B. J. Li, “Escherichia Coli-based biophotonic waveguides,” Nano Lett. 13(7), 3408–3413 (2013).
[Crossref] [PubMed]

Liu, Y. X.

Liu, Z.

Mafi, A.

Maheswari, R. U.

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Mervis, J.

Minzioni, P.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258–1263 (2013).
[PubMed]

F. Bragheri, P. Minzioni, C. Liberale, E. Di Fabrizio, and I. Cristiani, “Design and optimization of a reflection-based fiber-optic tweezers,” Opt. Express 16(22), 17647–17653 (2008).
[Crossref] [PubMed]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Mohanty, K. S.

Mohanty, S. K.

Mononobe, S.

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Ohtsu, M.

Pan, C. L.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

Peng, G. D.

Perozziello, G.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258–1263 (2013).
[PubMed]

Prentiss, M.

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Rajamanickam, V.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258–1263 (2013).
[PubMed]

Rao, Y. J.

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Salvin, C. J.

Schülzgen, A.

Sun, K. G.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

Wang, C. J.

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

Wiederhecker, G. S.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[Crossref] [PubMed]

Wu, Y.

Xiao, S.

Xin, H.

H. Xin, Y. Li, X. Liu, and B. J. Li, “Escherichia Coli-based biophotonic waveguides,” Nano Lett. 13(7), 3408–3413 (2013).
[Crossref] [PubMed]

Xin, H. B.

H. B. Xin, R. Xu, and B. J. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2, 818–825 (2012).
[Crossref] [PubMed]

Xu, R.

H. B. Xin, R. Xu, and B. J. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2, 818–825 (2012).
[Crossref] [PubMed]

Yang, J.

Yao, Y.

Ye, A. Y.

Yu, M.

Yuan, L.

Zarinetchi, F.

Zemanek, P.

K. Dholakia and P. Zemanek, “Colloquium: Gripped by light: Optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
[Crossref]

Zhao, T.

Y. Gong, T. Zhao, Y. J. Rao, Y. Wu, and Y. Guo, “A ray-transfer-matrix model for hybrid fiber Fabry-Perot sensor based on graded-index multimode fiber,” Opt. Express 18(15), 15844–15852 (2010).
[Crossref] [PubMed]

Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Perot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photon. Technol. Lett. 22(23), 1708–1710 (2010).
[Crossref]

Biophys. J. (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81(2), 767–784 (2001).
[Crossref] [PubMed]

Chin. Opt. Lett. (1)

IEEE Photon. Technol. Lett. (1)

Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry–Perot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photon. Technol. Lett. 22(23), 1708–1710 (2010).
[Crossref]

J. Biomed. Opt. (1)

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, “Manipulation of mammalian cells using a single-fiber optical microbeam,” J. Biomed. Opt. 13(5), 054049 (2008).
[Crossref] [PubMed]

Nano Lett. (1)

H. Xin, Y. Li, X. Liu, and B. J. Li, “Escherichia Coli-based biophotonic waveguides,” Nano Lett. 13(7), 3408–3413 (2013).
[Crossref] [PubMed]

Nat. Photonics (3)

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Nature (2)

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (5)

Rev. Mod. Phys. (1)

K. Dholakia and P. Zemanek, “Colloquium: Gripped by light: Optical binding,” Rev. Mod. Phys. 82(2), 1767–1791 (2010).
[Crossref]

Rev. Sci. Instrum. (2)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Y. H. Chuang, K. G. Sun, C. J. Wang, J. Y. Huang, and C. L. Pan, “A simple chemical etching technique for reproducible fabrication of robust scanning near-field fiber probes,” Rev. Sci. Instrum. 69(2), 437–439 (1998).
[Crossref]

Sci. Rep. (2)

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3, 1258–1263 (2013).
[PubMed]

H. B. Xin, R. Xu, and B. J. Li, “Optical trapping, driving, and arrangement of particles using a tapered fibre probe,” Sci. Rep. 2, 818–825 (2012).
[Crossref] [PubMed]

Supplementary Material (3)

» Media 1: MOV (1414 KB)     
» Media 2: MOV (1977 KB)     
» Media 3: MOV (1119 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup for optical trapping of cells by GIF tweezers.
Fig. 2
Fig. 2 The fabricated GIF taper with a large cone angle of 58°.
Fig. 3
Fig. 3 Microscopic images for the stable optical trapping process. (Media 1) 1.41Mb.
Fig. 4
Fig. 4 Microscopic images for increasing the manipulation distance by adjusting the laser power from 15.0 mW to 45.0 mW with a background flow force of 0.54 pN. (Media 2) 1.98Mb.
Fig. 5
Fig. 5 Manipulation distance versus time when increasing the laser power from 15.0 mW to 45.0 mW with a background flow force of 0.54 pN.
Fig. 6
Fig. 6 Microscopic images for increasing the manipulation distance by adjusting the laser power from 7.9 mW to 15.8 mW with a background flow force of 0.25 pN. (Media 3) 1.12Mb.
Fig. 7
Fig. 7 Manipulation distance versus time when increasing the laser power from 7.9 mW to 15.8 mW with a background flow force of 0.25 pN.
Fig. 8
Fig. 8 (a) Intensity distribution, (b) normalized laser power along the axis and (c) transverse intensity at the focus with different GIF lengths and air cavity lengths. (1) Lm = 1000μm, Lair = 0; (2) Lm = 1000μm, Lair = 50μm; (3) Lm = 1000μm, Lair = 100μm; (4) Lm = 850μm, Lair = 100μm.
Fig. 9
Fig. 9 DF versus the air cavity length at different GIF length.

Metrics