Abstract

An optically pumped thermo-optic (TO) silicon ring add-drop filter with fast thermal response is experimentally demonstrated. We propose that metal-insulator-metal (MIM) light absorber can be integrated into silicon TO devices, acting as a localized heat source which can be activated remotely by a pump beam. The MIM absorber design introduces less thermal capacity to the device, compared to conventional electrically-driven approaches. Experimentally, the absorber-integrated add-drop filter shows an optical response time of 13.7 μs following the 10%–90% rule (equivalent to a exponential time constant of 5 μs) and a wavelength shift over pump power of 60 pm/mW. The photothermally tunable add-drop filter may provide new perspectives for all-optical routing and switching in integrated Si photonic circuits.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical switching of silicon disk resonator based on photothermal effect in metal–insulator–metal absorber

Yuechun Shi, Xi Chen, Fei Lou, Yiting Chen, Min Yan, Lech Wosinski, and Min Qiu
Opt. Lett. 39(15) 4431-4434 (2014)

Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator

Hua Lu, Xueming Liu, Leiran Wang, Yongkang Gong, and Dong Mao
Opt. Express 19(4) 2910-2915 (2011)

Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities

Marcel W. Pruessner, Todd H. Stievater, Mike S. Ferraro, and William S. Rabinovich
Opt. Express 15(12) 7557-7563 (2007)

References

  • View by:
  • |
  • |
  • |

  1. B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightw. Technol. 15, 998–1005 (1997).
    [Crossref]
  2. M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightw. Technol. 27, 2105–2110 (2009).
    [Crossref]
  3. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4, 117–122 (2010).
    [Crossref]
  4. Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93, 081113 (2008).
    [Crossref]
  5. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
    [Crossref]
  6. Q. Li, F. Liu, Z. Zhang, M. Qiu, and Y. Su, “System performances of on-chip silicon microring delay line for RZ, CSRZ, RZ-DB and RZ-AMI signals,” J. Lightw. Technol. 26, 3744–3751 (2008).
    [Crossref]
  7. B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
    [Crossref]
  8. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15, 14765–14771 (2007).
    [Crossref] [PubMed]
  9. A. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact soi microring adddrop filter with wide bandwidth and wide fsr,” IEEE Photon. Technol. Lett. 21, 651–653 (2009).
    [Crossref]
  10. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref] [PubMed]
  11. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
    [Crossref]
  12. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484–22490 (2009).
    [Crossref]
  13. V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [Crossref] [PubMed]
  14. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nature Photon. 2, 242–246 (2008).
    [Crossref]
  15. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
    [Crossref]
  16. F. Gan, T. Barwicz, M. Popovic, M. Dahlem, C. Holzwarth, P. Rakich, H. Smith, E. Ippen, and F. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in “Photonics in Switching,” (2007), 67–68.
  17. M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19, 306–316 (2011).
    [Crossref] [PubMed]
  18. X. Wang, J. A. Martinez, M. Nawrocka, and R. Panepucci, “Compact thermally tunable silicon wavelength switch: Modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
    [Crossref]
  19. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
    [Crossref] [PubMed]
  20. W. S. Fegadolli, L. Feng, M. M.-U. Rahman, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Experimental demonstration of a reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators for optical signal processing,” Opt. Express 22, 3425–3431 (2014).
    [Crossref] [PubMed]
  21. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in “Conference on Lasers and Electro-Optics,” (2009), CPDB10.
  22. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
    [Crossref]
  23. M. Yan, “Metal-insulator-metal light absorber: a continuous structure,” J. Opt. 15, 025006 (2013).
    [Crossref]
  24. X. Chen, Y. Chen, Y. Shi, M. Yan, and M. Qiu, “Photothermal switching of SOI waveguide-based Mach-Zehnder interferometer with integrated plasmonic nanoheater,” Plasmonics 9, 1197–1205 (2014).
    [Crossref]
  25. J.-C. Weeber, T. Bernardin, M. G. Nielsen, K. Hassan, S. Kaya, J. Fatome, C. Finot, A. Dereux, and N. Pleros, “Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides,” Opt. Express 21, 27291–27305 (2013).
    [Crossref] [PubMed]
  26. M. G. Nielsen, T. Bernardin, K. Hassan, E. E. Kriezis, and J.-C. Weeber, “Silicon-loaded surface plasmon polariton waveguides for nanosecond thermo-optical switching,” Opt. Lett. 39, 2282–2285 (2014).
    [Crossref] [PubMed]

2014 (3)

2013 (2)

2012 (1)

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

2011 (1)

2010 (3)

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
[Crossref] [PubMed]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4, 117–122 (2010).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

2009 (3)

M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightw. Technol. 27, 2105–2110 (2009).
[Crossref]

A. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact soi microring adddrop filter with wide bandwidth and wide fsr,” IEEE Photon. Technol. Lett. 21, 651–653 (2009).
[Crossref]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484–22490 (2009).
[Crossref]

2008 (4)

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nature Photon. 2, 242–246 (2008).
[Crossref]

X. Wang, J. A. Martinez, M. Nawrocka, and R. Panepucci, “Compact thermally tunable silicon wavelength switch: Modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

Q. Li, F. Liu, Z. Zhang, M. Qiu, and Y. Su, “System performances of on-chip silicon microring delay line for RZ, CSRZ, RZ-DB and RZ-AMI signals,” J. Lightw. Technol. 26, 3744–3751 (2008).
[Crossref]

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93, 081113 (2008).
[Crossref]

2007 (2)

2006 (1)

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[Crossref]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

2004 (1)

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

1998 (1)

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

1997 (1)

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightw. Technol. 15, 998–1005 (1997).
[Crossref]

Almeida, V.

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Almeida, V. R.

Asghari, M.

Barrios, C.

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Barwicz, T.

F. Gan, T. Barwicz, M. Popovic, M. Dahlem, C. Holzwarth, P. Rakich, H. Smith, E. Ippen, and F. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in “Photonics in Switching,” (2007), 67–68.

Beals, M.

M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightw. Technol. 27, 2105–2110 (2009).
[Crossref]

Beattie, J.

M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightw. Technol. 27, 2105–2110 (2009).
[Crossref]

Bernardin, T.

Carothers, D.

M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightw. Technol. 27, 2105–2110 (2009).
[Crossref]

Chen, X.

X. Chen, Y. Chen, Y. Shi, M. Yan, and M. Qiu, “Photothermal switching of SOI waveguide-based Mach-Zehnder interferometer with integrated plasmonic nanoheater,” Plasmonics 9, 1197–1205 (2014).
[Crossref]

Chen, Y.

X. Chen, Y. Chen, Y. Shi, M. Yan, and M. Qiu, “Photothermal switching of SOI waveguide-based Mach-Zehnder interferometer with integrated plasmonic nanoheater,” Plasmonics 9, 1197–1205 (2014).
[Crossref]

Chen, Y.-K.

M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightw. Technol. 27, 2105–2110 (2009).
[Crossref]

Chu, S.

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightw. Technol. 15, 998–1005 (1997).
[Crossref]

Cunningham, J. E.

Dahlem, M.

F. Gan, T. Barwicz, M. Popovic, M. Dahlem, C. Holzwarth, P. Rakich, H. Smith, E. Ippen, and F. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in “Photonics in Switching,” (2007), 67–68.

Dahlem, M. S.

Dereux, A.

Dong, P.

Fan, L.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Fatome, J.

Fegadolli, W. S.

Feng, D.

Feng, L.

Finot, C.

Foresi, J.

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightw. Technol. 15, 998–1005 (1997).
[Crossref]

Gan, F.

F. Gan, T. Barwicz, M. Popovic, M. Dahlem, C. Holzwarth, P. Rakich, H. Smith, E. Ippen, and F. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in “Photonics in Switching,” (2007), 67–68.

Gill, D. M.

M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightw. Technol. 27, 2105–2110 (2009).
[Crossref]

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nature Photon. 2, 242–246 (2008).
[Crossref]

Greene, W.

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Han, Z.

A. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact soi microring adddrop filter with wide bandwidth and wide fsr,” IEEE Photon. Technol. Lett. 21, 651–653 (2009).
[Crossref]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Hassan, K.

Haus, H.

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightw. Technol. 15, 998–1005 (1997).
[Crossref]

Holzwarth, C.

F. Gan, T. Barwicz, M. Popovic, M. Dahlem, C. Holzwarth, P. Rakich, H. Smith, E. Ippen, and F. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in “Photonics in Switching,” (2007), 67–68.

Holzwarth, C. W.

Ippen, E.

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

F. Gan, T. Barwicz, M. Popovic, M. Dahlem, C. Holzwarth, P. Rakich, H. Smith, E. Ippen, and F. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in “Photonics in Switching,” (2007), 67–68.

Ippen, E. P.

Kartner, F.

F. Gan, T. Barwicz, M. Popovic, M. Dahlem, C. Holzwarth, P. Rakich, H. Smith, E. Ippen, and F. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in “Photonics in Switching,” (2007), 67–68.

Kärtner, F. X.

Kaya, S.

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4, 117–122 (2010).
[Crossref]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15, 14765–14771 (2007).
[Crossref] [PubMed]

Khilo, A.

Kimerling, L.

M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightw. Technol. 27, 2105–2110 (2009).
[Crossref]

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Kriezis, E. E.

Krishnamoorthy, A. V.

Kung, C.-C.

Laine, J. P.

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightw. Technol. 15, 998–1005 (1997).
[Crossref]

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4, 117–122 (2010).
[Crossref]

Li, G.

Li, Q.

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93, 081113 (2008).
[Crossref]

Q. Li, F. Liu, Z. Zhang, M. Qiu, and Y. Su, “System performances of on-chip silicon microring delay line for RZ, CSRZ, RZ-DB and RZ-AMI signals,” J. Lightw. Technol. 26, 3744–3751 (2008).
[Crossref]

Liang, H.

Liao, S.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Little, B.

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightw. Technol. 15, 998–1005 (1997).
[Crossref]

Liu, F.

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93, 081113 (2008).
[Crossref]

Q. Li, F. Liu, Z. Zhang, M. Qiu, and Y. Su, “System performances of on-chip silicon microring delay line for RZ, CSRZ, RZ-DB and RZ-AMI signals,” J. Lightw. Technol. 26, 3744–3751 (2008).
[Crossref]

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[Crossref]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Luck, D. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in “Conference on Lasers and Electro-Optics,” (2009), CPDB10.

Martinez, J. A.

X. Wang, J. A. Martinez, M. Nawrocka, and R. Panepucci, “Compact thermally tunable silicon wavelength switch: Modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

Michel, J.

M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightw. Technol. 27, 2105–2110 (2009).
[Crossref]

Nawrocka, M.

X. Wang, J. A. Martinez, M. Nawrocka, and R. Panepucci, “Compact thermally tunable silicon wavelength switch: Modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

Nawrocka, M. S.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[Crossref]

Nielsen, M. G.

Nielson, G. N.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in “Conference on Lasers and Electro-Optics,” (2009), CPDB10.

Niu, B.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Oliveira, J. E. B.

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Panepucci, R.

X. Wang, J. A. Martinez, M. Nawrocka, and R. Panepucci, “Compact thermally tunable silicon wavelength switch: Modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Panepucci, R. R.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[Crossref]

Patel, S.

M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightw. Technol. 27, 2105–2110 (2009).
[Crossref]

Pleros, N.

Pomerene, A.

M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightw. Technol. 27, 2105–2110 (2009).
[Crossref]

Popovic, M.

F. Gan, T. Barwicz, M. Popovic, M. Dahlem, C. Holzwarth, P. Rakich, H. Smith, E. Ippen, and F. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in “Photonics in Switching,” (2007), 67–68.

Prabhu, A.

A. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact soi microring adddrop filter with wide bandwidth and wide fsr,” IEEE Photon. Technol. Lett. 21, 651–653 (2009).
[Crossref]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Qi, M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4, 117–122 (2010).
[Crossref]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15, 14765–14771 (2007).
[Crossref] [PubMed]

Qian, W.

Qiu, M.

X. Chen, Y. Chen, Y. Shi, M. Yan, and M. Qiu, “Photothermal switching of SOI waveguide-based Mach-Zehnder interferometer with integrated plasmonic nanoheater,” Plasmonics 9, 1197–1205 (2014).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Q. Li, F. Liu, Z. Zhang, M. Qiu, and Y. Su, “System performances of on-chip silicon microring delay line for RZ, CSRZ, RZ-DB and RZ-AMI signals,” J. Lightw. Technol. 26, 3744–3751 (2008).
[Crossref]

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93, 081113 (2008).
[Crossref]

Rahman, M. M.-U.

Rakich, P.

F. Gan, T. Barwicz, M. Popovic, M. Dahlem, C. Holzwarth, P. Rakich, H. Smith, E. Ippen, and F. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in “Photonics in Switching,” (2007), 67–68.

Rasras, M. S.

M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightw. Technol. 27, 2105–2110 (2009).
[Crossref]

Scherer, A.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[Crossref]

Shafiiha, R.

Shen, H.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4, 117–122 (2010).
[Crossref]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15, 14765–14771 (2007).
[Crossref] [PubMed]

Shi, Y.

X. Chen, Y. Chen, Y. Shi, M. Yan, and M. Qiu, “Photothermal switching of SOI waveguide-based Mach-Zehnder interferometer with integrated plasmonic nanoheater,” Plasmonics 9, 1197–1205 (2014).
[Crossref]

Smith, H.

F. Gan, T. Barwicz, M. Popovic, M. Dahlem, C. Holzwarth, P. Rakich, H. Smith, E. Ippen, and F. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in “Photonics in Switching,” (2007), 67–68.

Smith, H. I.

Steinmeyer, G.

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Su, Y.

Q. Li, F. Liu, Z. Zhang, M. Qiu, and Y. Su, “System performances of on-chip silicon microring delay line for RZ, CSRZ, RZ-DB and RZ-AMI signals,” J. Lightw. Technol. 26, 3744–3751 (2008).
[Crossref]

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93, 081113 (2008).
[Crossref]

Thoen, E.

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

Trotter, D. C.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in “Conference on Lasers and Electro-Optics,” (2009), CPDB10.

Tsay, A.

A. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact soi microring adddrop filter with wide bandwidth and wide fsr,” IEEE Photon. Technol. Lett. 21, 651–653 (2009).
[Crossref]

Tu, K.-Y.

M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightw. Technol. 27, 2105–2110 (2009).
[Crossref]

Van, V.

A. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact soi microring adddrop filter with wide bandwidth and wide fsr,” IEEE Photon. Technol. Lett. 21, 651–653 (2009).
[Crossref]

Varghese, L. T.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nature Photon. 2, 242–246 (2008).
[Crossref]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[Crossref]

Wang, J.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Wang, X.

X. Wang, J. A. Martinez, M. Nawrocka, and R. Panepucci, “Compact thermally tunable silicon wavelength switch: Modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[Crossref]

Watts, M. R.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in “Conference on Lasers and Electro-Optics,” (2009), CPDB10.

Weeber, J.-C.

Weiner, A. M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4, 117–122 (2010).
[Crossref]

White, A.

M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightw. Technol. 27, 2105–2110 (2009).
[Crossref]

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nature Photon. 2, 242–246 (2008).
[Crossref]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[Crossref]

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4, 117–122 (2010).
[Crossref]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15, 14765–14771 (2007).
[Crossref] [PubMed]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Xuan, Y.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4, 117–122 (2010).
[Crossref]

Yan, M.

X. Chen, Y. Chen, Y. Shi, M. Yan, and M. Qiu, “Photothermal switching of SOI waveguide-based Mach-Zehnder interferometer with integrated plasmonic nanoheater,” Plasmonics 9, 1197–1205 (2014).
[Crossref]

M. Yan, “Metal-insulator-metal light absorber: a continuous structure,” J. Opt. 15, 025006 (2013).
[Crossref]

Young, R. W.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in “Conference on Lasers and Electro-Optics,” (2009), CPDB10.

Zhang, Z.

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93, 081113 (2008).
[Crossref]

Q. Li, F. Liu, Z. Zhang, M. Qiu, and Y. Su, “System performances of on-chip silicon microring delay line for RZ, CSRZ, RZ-DB and RZ-AMI signals,” J. Lightw. Technol. 26, 3744–3751 (2008).
[Crossref]

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4, 117–122 (2010).
[Crossref]

Zheng, D.

Zheng, X.

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

Zortman, W. A.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in “Conference on Lasers and Electro-Optics,” (2009), CPDB10.

Appl. Phys. Lett. (3)

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93, 081113 (2008).
[Crossref]

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89, 071110 (2006).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (3)

B. Little, J. Foresi, G. Steinmeyer, E. Thoen, S. Chu, H. Haus, E. Ippen, L. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
[Crossref]

A. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact soi microring adddrop filter with wide bandwidth and wide fsr,” IEEE Photon. Technol. Lett. 21, 651–653 (2009).
[Crossref]

X. Wang, J. A. Martinez, M. Nawrocka, and R. Panepucci, “Compact thermally tunable silicon wavelength switch: Modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

J. Lightw. Technol. (3)

Q. Li, F. Liu, Z. Zhang, M. Qiu, and Y. Su, “System performances of on-chip silicon microring delay line for RZ, CSRZ, RZ-DB and RZ-AMI signals,” J. Lightw. Technol. 26, 3744–3751 (2008).
[Crossref]

B. Little, S. Chu, H. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightw. Technol. 15, 998–1005 (1997).
[Crossref]

M. S. Rasras, K.-Y. Tu, D. M. Gill, Y.-K. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightw. Technol. 27, 2105–2110 (2009).
[Crossref]

J. Opt. (1)

M. Yan, “Metal-insulator-metal light absorber: a continuous structure,” J. Opt. 15, 025006 (2013).
[Crossref]

Nature (2)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Nature Photon. (3)

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nature Photon. 2, 242–246 (2008).
[Crossref]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nature Photon. 4, 117–122 (2010).
[Crossref]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[Crossref]

Opt. Express (6)

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15, 14765–14771 (2007).
[Crossref] [PubMed]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484–22490 (2009).
[Crossref]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
[Crossref] [PubMed]

W. S. Fegadolli, L. Feng, M. M.-U. Rahman, J. E. B. Oliveira, V. R. Almeida, and A. Scherer, “Experimental demonstration of a reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators for optical signal processing,” Opt. Express 22, 3425–3431 (2014).
[Crossref] [PubMed]

J.-C. Weeber, T. Bernardin, M. G. Nielsen, K. Hassan, S. Kaya, J. Fatome, C. Finot, A. Dereux, and N. Pleros, “Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides,” Opt. Express 21, 27291–27305 (2013).
[Crossref] [PubMed]

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express 19, 306–316 (2011).
[Crossref] [PubMed]

Opt. Lett. (1)

Plasmonics (1)

X. Chen, Y. Chen, Y. Shi, M. Yan, and M. Qiu, “Photothermal switching of SOI waveguide-based Mach-Zehnder interferometer with integrated plasmonic nanoheater,” Plasmonics 9, 1197–1205 (2014).
[Crossref]

Science (1)

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335, 447–450 (2012).
[Crossref]

Other (2)

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (arms) with directly integrated thermal microphotonics,” in “Conference on Lasers and Electro-Optics,” (2009), CPDB10.

F. Gan, T. Barwicz, M. Popovic, M. Dahlem, C. Holzwarth, P. Rakich, H. Smith, E. Ippen, and F. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in “Photonics in Switching,” (2007), 67–68.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The schematic diagram of the Si micro-ring add-drop filter with a metal-insulator-metal (MIM) absorber disk in the center of the ring. (b) The measured and simulated absorbance spectra of the MIM absorber with a 10-μm-diameter disk shape. (c) The measured transmittance spectra of the add-drop filter at through port and drop port. (d) The measured transmittance spectra of through port and drop port around 1552.0 nm, fitted by a damped oscillation model.
Fig. 2
Fig. 2 (a) The SEM image of the MIM-absorber-based Si ring add-drop filter (ADF). (b) The optical microscopic bright-field image of Si ring ADF.
Fig. 3
Fig. 3 The measured transmission spectra of the Si ring at (a) through port and (b) drop port, tuned by a thermal stage from 20°C to 35°C. The measured transmission spectra of the Si ring at (c) through port and (d) drop port, when the Si ring is optically tuned by a CW laser beam with pump power ranging from 0 mW to 4.16 mW.
Fig. 4
Fig. 4 The simulation results of (a) the temperature distribution and heat flux in the laser pumped absorber-integrated Si ring, with pump power of 5 mW. (b) The simulated transient thermal response of the absorber-integrated Si ring, with pump laser square-wave modulated. The black solid line is the normalized temperature increase of the ring. The magenta marked line is the calculated optical transmittance at T-port. The blue dashed line is the fitting curve to the transmittance.
Fig. 5
Fig. 5 The measured transient optical response of the absorber-integrated Si ring, with pump laser square-wave modulated, duty cycle of 50%, and period of (a) 100 μs, (b) 40 μs, (c) 20 μs, and (d) 10 μs. The magenta solid line is the optical transient transmission signal of the Si ring at T-port. The black dash line is the transient transmission signal at D-port. The blue solid line is transient synchronization signal of the pump light. The green horizontal solid line indicates the 10% and 90% step height of the optical transmission signal at T-port, which is used to extract the optical rise/fall time of the device.

Tables (1)

Tables Icon

Table 1 Experimental performances of recently reported TO microring devices, together with present work.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t thro = 1 1 Q e i ( λ m λ λ ) + 1 2 Q i + 1 2 Q e + 1 2 Q d ,
T drop = ( 1 Q e ) 2 ( λ m λ λ ) 2 + ( 1 2 Q i + 2 2 Q e ) 2 .
λ m ( t ) = λ m ( 0 ) + d λ m d T Δ T ( t ) .

Metrics