Abstract

We investigate electromagnetically induced transparency (EIT)-like effect in a metal–dielectric–metal (MDM) waveguide coupled to a single multimode stub resonator. Adjusting the geometrical parameters of the stub resonator, we can realize single or double plasmon-induced transparency (PIT) windows in the plasmonic structure. Moreover, the consistency between analytical results and finite difference time domain (FDTD) simulations reveals that the PIT results from the destructive interference between resonance modes in the stub resonator. Compared with previous EIT-like scheme based on MDM waveguide, the plasmonic system takes the advantages of easy fabrication and compactness. The results may open up avenues for the control of light in highly integrated optical circuits.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators

Guangtao Cao, Hongjian Li, Shiping Zhan, Haiqing Xu, Zhimin Liu, Zhihui He, and Yun Wang
Opt. Express 21(8) 9198-9205 (2013)

Coupling effects in single-mode and multimode resonator-coupled system

Cuixiu Xiong, Hongjian Li, Hui Xu, Mingzhuo Zhao, Baihui Zhang, Chao Liu, and Kuan Wu
Opt. Express 27(13) 17718-17728 (2019)

Uniform theoretical description of plasmon-induced transparency in plasmonic stub waveguide

Guangtao Cao, Hongjian Li, Shiping Zhan, Zhihui He, Zhibo Guo, Xiuke Xu, and Hui Yang
Opt. Lett. 39(2) 216-219 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref] [PubMed]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]
  3. I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6(3), 333–353 (2012).
    [Crossref]
  4. J. J. Chen, Z. Li, S. Yue, J. H. Xiao, and Q. H. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
    [Crossref] [PubMed]
  5. Z. R. Zhang, L. W. Zhang, H. Q. Li, and H. Chen, “Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity,” Appl. Phys. Lett. 104(23), 231114 (2014).
    [Crossref]
  6. X. Y. Yang, X. Y. Hu, Z. Chai, C. C. Lu, H. Yang, and Q. H. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
    [Crossref]
  7. Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
    [Crossref]
  8. H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
    [Crossref]
  9. L. Chen, C. M. Gao, J. M. Xu, X. F. Zang, B. Cai, and Y. M. Zhu, “Observation of electromagnetically induced transparency-like transmission in terahertz asymmetric waveguide-cavities systems,” Opt. Lett. 38(9), 1379–1381 (2013).
    [Crossref] [PubMed]
  10. Y. Zhu, X. Y. Hu, H. Yang, and Q. H. Gong, “Ultralow-power all-optical tunable double plasmon-induced transparencies in nonlinear metamaterials,” Appl. Phys. Lett. 104(21), 211108 (2014).
    [Crossref]
  11. Z. H. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
    [Crossref] [PubMed]
  12. Z. H. Han, C. E. Garcia-Ortiz, I. P. Radko, and S. I. Bozhevolnyi, “Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides,” Opt. Lett. 38(6), 875–877 (2013).
    [Crossref] [PubMed]
  13. Y. Zhu, X. Y. Hu, H. Yang, and Q. H. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci Rep 4, 3752 (2014).
    [Crossref] [PubMed]
  14. G. T. Cao, H. J. Li, S. P. Zhan, H. Q. Xu, Z. M. Liu, Z. H. He, and Y. Wang, “Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators,” Opt. Express 21(8), 9198–9205 (2013).
    [Crossref] [PubMed]
  15. R. Hokari, Y. Kanamori, and K. Hane, “Comparison of electromagnetically induced transparency between silver, gold, and aluminum metamaterials at visible wavelengths,” Opt. Express 22(3), 3526–3537 (2014).
    [Crossref] [PubMed]
  16. X. Y. Zhou, L. Zhang, W. Pang, H. Zhang, Q. R. Yang, and D. H. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
    [Crossref]
  17. Z. Zou, L. J. Zhou, X. M. Sun, J. Y. Xie, H. K. Zhu, L. J. Lu, X. W. Li, and J. P. Chen, “Tunable two-stage self-coupled optical waveguide resonators,” Opt. Lett. 38(8), 1215–1217 (2013).
    [Crossref] [PubMed]
  18. W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near-and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
    [Crossref]
  19. M. Miyata, J. Hirohata, Y. Nagasaki, and J. Takahara, “Multi-spectral plasmon induced transparency via in-plane dipole and dual-quadrupole coupling,” Opt. Express 22(10), 11399–11406 (2014).
    [Crossref] [PubMed]
  20. G. T. Cao, H. J. Li, S. P. Zhan, Z. H. He, Z. B. Guo, X. K. Xu, and H. Yang, “Uniform theoretical description of Plasmon-induced transparency in plasmonic stub waveguide,” Opt. Lett. 39(2), 216–219 (2014).
    [Crossref] [PubMed]
  21. X. J. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express 20(17), 18994–18999 (2012).
    [Crossref] [PubMed]
  22. H. Lu, X. M. Liu, D. Mao, Y. K. Gong, and G. X. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36(16), 3233–3235 (2011).
    [Crossref] [PubMed]
  23. V. Intaraprasonk and S. H. Fan, “Enhancing the waveguide-resonator optical force with an all-optical on-chip analog of electromagnetically induced transparency,” Phys. Rev. A 86(6), 063833 (2012).
    [Crossref]
  24. J. T. Liu, B. Z. Xu, H. F. Hu, J. Zhang, X. Wei, Y. Xu, and G. F. Song, “Tunable coupling-induced transparency band due to coupled localized electric resonance and quasiguided photonic mode in hybrid plasmonic system,” Opt. Express 21(11), 13386–13393 (2013).
    [Crossref] [PubMed]
  25. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing Pte. Ltd., 2009).
  26. Z. H. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76(1), 016402 (2013).
    [Crossref] [PubMed]
  27. W. S. Cai, W. Shin, S. H. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
    [Crossref] [PubMed]
  28. I. Zand, M. S. Abrishamian, and P. Berini, “Highly tunable nanoscale metal-insulator-metal split ring core ring resonators (SRCRRs),” Opt. Express 21(1), 79–86 (2013).
    [Crossref] [PubMed]
  29. A. Akjouj, G. Leveque, S. Szunerits, Y. Pennec, B. Djafari-Rouhani, R. Boukherroub, and L. Dobrzynski, “Nanometal Plasmon polaritons,” Surf. Sci. Rep. 68(1), 1–67 (2013).
    [Crossref]
  30. J. W. Qi, Z. Q. Chen, J. Chen, Y. D. Li, W. Qiang, J. J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22(12), 14688–14695 (2014).
    [Crossref] [PubMed]
  31. T. S. Wu, Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
    [Crossref] [PubMed]
  32. J. J. Chen, C. W. Sun, and Q. H. Gong, “Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide,” Opt. Lett. 39(1), 52–55 (2014).
    [Crossref] [PubMed]
  33. Z. Chai, X. Y. Hu, Y. Zhu, S. B. Sun, H. Yang, and Q. H. Gong, “Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity,” Adv. Optical Mater. 2(4), 320–325 (2014).
    [Crossref]
  34. K. H. Wen, L. S. Yan, W. Pan, B. Luo, Z. Guo, Y. H. Guo, and X. G. Luo, “Electromagnetically induced transparency-like transmission in a compact side-coupled T-shaped resonator,” J. Lightwave Technol. 32(9), 1701–1707 (2014).
    [Crossref]
  35. Q. Z. Huang, Z. Shu, G. Song, J. G. Chen, J. S. Xia, and J. Z. Yu, “Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator,” Opt. Express 22(3), 3219–3227 (2014).
    [Crossref] [PubMed]
  36. Y. F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
    [Crossref]
  37. B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. H. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
    [Crossref]
  38. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008).
    [Crossref] [PubMed]
  39. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
    [Crossref] [PubMed]
  40. E. D. Palik, Handbook of Optical Constants in Solids (Academic, 1982).
  41. C. W. Gardiner and P. Zoller, Quantum Noise, 3rd ed. (Springer, Berlin, 2004).
  42. Y. R. He, H. Zhou, Y. Jin, and S. L. He, “Plasmon induced transparency in a dielectric waveguide,” Appl. Phys. Lett. 99(4), 043113 (2011).
    [Crossref]

2014 (14)

Z. R. Zhang, L. W. Zhang, H. Q. Li, and H. Chen, “Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity,” Appl. Phys. Lett. 104(23), 231114 (2014).
[Crossref]

X. Y. Yang, X. Y. Hu, Z. Chai, C. C. Lu, H. Yang, and Q. H. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Y. Zhu, X. Y. Hu, H. Yang, and Q. H. Gong, “Ultralow-power all-optical tunable double plasmon-induced transparencies in nonlinear metamaterials,” Appl. Phys. Lett. 104(21), 211108 (2014).
[Crossref]

Y. Zhu, X. Y. Hu, H. Yang, and Q. H. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci Rep 4, 3752 (2014).
[Crossref] [PubMed]

W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near-and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
[Crossref]

M. Miyata, J. Hirohata, Y. Nagasaki, and J. Takahara, “Multi-spectral plasmon induced transparency via in-plane dipole and dual-quadrupole coupling,” Opt. Express 22(10), 11399–11406 (2014).
[Crossref] [PubMed]

G. T. Cao, H. J. Li, S. P. Zhan, Z. H. He, Z. B. Guo, X. K. Xu, and H. Yang, “Uniform theoretical description of Plasmon-induced transparency in plasmonic stub waveguide,” Opt. Lett. 39(2), 216–219 (2014).
[Crossref] [PubMed]

R. Hokari, Y. Kanamori, and K. Hane, “Comparison of electromagnetically induced transparency between silver, gold, and aluminum metamaterials at visible wavelengths,” Opt. Express 22(3), 3526–3537 (2014).
[Crossref] [PubMed]

J. W. Qi, Z. Q. Chen, J. Chen, Y. D. Li, W. Qiang, J. J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22(12), 14688–14695 (2014).
[Crossref] [PubMed]

T. S. Wu, Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
[Crossref] [PubMed]

J. J. Chen, C. W. Sun, and Q. H. Gong, “Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide,” Opt. Lett. 39(1), 52–55 (2014).
[Crossref] [PubMed]

Z. Chai, X. Y. Hu, Y. Zhu, S. B. Sun, H. Yang, and Q. H. Gong, “Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity,” Adv. Optical Mater. 2(4), 320–325 (2014).
[Crossref]

K. H. Wen, L. S. Yan, W. Pan, B. Luo, Z. Guo, Y. H. Guo, and X. G. Luo, “Electromagnetically induced transparency-like transmission in a compact side-coupled T-shaped resonator,” J. Lightwave Technol. 32(9), 1701–1707 (2014).
[Crossref]

Q. Z. Huang, Z. Shu, G. Song, J. G. Chen, J. S. Xia, and J. Z. Yu, “Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator,” Opt. Express 22(3), 3219–3227 (2014).
[Crossref] [PubMed]

2013 (9)

X. Y. Zhou, L. Zhang, W. Pang, H. Zhang, Q. R. Yang, and D. H. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[Crossref]

Z. Zou, L. J. Zhou, X. M. Sun, J. Y. Xie, H. K. Zhu, L. J. Lu, X. W. Li, and J. P. Chen, “Tunable two-stage self-coupled optical waveguide resonators,” Opt. Lett. 38(8), 1215–1217 (2013).
[Crossref] [PubMed]

Z. H. Han, C. E. Garcia-Ortiz, I. P. Radko, and S. I. Bozhevolnyi, “Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides,” Opt. Lett. 38(6), 875–877 (2013).
[Crossref] [PubMed]

J. T. Liu, B. Z. Xu, H. F. Hu, J. Zhang, X. Wei, Y. Xu, and G. F. Song, “Tunable coupling-induced transparency band due to coupled localized electric resonance and quasiguided photonic mode in hybrid plasmonic system,” Opt. Express 21(11), 13386–13393 (2013).
[Crossref] [PubMed]

Z. H. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76(1), 016402 (2013).
[Crossref] [PubMed]

I. Zand, M. S. Abrishamian, and P. Berini, “Highly tunable nanoscale metal-insulator-metal split ring core ring resonators (SRCRRs),” Opt. Express 21(1), 79–86 (2013).
[Crossref] [PubMed]

A. Akjouj, G. Leveque, S. Szunerits, Y. Pennec, B. Djafari-Rouhani, R. Boukherroub, and L. Dobrzynski, “Nanometal Plasmon polaritons,” Surf. Sci. Rep. 68(1), 1–67 (2013).
[Crossref]

G. T. Cao, H. J. Li, S. P. Zhan, H. Q. Xu, Z. M. Liu, Z. H. He, and Y. Wang, “Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators,” Opt. Express 21(8), 9198–9205 (2013).
[Crossref] [PubMed]

L. Chen, C. M. Gao, J. M. Xu, X. F. Zang, B. Cai, and Y. M. Zhu, “Observation of electromagnetically induced transparency-like transmission in terahertz asymmetric waveguide-cavities systems,” Opt. Lett. 38(9), 1379–1381 (2013).
[Crossref] [PubMed]

2012 (5)

H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6(3), 333–353 (2012).
[Crossref]

J. J. Chen, Z. Li, S. Yue, J. H. Xiao, and Q. H. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

X. J. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express 20(17), 18994–18999 (2012).
[Crossref] [PubMed]

V. Intaraprasonk and S. H. Fan, “Enhancing the waveguide-resonator optical force with an all-optical on-chip analog of electromagnetically induced transparency,” Phys. Rev. A 86(6), 063833 (2012).
[Crossref]

2011 (5)

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. H. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Y. R. He, H. Zhou, Y. Jin, and S. L. He, “Plasmon induced transparency in a dielectric waveguide,” Appl. Phys. Lett. 99(4), 043113 (2011).
[Crossref]

H. Lu, X. M. Liu, D. Mao, Y. K. Gong, and G. X. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36(16), 3233–3235 (2011).
[Crossref] [PubMed]

Z. H. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
[Crossref] [PubMed]

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]

2010 (1)

W. S. Cai, W. Shin, S. H. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

2009 (1)

Y. F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

2008 (2)

2005 (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

1991 (1)

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Abrishamian, M. S.

Akjouj, A.

A. Akjouj, G. Leveque, S. Szunerits, Y. Pennec, B. Djafari-Rouhani, R. Boukherroub, and L. Dobrzynski, “Nanometal Plasmon polaritons,” Surf. Sci. Rep. 68(1), 1–67 (2013).
[Crossref]

Berini, P.

Boller, K. J.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Boukherroub, R.

A. Akjouj, G. Leveque, S. Szunerits, Y. Pennec, B. Djafari-Rouhani, R. Boukherroub, and L. Dobrzynski, “Nanometal Plasmon polaritons,” Surf. Sci. Rep. 68(1), 1–67 (2013).
[Crossref]

Bozhevolnyi, S. I.

Brongersma, M. L.

W. S. Cai, W. Shin, S. H. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

Cai, B.

Cai, W. S.

W. S. Cai, W. Shin, S. H. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

Cao, G. T.

Chai, Z.

Z. Chai, X. Y. Hu, Y. Zhu, S. B. Sun, H. Yang, and Q. H. Gong, “Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity,” Adv. Optical Mater. 2(4), 320–325 (2014).
[Crossref]

X. Y. Yang, X. Y. Hu, Z. Chai, C. C. Lu, H. Yang, and Q. H. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Chen, H.

Z. R. Zhang, L. W. Zhang, H. Q. Li, and H. Chen, “Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity,” Appl. Phys. Lett. 104(23), 231114 (2014).
[Crossref]

W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near-and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
[Crossref]

Chen, J.

Chen, J. G.

Chen, J. J.

J. J. Chen, C. W. Sun, and Q. H. Gong, “Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide,” Opt. Lett. 39(1), 52–55 (2014).
[Crossref] [PubMed]

J. J. Chen, Z. Li, S. Yue, J. H. Xiao, and Q. H. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Chen, J. P.

Chen, L.

Chen, Y. L.

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. H. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Chen, Z. Q.

Djafari-Rouhani, B.

A. Akjouj, G. Leveque, S. Szunerits, Y. Pennec, B. Djafari-Rouhani, R. Boukherroub, and L. Dobrzynski, “Nanometal Plasmon polaritons,” Surf. Sci. Rep. 68(1), 1–67 (2013).
[Crossref]

Dobrzynski, L.

A. Akjouj, G. Leveque, S. Szunerits, Y. Pennec, B. Djafari-Rouhani, R. Boukherroub, and L. Dobrzynski, “Nanometal Plasmon polaritons,” Surf. Sci. Rep. 68(1), 1–67 (2013).
[Crossref]

Fan, S. H.

V. Intaraprasonk and S. H. Fan, “Enhancing the waveguide-resonator optical force with an all-optical on-chip analog of electromagnetically induced transparency,” Phys. Rev. A 86(6), 063833 (2012).
[Crossref]

W. S. Cai, W. Shin, S. H. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Fukui, M.

Gao, C. M.

Garcia-Ortiz, C. E.

Gong, Q. H.

J. J. Chen, C. W. Sun, and Q. H. Gong, “Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide,” Opt. Lett. 39(1), 52–55 (2014).
[Crossref] [PubMed]

X. Y. Yang, X. Y. Hu, Z. Chai, C. C. Lu, H. Yang, and Q. H. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Y. Zhu, X. Y. Hu, H. Yang, and Q. H. Gong, “Ultralow-power all-optical tunable double plasmon-induced transparencies in nonlinear metamaterials,” Appl. Phys. Lett. 104(21), 211108 (2014).
[Crossref]

Z. Chai, X. Y. Hu, Y. Zhu, S. B. Sun, H. Yang, and Q. H. Gong, “Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity,” Adv. Optical Mater. 2(4), 320–325 (2014).
[Crossref]

Y. Zhu, X. Y. Hu, H. Yang, and Q. H. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci Rep 4, 3752 (2014).
[Crossref] [PubMed]

J. J. Chen, Z. Li, S. Yue, J. H. Xiao, and Q. H. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. H. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Gong, Y. K.

Guo, Y. H.

Guo, Z.

Guo, Z. B.

Han, Z. H.

Hane, K.

Haraguchi, M.

Harris, S. E.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

He, L.

Y. F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

He, S. L.

Y. R. He, H. Zhou, Y. Jin, and S. L. He, “Plasmon induced transparency in a dielectric waveguide,” Appl. Phys. Lett. 99(4), 043113 (2011).
[Crossref]

He, Y. R.

Y. R. He, H. Zhou, Y. Jin, and S. L. He, “Plasmon induced transparency in a dielectric waveguide,” Appl. Phys. Lett. 99(4), 043113 (2011).
[Crossref]

He, Z. H.

Hirohata, J.

Hokari, R.

Hu, H. F.

Hu, X. Y.

Z. Chai, X. Y. Hu, Y. Zhu, S. B. Sun, H. Yang, and Q. H. Gong, “Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity,” Adv. Optical Mater. 2(4), 320–325 (2014).
[Crossref]

Y. Zhu, X. Y. Hu, H. Yang, and Q. H. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci Rep 4, 3752 (2014).
[Crossref] [PubMed]

Y. Zhu, X. Y. Hu, H. Yang, and Q. H. Gong, “Ultralow-power all-optical tunable double plasmon-induced transparencies in nonlinear metamaterials,” Appl. Phys. Lett. 104(21), 211108 (2014).
[Crossref]

X. Y. Yang, X. Y. Hu, Z. Chai, C. C. Lu, H. Yang, and Q. H. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Huang, Q. Z.

Huang, X. G.

Huang, Y.

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Imamolu, A.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Intaraprasonk, V.

V. Intaraprasonk and S. H. Fan, “Enhancing the waveguide-resonator optical force with an all-optical on-chip analog of electromagnetically induced transparency,” Phys. Rev. A 86(6), 063833 (2012).
[Crossref]

Jiang, X. F.

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. H. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Jin, Y.

Y. R. He, H. Zhou, Y. Jin, and S. L. He, “Plasmon induced transparency in a dielectric waveguide,” Appl. Phys. Lett. 99(4), 043113 (2011).
[Crossref]

Kanamori, Y.

Leveque, G.

A. Akjouj, G. Leveque, S. Szunerits, Y. Pennec, B. Djafari-Rouhani, R. Boukherroub, and L. Dobrzynski, “Nanometal Plasmon polaritons,” Surf. Sci. Rep. 68(1), 1–67 (2013).
[Crossref]

Li, B. B.

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. H. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Li, H. J.

Li, H. Q.

Z. R. Zhang, L. W. Zhang, H. Q. Li, and H. Chen, “Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity,” Appl. Phys. Lett. 104(23), 231114 (2014).
[Crossref]

Li, X. W.

Li, Y.

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. H. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Li, Y. D.

Li, Z.

J. J. Chen, Z. Li, S. Yue, J. H. Xiao, and Q. H. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Lin, X. S.

Liu, J. T.

Liu, X. M.

H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

H. Lu, X. M. Liu, D. Mao, Y. K. Gong, and G. X. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36(16), 3233–3235 (2011).
[Crossref] [PubMed]

Liu, Y. C.

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. H. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Liu, Y. M.

Liu, Z. M.

Lu, C. C.

X. Y. Yang, X. Y. Hu, Z. Chai, C. C. Lu, H. Yang, and Q. H. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Lu, H.

H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

H. Lu, X. M. Liu, D. Mao, Y. K. Gong, and G. X. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36(16), 3233–3235 (2011).
[Crossref] [PubMed]

Lu, L. J.

Luo, B.

Luo, X. G.

Mao, D.

H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

H. Lu, X. M. Liu, D. Mao, Y. K. Gong, and G. X. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36(16), 3233–3235 (2011).
[Crossref] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Matsuzaki, Y.

Min, C.

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]

Miyata, M.

Nagasaki, Y.

Nakagaki, M.

Novikova, I.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6(3), 333–353 (2012).
[Crossref]

Okamoto, T.

Pan, W.

Pang, W.

X. Y. Zhou, L. Zhang, W. Pang, H. Zhang, Q. R. Yang, and D. H. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[Crossref]

Park, N.

Peng, Y. W.

Pennec, Y.

A. Akjouj, G. Leveque, S. Szunerits, Y. Pennec, B. Djafari-Rouhani, R. Boukherroub, and L. Dobrzynski, “Nanometal Plasmon polaritons,” Surf. Sci. Rep. 68(1), 1–67 (2013).
[Crossref]

Piao, X. J.

Qi, J. W.

Qiang, W.

Radko, I. P.

Shin, W.

W. S. Cai, W. Shin, S. H. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

Shu, C. G.

Shu, Z.

Song, G.

Song, G. F.

Sun, C. W.

Sun, Q.

Sun, S. B.

Z. Chai, X. Y. Hu, Y. Zhu, S. B. Sun, H. Yang, and Q. H. Gong, “Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity,” Adv. Optical Mater. 2(4), 320–325 (2014).
[Crossref]

Sun, X. M.

Sun, Y.

W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near-and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
[Crossref]

Szunerits, S.

A. Akjouj, G. Leveque, S. Szunerits, Y. Pennec, B. Djafari-Rouhani, R. Boukherroub, and L. Dobrzynski, “Nanometal Plasmon polaritons,” Surf. Sci. Rep. 68(1), 1–67 (2013).
[Crossref]

Takahara, J.

Tan, W.

W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near-and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
[Crossref]

Veronis, G.

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]

Walsworth, R. L.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6(3), 333–353 (2012).
[Crossref]

Wang, G. X.

Wang, Y.

Wang, Z. G.

W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near-and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
[Crossref]

Wei, X.

Wen, K. H.

Wu, T. S.

Xia, J. S.

Xiao, J. H.

J. J. Chen, Z. Li, S. Yue, J. H. Xiao, and Q. H. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Xiao, Y.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6(3), 333–353 (2012).
[Crossref]

Xiao, Y. F.

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. H. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Y. F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

Xie, J. Y.

Xu, B. Z.

Xu, H. Q.

Xu, J. J.

Xu, J. M.

Xu, X. K.

Xu, Y.

Yan, L. S.

Yang, H.

G. T. Cao, H. J. Li, S. P. Zhan, Z. H. He, Z. B. Guo, X. K. Xu, and H. Yang, “Uniform theoretical description of Plasmon-induced transparency in plasmonic stub waveguide,” Opt. Lett. 39(2), 216–219 (2014).
[Crossref] [PubMed]

Z. Chai, X. Y. Hu, Y. Zhu, S. B. Sun, H. Yang, and Q. H. Gong, “Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity,” Adv. Optical Mater. 2(4), 320–325 (2014).
[Crossref]

X. Y. Yang, X. Y. Hu, Z. Chai, C. C. Lu, H. Yang, and Q. H. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Y. Zhu, X. Y. Hu, H. Yang, and Q. H. Gong, “Ultralow-power all-optical tunable double plasmon-induced transparencies in nonlinear metamaterials,” Appl. Phys. Lett. 104(21), 211108 (2014).
[Crossref]

Y. Zhu, X. Y. Hu, H. Yang, and Q. H. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci Rep 4, 3752 (2014).
[Crossref] [PubMed]

Yang, L.

Y. F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

Yang, Q. R.

X. Y. Zhou, L. Zhang, W. Pang, H. Zhang, Q. R. Yang, and D. H. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[Crossref]

Yang, X. Y.

X. Y. Yang, X. Y. Hu, Z. Chai, C. C. Lu, H. Yang, and Q. H. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Ye, H.

Yu, J. Z.

Yu, S.

Yu, Z. Y.

Yue, S.

J. J. Chen, Z. Li, S. Yue, J. H. Xiao, and Q. H. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Zand, I.

Zang, X. F.

Zhan, S. P.

Zhang, D. H.

X. Y. Zhou, L. Zhang, W. Pang, H. Zhang, Q. R. Yang, and D. H. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[Crossref]

Zhang, H.

X. Y. Zhou, L. Zhang, W. Pang, H. Zhang, Q. R. Yang, and D. H. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[Crossref]

Zhang, J.

Zhang, L.

X. Y. Zhou, L. Zhang, W. Pang, H. Zhang, Q. R. Yang, and D. H. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[Crossref]

Zhang, L. W.

Z. R. Zhang, L. W. Zhang, H. Q. Li, and H. Chen, “Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity,” Appl. Phys. Lett. 104(23), 231114 (2014).
[Crossref]

Zhang, Z. R.

Z. R. Zhang, L. W. Zhang, H. Q. Li, and H. Chen, “Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity,” Appl. Phys. Lett. 104(23), 231114 (2014).
[Crossref]

Zhou, H.

Y. R. He, H. Zhou, Y. Jin, and S. L. He, “Plasmon induced transparency in a dielectric waveguide,” Appl. Phys. Lett. 99(4), 043113 (2011).
[Crossref]

Zhou, L. J.

Zhou, X. Y.

X. Y. Zhou, L. Zhang, W. Pang, H. Zhang, Q. R. Yang, and D. H. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[Crossref]

Zhu, H. K.

Zhu, J.

Y. F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

Zhu, Y.

Z. Chai, X. Y. Hu, Y. Zhu, S. B. Sun, H. Yang, and Q. H. Gong, “Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity,” Adv. Optical Mater. 2(4), 320–325 (2014).
[Crossref]

Y. Zhu, X. Y. Hu, H. Yang, and Q. H. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci Rep 4, 3752 (2014).
[Crossref] [PubMed]

Y. Zhu, X. Y. Hu, H. Yang, and Q. H. Gong, “Ultralow-power all-optical tunable double plasmon-induced transparencies in nonlinear metamaterials,” Appl. Phys. Lett. 104(21), 211108 (2014).
[Crossref]

Zhu, Y. M.

Zou, C. L.

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. H. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Zou, Z.

Adv. Mater. (1)

W. S. Cai, W. Shin, S. H. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22(45), 5120–5124 (2010).
[Crossref] [PubMed]

Adv. Optical Mater. (1)

Z. Chai, X. Y. Hu, Y. Zhu, S. B. Sun, H. Yang, and Q. H. Gong, “Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity,” Adv. Optical Mater. 2(4), 320–325 (2014).
[Crossref]

Appl. Phys. Lett. (8)

Y. F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. H. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(2), 021116 (2011).
[Crossref]

Y. R. He, H. Zhou, Y. Jin, and S. L. He, “Plasmon induced transparency in a dielectric waveguide,” Appl. Phys. Lett. 99(4), 043113 (2011).
[Crossref]

Y. Zhu, X. Y. Hu, H. Yang, and Q. H. Gong, “Ultralow-power all-optical tunable double plasmon-induced transparencies in nonlinear metamaterials,” Appl. Phys. Lett. 104(21), 211108 (2014).
[Crossref]

W. Tan, Y. Sun, Z. G. Wang, and H. Chen, “Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near-and far-field couplings,” Appl. Phys. Lett. 104(9), 091107 (2014).
[Crossref]

Z. R. Zhang, L. W. Zhang, H. Q. Li, and H. Chen, “Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity,” Appl. Phys. Lett. 104(23), 231114 (2014).
[Crossref]

X. Y. Yang, X. Y. Hu, Z. Chai, C. C. Lu, H. Yang, and Q. H. Gong, “Tunable ultracompact chip-integrated multichannel filter based on plasmon-induced transparencies,” Appl. Phys. Lett. 104(22), 221114 (2014).
[Crossref]

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6(3), 333–353 (2012).
[Crossref]

Nano Lett. (1)

J. J. Chen, Z. Li, S. Yue, J. H. Xiao, and Q. H. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

New J. Phys. (1)

X. Y. Zhou, L. Zhang, W. Pang, H. Zhang, Q. R. Yang, and D. H. Zhang, “Phase characteristics of an electromagnetically induced transparency analogue in coupled resonant systems,” New J. Phys. 15(10), 103033 (2013).
[Crossref]

Opt. Express (11)

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008).
[Crossref] [PubMed]

Z. H. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
[Crossref] [PubMed]

X. J. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express 20(17), 18994–18999 (2012).
[Crossref] [PubMed]

I. Zand, M. S. Abrishamian, and P. Berini, “Highly tunable nanoscale metal-insulator-metal split ring core ring resonators (SRCRRs),” Opt. Express 21(1), 79–86 (2013).
[Crossref] [PubMed]

G. T. Cao, H. J. Li, S. P. Zhan, H. Q. Xu, Z. M. Liu, Z. H. He, and Y. Wang, “Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators,” Opt. Express 21(8), 9198–9205 (2013).
[Crossref] [PubMed]

J. T. Liu, B. Z. Xu, H. F. Hu, J. Zhang, X. Wei, Y. Xu, and G. F. Song, “Tunable coupling-induced transparency band due to coupled localized electric resonance and quasiguided photonic mode in hybrid plasmonic system,” Opt. Express 21(11), 13386–13393 (2013).
[Crossref] [PubMed]

M. Miyata, J. Hirohata, Y. Nagasaki, and J. Takahara, “Multi-spectral plasmon induced transparency via in-plane dipole and dual-quadrupole coupling,” Opt. Express 22(10), 11399–11406 (2014).
[Crossref] [PubMed]

J. W. Qi, Z. Q. Chen, J. Chen, Y. D. Li, W. Qiang, J. J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22(12), 14688–14695 (2014).
[Crossref] [PubMed]

Q. Z. Huang, Z. Shu, G. Song, J. G. Chen, J. S. Xia, and J. Z. Yu, “Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator,” Opt. Express 22(3), 3219–3227 (2014).
[Crossref] [PubMed]

R. Hokari, Y. Kanamori, and K. Hane, “Comparison of electromagnetically induced transparency between silver, gold, and aluminum metamaterials at visible wavelengths,” Opt. Express 22(3), 3526–3537 (2014).
[Crossref] [PubMed]

T. S. Wu, Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22(7), 7669–7677 (2014).
[Crossref] [PubMed]

Opt. Lett. (7)

Phys. Rev. A (2)

V. Intaraprasonk and S. H. Fan, “Enhancing the waveguide-resonator optical force with an all-optical on-chip analog of electromagnetically induced transparency,” Phys. Rev. A 86(6), 063833 (2012).
[Crossref]

H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

Phys. Rev. Lett. (1)

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

Z. H. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76(1), 016402 (2013).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Sci Rep (1)

Y. Zhu, X. Y. Hu, H. Yang, and Q. H. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci Rep 4, 3752 (2014).
[Crossref] [PubMed]

Surf. Sci. Rep. (1)

A. Akjouj, G. Leveque, S. Szunerits, Y. Pennec, B. Djafari-Rouhani, R. Boukherroub, and L. Dobrzynski, “Nanometal Plasmon polaritons,” Surf. Sci. Rep. 68(1), 1–67 (2013).
[Crossref]

Other (3)

S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing Pte. Ltd., 2009).

E. D. Palik, Handbook of Optical Constants in Solids (Academic, 1982).

C. W. Gardiner and P. Zoller, Quantum Noise, 3rd ed. (Springer, Berlin, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of MDM waveguide coupled to a stub resonator. (b) Equivalent theoretical model for Fig. 1(a).
Fig. 2
Fig. 2 (a) Transmission spectra versus different d. The solid curves are the simulation results and the circles are theoretical fittings. The black dashed line is the transmission spectra for lossless metal case (d = 380nm). The other geometrical parameters are w = 100nm, L = 300nm. (b) The resonant wavelengths of TM11 and TM02 modes, and the FWHM of transparent window versus d. Field distributions (Hz) of SPPs in the plasmonic system for d = 300nm at wavelength (c) λ = 471.5nm. For d = 380nm, field distributions (Hz) of SPPs at different wavelengths (d) λ = 528.3nm, (e) λ = 545.8nm, and (f) λ = 556.2nm. (g) The phases of coupling-out field corresponding to TM11 (red line) and TM02 (blue line) modes for d = 380nm in Fig. 2(a). (h) The transmission phase shift corresponding to Fig. 2(a). The fitting parameters are set as (d = 300nm) [λ1, λ2] = [471.5, 471.5] nm, [κ1, κ2, γ1, γ2] = [4.995, 4.995, 2.497, 2.497] 1013rad/s; (d = 340nm) [λ1, λ2] = [491.3, 504.5] nm, [κ1, κ2, γ1, γ2] = [7.67, 3.73, 4.26, 2.5] 1013rad/s; (d = 380nm) [λ1, λ2] = [528.3, 556.2] nm, [κ1, κ2, γ1, γ2] = [8.92, 4.84, 4.46, 3.76] 1013rad/s; (d = 400nm) [λ1, λ2] = [533.8, 585] nm, [κ1, κ2, γ1, γ2] = [7.06, 4.03, 3.92, 2.48] 1013rad/s.
Fig. 3
Fig. 3 (a) Transmission spectra as a function of L. The solid lines are the simulation results and the circles are the analytical model results. The other geometrical parameters are w = 100nm, d = 300nm. Field distributions (Hz) of SPPs in the plasmonic system for L = 260nm at different wavelengths (b) λ = 454.8nm, (c) λ = 463.3nm, and (d) λ = 482.6nm. (e) The resonant wavelengths and FWHM of transparent window versus L. The fitting parameters are set as (L = 300nm) [λ1, λ2] = [471.5, 471.5] nm, [κ1, κ2, γ1, γ2] = [4.995, 4.995, 2.497, 2.497] 1013rad/s; (L = 280nm) [λ1, λ2] = [464.3, 475] nm, [κ1, κ2, γ1, γ2] = [5.07, 6.61, 2.54, 3.31] 1013rad/s; (L = 260nm) [λ1, λ2] = [454.8, 482.6] nm, [κ1, κ2, γ1, γ2] = [5.18, 6.51, 2.59, 3.26] 1013rad/s; (L = 220nm) [λ1, λ2] = [430.7, 499] nm, [κ1, κ2, γ1, γ2] = [5.15, 5.39, 2.57, 2.7] 1013rad/s.
Fig. 4
Fig. 4 (a) Simulation (solid curve) and theoretical (circles) transmission spectra with different L in the plasmonic stub waveguide. The other geometrical parameters are w = 100nm, d = 300nm. (b) The resonant wavelengths of TM11, TM02 and TM20 modes versus L. Field distributions (Hz) of SPPs in the plasmonic system for L = 420nm at different wavelengths (c) λ = 461.6nm, (d) λ = 482.9nm, (e) λ = 491.9nm, (f) λ = 498nm, and (g) λ = 504.3nm. (h) The phases of TM11 (blue line), TM02 (red line) and TM20 (green line) modes for L = 420nm in Fig. 4(a). (i) The transmission phase shift with different L in the plasmonic structure plotted in Fig. 1(a). The fitting parameters are set as (L = 360nm) [λ1, λ2, λ3] = [463.3, 481.3, 458.2] nm, [κ1, κ2, κ3, γ1, γ2, γ3] = [7.4, 3.26, 0.457, 4.07, 1.63, 2.06] 1013rad/s; (L = 380nm) [λ1, λ2, λ3] = [464.9, 485.9, 468.7] nm, [κ1, κ2, κ3, γ1, γ2, γ3] = [4.5, 1.94, 0.502, 2.25, 0.97, 2.01] 1013rad/s; (L = 400nm) [λ1, λ2, λ3] = [463.8, 484.6, 491] nm, [κ1, κ2, κ3, γ1, γ2, γ3] = [4.06, 3.89, 0.426, 2.03, 1.95, 1.92] 1013rad/s; (L = 420nm) [λ1, λ2, λ3] = [461.6, 491.9, 504.3] nm, [κ1, κ2, κ3, γ1, γ2, γ3] = [4.08, 0.851, 1.49, 2.04, 1.92, 0.934] 1013rad/s; (L = 440nm) [λ1, λ2, λ3] = [461.9, 491.6, 521.3] nm, [κ1, κ2, κ3, γ1, γ2, γ3] = [4.08, 1.92, 1.45, 2.73, 1.92, 3.61] 1013rad/s.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H = j = 1 N ω j a j + a j + p = ± - + d ω ω b p + ( ω ) b p ( ω ) + i j = 1 N p = ± - + d ω κ j ( ω ) [ b p + ( ω ) a j - a j + b p ( ω ) ] ,
d b p ( ω ) d t = - i ω b p ( ω ) + j = 1 N κ j ( ω ) a j ,
d a j d t = - i ω j a - j γ j 2 a - j p = ± - + d ω κ j ( ω ) b p ( ω ) ,
b p ( ω ) = e - i ω ( t - t 0 ) b p , 0 ( ω ) + j ' = 1 N κ j ( ω ) t 0 t e - i ω ( t - t ' ) a j ( t ' ) d t ' .
d a j d t = - i ω j a - j γ j 2 a j - p = ± - + d ω κ j ( ω ) { e - i ω ( t - t 0 ) b p , 0 ( ω ) + j ' = 1 N κ j ( ω ) t 0 t e - i ω ( t - t ' ) a j ( t ' ) d t ' } .
d a j d t = - i ω j a - j γ j 2 a - j κ j a - j j ' = 1 , j ' j N κ j κ j ' a j ' - p = ± κ j b p , i n ( t ) ,
b p , o u t ( t ) = b p , i n ( t ) + j = 1 N κ j a j ,

Metrics