Abstract

Cerium substituted yttrium iron garnet (Ce:YIG) films were grown on yttrium iron garnet (YIG) seed layers on silicon nitride films using pulsed laser deposition. Optimal process conditions for forming garnet films on silicon nitride are presented. Bulk or near-bulk magnetic and magneto-optical properties were observed for 160 nm thick Ce:YIG films grown at 640°C on rapid thermal annealed 40 nm thick YIG grown at 640°C and 2 Hz pulse rate. The effect of growth temperature and deposition rate on structural, magnetic and magneto-optical properties has been investigated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A nonreciprocal racetrack resonator based on vacuum-annealed magnetooptical cerium-substituted yttrium iron garnet

Taichi Goto, Mehmet C. Onbasli, Dong Hun Kim, Vivek Singh, M. Inoue, Lionel C. Kimerling, and C. A. Ross
Opt. Express 22(16) 19047-19054 (2014)

Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform

Paolo Pintus, Fabrizio Di Pasquale, and John E. Bowers
Opt. Express 21(4) 5041-5052 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
    [Crossref]
  2. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
    [PubMed]
  3. E. Onaran, M. C. Onbasli, A. Yesilyurt, H. Y. Yu, A. M. Nayfeh, and A. K. Okyay, “Silicon-Germanium multi-quantum well photodetectors in the near infrared,” Opt. Express 20(7), 7608–7615 (2012).
    [Crossref] [PubMed]
  4. L. Bi, J. Hu, L. Kimerling, and C. A. Ross, “Fabrication and characterization of As2S3/Y3Fe5O12 and Y3Fe5O12/SOI strip-loaded waveguides for integrated optical isolator applications,” Proc. SPIE 7604, 760406 (2010).
    [Crossref]
  5. L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
    [Crossref]
  6. T. Mizumoto, R. Takei, and Y. Shoji, “Waveguide optical isolators for integrated optics,” IEEE J. Quantum Electron. 48(2), 252–260 (2012).
    [Crossref]
  7. H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
    [Crossref]
  8. T. Goto, M. C. Onbaşlı, and C. A. Ross, “Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits,” Opt. Express 20(27), 28507–28517 (2012).
    [Crossref] [PubMed]
  9. M. A. Gilleo and S. Geller, “Magnetic and crystallographic properties of substituted yttrium-iron garnet, 3Y2O3·xM2O3·(5-x)Fe2O3,” Phys. Rev. 110(1), 73–78 (1958).
    [Crossref]
  10. R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Band gap versus composition and demonstration of Vegard's law for In1-xGaxAsyP1-y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659 (1978).
    [Crossref]
  11. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 1997).
  12. T. Soma, J. Satoh, and H. Matsuo, “Thermal expansion coefficient of GaAs and InP,” Solid State Commun. 42(12), 889–892 (1982).
    [Crossref]
  13. M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19(12), 11740–11745 (2011).
    [Crossref] [PubMed]
  14. B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Y.-Q. Li, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn. 38(3), 1564–1567 (2002).
    [Crossref]
  15. M. Gomi, T. Tanida, and M. Abe, “rf sputtering of highly Bi-substituted garnet films on glass substrates for magneto-optic memory,” J. Appl. Phys. 57(8), 3888 (1985).
    [Crossref]
  16. Q.-H. Yang, H.-W. Zhang, Q.-Y. Wen, and Y.-L. Liu, “Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method,” J. Appl. Phys. 108(7), 073901 (2010).
    [Crossref]
  17. Q. Yang, Z. Huaiwu, L. Yingli, and W. Qiye, “Effect of post-annealing on the magnetic properties of Bi:YIG film by RF magnetron sputtering on Si substrates,” IEEE Trans. Magn. 43(9), 3652–3655 (2007).
    [Crossref]
  18. S. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87(12), 121111 (2005).
    [Crossref]
  19. T. Suzuki, “Magnetic and magnetooptic properties of rapid thermally crystallized garnet films (invited),” J. Appl. Phys. 69(8), 4756 (1991).
    [Crossref]
  20. T. Suzuki, G. Zaharchuk, G. Gorman, F. Sequeda, and P. Labun, “Magnetic and magneto-optical properties and crystallization kinetics of rapid-thermally crystallized Bi-substituted garnet films,” IEEE Trans. Magn. 26(5), 1927–1929 (1990).
    [Crossref]
  21. M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
    [Crossref]
  22. T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, and C. A. Ross, “Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits,” J. Appl. Phys. 113(17), 17A939 (2013).
    [Crossref]
  23. T. Goto, M. C. Onbasli, D. H. Kim, V. Singh, M. Inoue, L. C. Kimerling, and C. A. Ross, “Nonreciprocal racetrack resonator based on vacuum-annealed magnetooptical cerium-substituted yttrium iron garnet,” Opt. Express 22(16), 19047–19054 (2014).
    [Crossref]
  24. M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, “Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).
  25. S. Leitenmeier, T. Korner, J. Griesbauer, M. Herbort, A. Heinrich, and B. Stritzker, “Studies on the growth of epitaxial bismuth-substituted iron garnet on gadolinium gallium garnet single crystals by pulsed laser deposition,” J. Cryst. Growth 310(24), 5392–5401 (2008).
    [Crossref]
  26. M. Chandra Sekhar, M. R. Singh, S. Basu, and S. Pinnepalli, “Giant Faraday rotation in BixCe3-xFe5O12 epitaxial garnet films,” Opt. Express 20(9), 9624–9639 (2012).
    [Crossref] [PubMed]
  27. E. Popova, N. Keller, F. Gendron, M. Guyot, M.-C. Brianso, Y. Dumond, and M. Tessier, “Structure and magnetic properties of yttrium–iron–garnet thin films prepared by laser deposition,” J. Appl. Phys. 90(3), 1422 (2001).
    [Crossref]
  28. R. Eason, Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials, 1st ed. (Wiley-Interscience, 2006).
  29. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photon. 5(12), 758–762 (2011).
    [Crossref]
  30. P. Paroli, “Magneto-optical devices based on garnet films,” Thin Solid Films 114(1–2), 187–219 (1984).
    [Crossref]
  31. B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Magneto-optical phase modulation in integrated Mach-Zehnder interferometric sensors,” Sens. Actuators A Phys. 134(2), 339–347 (2007).
    [Crossref]
  32. L. Bi, “Magneto-optical oxide thin films and integrated nonreciprocal photonic devices,” PhD Thesis, Massachusetts Institute of Technology (2011).
  33. M. Huang and Z.-C. Xu, “Liquid phase epitaxy growth of bismuth-substituted yttrium iron garnet thin films for magneto-optical applications,” Thin Solid Films 450(2), 324–328 (2004).
    [Crossref]
  34. M. Huang and S.-Y. Zhang, “Growth and characterization of cerium-substituted yttrium iron garnet single crystals for magneto-optical applications,” Appl. Phys., A Mater. Sci. Process. 74(2), 177–180 (2002).
    [Crossref]
  35. S. Mino, A. Tate, T. Uno, T. Shintaku, and A. Shibukawa, “Properties of Ce-substituted yttrium iron garnet film containing indium prepared by RF-sputtering,” Jpn. J. Appl. Phys. 32(7B), L994–L996 (1993).
    [Crossref]
  36. G. Dionne, Magnetic Oxides (Springer, 2009).
  37. T. Shintaku, A. Tate, and S. Mino, S. “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640 (1997).
    [Crossref]
  38. M. Levy, “The on-chip integration of magnetooptic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1300–1306 (2002).
    [Crossref]
  39. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).

2014 (1)

2013 (1)

T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, and C. A. Ross, “Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits,” J. Appl. Phys. 113(17), 17A939 (2013).
[Crossref]

2012 (5)

2011 (4)

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19(12), 11740–11745 (2011).
[Crossref] [PubMed]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photon. 5(12), 758–762 (2011).
[Crossref]

M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, “Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).

2010 (3)

Q.-H. Yang, H.-W. Zhang, Q.-Y. Wen, and Y.-L. Liu, “Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method,” J. Appl. Phys. 108(7), 073901 (2010).
[Crossref]

L. Bi, J. Hu, L. Kimerling, and C. A. Ross, “Fabrication and characterization of As2S3/Y3Fe5O12 and Y3Fe5O12/SOI strip-loaded waveguides for integrated optical isolator applications,” Proc. SPIE 7604, 760406 (2010).
[Crossref]

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
[PubMed]

2009 (1)

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[Crossref]

2008 (2)

S. Leitenmeier, T. Korner, J. Griesbauer, M. Herbort, A. Heinrich, and B. Stritzker, “Studies on the growth of epitaxial bismuth-substituted iron garnet on gadolinium gallium garnet single crystals by pulsed laser deposition,” J. Cryst. Growth 310(24), 5392–5401 (2008).
[Crossref]

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
[Crossref]

2007 (2)

Q. Yang, Z. Huaiwu, L. Yingli, and W. Qiye, “Effect of post-annealing on the magnetic properties of Bi:YIG film by RF magnetron sputtering on Si substrates,” IEEE Trans. Magn. 43(9), 3652–3655 (2007).
[Crossref]

B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Magneto-optical phase modulation in integrated Mach-Zehnder interferometric sensors,” Sens. Actuators A Phys. 134(2), 339–347 (2007).
[Crossref]

2005 (1)

S. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87(12), 121111 (2005).
[Crossref]

2004 (1)

M. Huang and Z.-C. Xu, “Liquid phase epitaxy growth of bismuth-substituted yttrium iron garnet thin films for magneto-optical applications,” Thin Solid Films 450(2), 324–328 (2004).
[Crossref]

2002 (3)

M. Huang and S.-Y. Zhang, “Growth and characterization of cerium-substituted yttrium iron garnet single crystals for magneto-optical applications,” Appl. Phys., A Mater. Sci. Process. 74(2), 177–180 (2002).
[Crossref]

M. Levy, “The on-chip integration of magnetooptic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1300–1306 (2002).
[Crossref]

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Y.-Q. Li, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn. 38(3), 1564–1567 (2002).
[Crossref]

2001 (1)

E. Popova, N. Keller, F. Gendron, M. Guyot, M.-C. Brianso, Y. Dumond, and M. Tessier, “Structure and magnetic properties of yttrium–iron–garnet thin films prepared by laser deposition,” J. Appl. Phys. 90(3), 1422 (2001).
[Crossref]

2000 (1)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[Crossref]

1997 (1)

T. Shintaku, A. Tate, and S. Mino, S. “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640 (1997).
[Crossref]

1993 (1)

S. Mino, A. Tate, T. Uno, T. Shintaku, and A. Shibukawa, “Properties of Ce-substituted yttrium iron garnet film containing indium prepared by RF-sputtering,” Jpn. J. Appl. Phys. 32(7B), L994–L996 (1993).
[Crossref]

1991 (1)

T. Suzuki, “Magnetic and magnetooptic properties of rapid thermally crystallized garnet films (invited),” J. Appl. Phys. 69(8), 4756 (1991).
[Crossref]

1990 (1)

T. Suzuki, G. Zaharchuk, G. Gorman, F. Sequeda, and P. Labun, “Magnetic and magneto-optical properties and crystallization kinetics of rapid-thermally crystallized Bi-substituted garnet films,” IEEE Trans. Magn. 26(5), 1927–1929 (1990).
[Crossref]

1985 (1)

M. Gomi, T. Tanida, and M. Abe, “rf sputtering of highly Bi-substituted garnet films on glass substrates for magneto-optic memory,” J. Appl. Phys. 57(8), 3888 (1985).
[Crossref]

1984 (1)

P. Paroli, “Magneto-optical devices based on garnet films,” Thin Solid Films 114(1–2), 187–219 (1984).
[Crossref]

1982 (1)

T. Soma, J. Satoh, and H. Matsuo, “Thermal expansion coefficient of GaAs and InP,” Solid State Commun. 42(12), 889–892 (1982).
[Crossref]

1978 (1)

R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Band gap versus composition and demonstration of Vegard's law for In1-xGaxAsyP1-y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659 (1978).
[Crossref]

1958 (1)

M. A. Gilleo and S. Geller, “Magnetic and crystallographic properties of substituted yttrium-iron garnet, 3Y2O3·xM2O3·(5-x)Fe2O3,” Phys. Rev. 110(1), 73–78 (1958).
[Crossref]

Abe, M.

M. Gomi, T. Tanida, and M. Abe, “rf sputtering of highly Bi-substituted garnet films on glass substrates for magneto-optic memory,” J. Appl. Phys. 57(8), 3888 (1985).
[Crossref]

Alameh, K.

M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, “Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[Crossref]

Armelles, G.

B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Magneto-optical phase modulation in integrated Mach-Zehnder interferometric sensors,” Sens. Actuators A Phys. 134(2), 339–347 (2007).
[Crossref]

Barns, R. L.

R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Band gap versus composition and demonstration of Vegard's law for In1-xGaxAsyP1-y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659 (1978).
[Crossref]

Basu, S.

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).

Bi, L.

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photon. 5(12), 758–762 (2011).
[Crossref]

L. Bi, J. Hu, L. Kimerling, and C. A. Ross, “Fabrication and characterization of As2S3/Y3Fe5O12 and Y3Fe5O12/SOI strip-loaded waveguides for integrated optical isolator applications,” Proc. SPIE 7604, 760406 (2010).
[Crossref]

Bowers, J. E.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19(12), 11740–11745 (2011).
[Crossref] [PubMed]

Brianso, M.-C.

E. Popova, N. Keller, F. Gendron, M. Guyot, M.-C. Brianso, Y. Dumond, and M. Tessier, “Structure and magnetic properties of yttrium–iron–garnet thin films prepared by laser deposition,” J. Appl. Phys. 90(3), 1422 (2001).
[Crossref]

Burkov, V. I.

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[Crossref]

Camacho-Aguilera, R.

Chandra Sekhar, M.

Cherif, M.

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Y.-Q. Li, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn. 38(3), 1564–1567 (2002).
[Crossref]

Dai, D.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photon. 5(12), 758–762 (2011).
[Crossref]

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

Dumond, Y.

E. Popova, N. Keller, F. Gendron, M. Guyot, M.-C. Brianso, Y. Dumond, and M. Tessier, “Structure and magnetic properties of yttrium–iron–garnet thin films prepared by laser deposition,” J. Appl. Phys. 90(3), 1422 (2001).
[Crossref]

Eto, Y.

T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, and C. A. Ross, “Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits,” J. Appl. Phys. 113(17), 17A939 (2013).
[Crossref]

Geller, S.

M. A. Gilleo and S. Geller, “Magnetic and crystallographic properties of substituted yttrium-iron garnet, 3Y2O3·xM2O3·(5-x)Fe2O3,” Phys. Rev. 110(1), 73–78 (1958).
[Crossref]

Gendron, F.

E. Popova, N. Keller, F. Gendron, M. Guyot, M.-C. Brianso, Y. Dumond, and M. Tessier, “Structure and magnetic properties of yttrium–iron–garnet thin films prepared by laser deposition,” J. Appl. Phys. 90(3), 1422 (2001).
[Crossref]

Gilleo, M. A.

M. A. Gilleo and S. Geller, “Magnetic and crystallographic properties of substituted yttrium-iron garnet, 3Y2O3·xM2O3·(5-x)Fe2O3,” Phys. Rev. 110(1), 73–78 (1958).
[Crossref]

Gomi, M.

M. Gomi, T. Tanida, and M. Abe, “rf sputtering of highly Bi-substituted garnet films on glass substrates for magneto-optic memory,” J. Appl. Phys. 57(8), 3888 (1985).
[Crossref]

Gorman, G.

T. Suzuki, G. Zaharchuk, G. Gorman, F. Sequeda, and P. Labun, “Magnetic and magneto-optical properties and crystallization kinetics of rapid-thermally crystallized Bi-substituted garnet films,” IEEE Trans. Magn. 26(5), 1927–1929 (1990).
[Crossref]

Goto, T.

Griesbauer, J.

S. Leitenmeier, T. Korner, J. Griesbauer, M. Herbort, A. Heinrich, and B. Stritzker, “Studies on the growth of epitaxial bismuth-substituted iron garnet on gadolinium gallium garnet single crystals by pulsed laser deposition,” J. Cryst. Growth 310(24), 5392–5401 (2008).
[Crossref]

Guyot, M.

E. Popova, N. Keller, F. Gendron, M. Guyot, M.-C. Brianso, Y. Dumond, and M. Tessier, “Structure and magnetic properties of yttrium–iron–garnet thin films prepared by laser deposition,” J. Appl. Phys. 90(3), 1422 (2001).
[Crossref]

Haga, Y.

T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, and C. A. Ross, “Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits,” J. Appl. Phys. 113(17), 17A939 (2013).
[Crossref]

Heinrich, A.

S. Leitenmeier, T. Korner, J. Griesbauer, M. Herbort, A. Heinrich, and B. Stritzker, “Studies on the growth of epitaxial bismuth-substituted iron garnet on gadolinium gallium garnet single crystals by pulsed laser deposition,” J. Cryst. Growth 310(24), 5392–5401 (2008).
[Crossref]

Herbort, M.

S. Leitenmeier, T. Korner, J. Griesbauer, M. Herbort, A. Heinrich, and B. Stritzker, “Studies on the growth of epitaxial bismuth-substituted iron garnet on gadolinium gallium garnet single crystals by pulsed laser deposition,” J. Cryst. Growth 310(24), 5392–5401 (2008).
[Crossref]

Hu, J.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photon. 5(12), 758–762 (2011).
[Crossref]

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

L. Bi, J. Hu, L. Kimerling, and C. A. Ross, “Fabrication and characterization of As2S3/Y3Fe5O12 and Y3Fe5O12/SOI strip-loaded waveguides for integrated optical isolator applications,” Proc. SPIE 7604, 760406 (2010).
[Crossref]

Huaiwu, Z.

Q. Yang, Z. Huaiwu, L. Yingli, and W. Qiye, “Effect of post-annealing on the magnetic properties of Bi:YIG film by RF magnetron sputtering on Si substrates,” IEEE Trans. Magn. 43(9), 3652–3655 (2007).
[Crossref]

Huang, M.

M. Huang and Z.-C. Xu, “Liquid phase epitaxy growth of bismuth-substituted yttrium iron garnet thin films for magneto-optical applications,” Thin Solid Films 450(2), 324–328 (2004).
[Crossref]

M. Huang and S.-Y. Zhang, “Growth and characterization of cerium-substituted yttrium iron garnet single crystals for magneto-optical applications,” Appl. Phys., A Mater. Sci. Process. 74(2), 177–180 (2002).
[Crossref]

Inoue, M.

T. Goto, M. C. Onbasli, D. H. Kim, V. Singh, M. Inoue, L. C. Kimerling, and C. A. Ross, “Nonreciprocal racetrack resonator based on vacuum-annealed magnetooptical cerium-substituted yttrium iron garnet,” Opt. Express 22(16), 19047–19054 (2014).
[Crossref]

T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, and C. A. Ross, “Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits,” J. Appl. Phys. 113(17), 17A939 (2013).
[Crossref]

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photon. 5(12), 758–762 (2011).
[Crossref]

John, S.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
[Crossref]

Johnston, W. D.

R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Band gap versus composition and demonstration of Vegard's law for In1-xGaxAsyP1-y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659 (1978).
[Crossref]

Keller, N.

E. Popova, N. Keller, F. Gendron, M. Guyot, M.-C. Brianso, Y. Dumond, and M. Tessier, “Structure and magnetic properties of yttrium–iron–garnet thin films prepared by laser deposition,” J. Appl. Phys. 90(3), 1422 (2001).
[Crossref]

Kim, D. H.

T. Goto, M. C. Onbasli, D. H. Kim, V. Singh, M. Inoue, L. C. Kimerling, and C. A. Ross, “Nonreciprocal racetrack resonator based on vacuum-annealed magnetooptical cerium-substituted yttrium iron garnet,” Opt. Express 22(16), 19047–19054 (2014).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photon. 5(12), 758–762 (2011).
[Crossref]

Kimerling, L.

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

L. Bi, J. Hu, L. Kimerling, and C. A. Ross, “Fabrication and characterization of As2S3/Y3Fe5O12 and Y3Fe5O12/SOI strip-loaded waveguides for integrated optical isolator applications,” Proc. SPIE 7604, 760406 (2010).
[Crossref]

Kimerling, L. C.

Kobayashi, K.

T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, and C. A. Ross, “Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits,” J. Appl. Phys. 113(17), 17A939 (2013).
[Crossref]

Korner, T.

S. Leitenmeier, T. Korner, J. Griesbauer, M. Herbort, A. Heinrich, and B. Stritzker, “Studies on the growth of epitaxial bismuth-substituted iron garnet on gadolinium gallium garnet single crystals by pulsed laser deposition,” J. Cryst. Growth 310(24), 5392–5401 (2008).
[Crossref]

Kotov, V. A.

M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, “Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[Crossref]

Kromer, H.

Labun, P.

T. Suzuki, G. Zaharchuk, G. Gorman, F. Sequeda, and P. Labun, “Magnetic and magneto-optical properties and crystallization kinetics of rapid-thermally crystallized Bi-substituted garnet films,” IEEE Trans. Magn. 26(5), 1927–1929 (1990).
[Crossref]

Lechuga, L. M.

B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Magneto-optical phase modulation in integrated Mach-Zehnder interferometric sensors,” Sens. Actuators A Phys. 134(2), 339–347 (2007).
[Crossref]

Lee, Y. P.

M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, “Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).

Lee, Y. T.

M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, “Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).

Leitenmeier, S.

S. Leitenmeier, T. Korner, J. Griesbauer, M. Herbort, A. Heinrich, and B. Stritzker, “Studies on the growth of epitaxial bismuth-substituted iron garnet on gadolinium gallium garnet single crystals by pulsed laser deposition,” J. Cryst. Growth 310(24), 5392–5401 (2008).
[Crossref]

Levy, M.

M. Levy, “The on-chip integration of magnetooptic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1300–1306 (2002).
[Crossref]

Li, Y.-Q.

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Y.-Q. Li, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn. 38(3), 1564–1567 (2002).
[Crossref]

Liu, J.

Liu, Y.-L.

Q.-H. Yang, H.-W. Zhang, Q.-Y. Wen, and Y.-L. Liu, “Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method,” J. Appl. Phys. 108(7), 073901 (2010).
[Crossref]

Lorenzo, J.

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Y.-Q. Li, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn. 38(3), 1564–1567 (2002).
[Crossref]

Matsuo, H.

T. Soma, J. Satoh, and H. Matsuo, “Thermal expansion coefficient of GaAs and InP,” Solid State Commun. 42(12), 889–892 (1982).
[Crossref]

Michel, J.

Miller, D. A. B.

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[Crossref]

Mino, S.

T. Shintaku, A. Tate, and S. Mino, S. “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640 (1997).
[Crossref]

S. Mino, A. Tate, T. Uno, T. Shintaku, and A. Shibukawa, “Properties of Ce-substituted yttrium iron garnet film containing indium prepared by RF-sputtering,” Jpn. J. Appl. Phys. 32(7B), L994–L996 (1993).
[Crossref]

Mizumoto, T.

T. Mizumoto, R. Takei, and Y. Shoji, “Waveguide optical isolators for integrated optics,” IEEE J. Quantum Electron. 48(2), 252–260 (2012).
[Crossref]

M.-C. Tien, T. Mizumoto, P. Pintus, H. Kromer, and J. E. Bowers, “Silicon ring isolators with bonded nonreciprocal magneto-optic garnets,” Opt. Express 19(12), 11740–11745 (2011).
[Crossref] [PubMed]

Munroe, P.

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[Crossref]

Nahory, R. E.

R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Band gap versus composition and demonstration of Vegard's law for In1-xGaxAsyP1-y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659 (1978).
[Crossref]

Nayfeh, A. M.

Nur-E-Alam, M.

M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, “Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).

Okyay, A. K.

Onaran, E.

Onbasli, M. C.

Paroli, P.

P. Paroli, “Magneto-optical devices based on garnet films,” Thin Solid Films 114(1–2), 187–219 (1984).
[Crossref]

Pinnepalli, S.

Pintus, P.

Pollack, M. A.

R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Band gap versus composition and demonstration of Vegard's law for In1-xGaxAsyP1-y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659 (1978).
[Crossref]

Popova, E.

E. Popova, N. Keller, F. Gendron, M. Guyot, M.-C. Brianso, Y. Dumond, and M. Tessier, “Structure and magnetic properties of yttrium–iron–garnet thin films prepared by laser deposition,” J. Appl. Phys. 90(3), 1422 (2001).
[Crossref]

Premchander, P.

M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, “Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).

Qi, X.

S. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87(12), 121111 (2005).
[Crossref]

Qiye, W.

Q. Yang, Z. Huaiwu, L. Yingli, and W. Qiye, “Effect of post-annealing on the magnetic properties of Bi:YIG film by RF magnetron sputtering on Si substrates,” IEEE Trans. Magn. 43(9), 3652–3655 (2007).
[Crossref]

Ross, C. A.

T. Goto, M. C. Onbasli, D. H. Kim, V. Singh, M. Inoue, L. C. Kimerling, and C. A. Ross, “Nonreciprocal racetrack resonator based on vacuum-annealed magnetooptical cerium-substituted yttrium iron garnet,” Opt. Express 22(16), 19047–19054 (2014).
[Crossref]

T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, and C. A. Ross, “Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits,” J. Appl. Phys. 113(17), 17A939 (2013).
[Crossref]

T. Goto, M. C. Onbaşlı, and C. A. Ross, “Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits,” Opt. Express 20(27), 28507–28517 (2012).
[Crossref] [PubMed]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photon. 5(12), 758–762 (2011).
[Crossref]

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

L. Bi, J. Hu, L. Kimerling, and C. A. Ross, “Fabrication and characterization of As2S3/Y3Fe5O12 and Y3Fe5O12/SOI strip-loaded waveguides for integrated optical isolator applications,” Proc. SPIE 7604, 760406 (2010).
[Crossref]

Satoh, J.

T. Soma, J. Satoh, and H. Matsuo, “Thermal expansion coefficient of GaAs and InP,” Solid State Commun. 42(12), 889–892 (1982).
[Crossref]

Sepúlveda, B.

B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Magneto-optical phase modulation in integrated Mach-Zehnder interferometric sensors,” Sens. Actuators A Phys. 134(2), 339–347 (2007).
[Crossref]

Sequeda, F.

T. Suzuki, G. Zaharchuk, G. Gorman, F. Sequeda, and P. Labun, “Magnetic and magneto-optical properties and crystallization kinetics of rapid-thermally crystallized Bi-substituted garnet films,” IEEE Trans. Magn. 26(5), 1927–1929 (1990).
[Crossref]

Shibukawa, A.

S. Mino, A. Tate, T. Uno, T. Shintaku, and A. Shibukawa, “Properties of Ce-substituted yttrium iron garnet film containing indium prepared by RF-sputtering,” Jpn. J. Appl. Phys. 32(7B), L994–L996 (1993).
[Crossref]

Shintaku, T.

T. Shintaku, A. Tate, and S. Mino, S. “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640 (1997).
[Crossref]

S. Mino, A. Tate, T. Uno, T. Shintaku, and A. Shibukawa, “Properties of Ce-substituted yttrium iron garnet film containing indium prepared by RF-sputtering,” Jpn. J. Appl. Phys. 32(7B), L994–L996 (1993).
[Crossref]

Shoji, Y.

T. Mizumoto, R. Takei, and Y. Shoji, “Waveguide optical isolators for integrated optics,” IEEE J. Quantum Electron. 48(2), 252–260 (2012).
[Crossref]

Singh, M. R.

Singh, V.

Soma, T.

T. Soma, J. Satoh, and H. Matsuo, “Thermal expansion coefficient of GaAs and InP,” Solid State Commun. 42(12), 889–892 (1982).
[Crossref]

Stadler, B.

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Y.-Q. Li, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn. 38(3), 1564–1567 (2002).
[Crossref]

Stadler, B. J. H.

S. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87(12), 121111 (2005).
[Crossref]

Stritzker, B.

S. Leitenmeier, T. Korner, J. Griesbauer, M. Herbort, A. Heinrich, and B. Stritzker, “Studies on the growth of epitaxial bismuth-substituted iron garnet on gadolinium gallium garnet single crystals by pulsed laser deposition,” J. Cryst. Growth 310(24), 5392–5401 (2008).
[Crossref]

Sun, X.

Sung, S.

S. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87(12), 121111 (2005).
[Crossref]

Suzuki, T.

T. Suzuki, “Magnetic and magnetooptic properties of rapid thermally crystallized garnet films (invited),” J. Appl. Phys. 69(8), 4756 (1991).
[Crossref]

T. Suzuki, G. Zaharchuk, G. Gorman, F. Sequeda, and P. Labun, “Magnetic and magneto-optical properties and crystallization kinetics of rapid-thermally crystallized Bi-substituted garnet films,” IEEE Trans. Magn. 26(5), 1927–1929 (1990).
[Crossref]

Takeda, H.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
[Crossref]

Takei, R.

T. Mizumoto, R. Takei, and Y. Shoji, “Waveguide optical isolators for integrated optics,” IEEE J. Quantum Electron. 48(2), 252–260 (2012).
[Crossref]

Tanida, T.

M. Gomi, T. Tanida, and M. Abe, “rf sputtering of highly Bi-substituted garnet films on glass substrates for magneto-optic memory,” J. Appl. Phys. 57(8), 3888 (1985).
[Crossref]

Tate, A.

T. Shintaku, A. Tate, and S. Mino, S. “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640 (1997).
[Crossref]

S. Mino, A. Tate, T. Uno, T. Shintaku, and A. Shibukawa, “Properties of Ce-substituted yttrium iron garnet film containing indium prepared by RF-sputtering,” Jpn. J. Appl. Phys. 32(7B), L994–L996 (1993).
[Crossref]

Tessier, M.

E. Popova, N. Keller, F. Gendron, M. Guyot, M.-C. Brianso, Y. Dumond, and M. Tessier, “Structure and magnetic properties of yttrium–iron–garnet thin films prepared by laser deposition,” J. Appl. Phys. 90(3), 1422 (2001).
[Crossref]

Tien, M.-C.

Uno, T.

S. Mino, A. Tate, T. Uno, T. Shintaku, and A. Shibukawa, “Properties of Ce-substituted yttrium iron garnet film containing indium prepared by RF-sputtering,” Jpn. J. Appl. Phys. 32(7B), L994–L996 (1993).
[Crossref]

Vaccaro, K.

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Y.-Q. Li, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn. 38(3), 1564–1567 (2002).
[Crossref]

Vasiliev, M.

M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, “Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[Crossref]

Wen, Q.-Y.

Q.-H. Yang, H.-W. Zhang, Q.-Y. Wen, and Y.-L. Liu, “Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method,” J. Appl. Phys. 108(7), 073901 (2010).
[Crossref]

Wo, P. C.

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[Crossref]

Xie, Z.

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[Crossref]

Xu, Z.-C.

M. Huang and Z.-C. Xu, “Liquid phase epitaxy growth of bismuth-substituted yttrium iron garnet thin films for magneto-optical applications,” Thin Solid Films 450(2), 324–328 (2004).
[Crossref]

Yang, Q.

Q. Yang, Z. Huaiwu, L. Yingli, and W. Qiye, “Effect of post-annealing on the magnetic properties of Bi:YIG film by RF magnetron sputtering on Si substrates,” IEEE Trans. Magn. 43(9), 3652–3655 (2007).
[Crossref]

Yang, Q.-H.

Q.-H. Yang, H.-W. Zhang, Q.-Y. Wen, and Y.-L. Liu, “Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method,” J. Appl. Phys. 108(7), 073901 (2010).
[Crossref]

Yesilyurt, A.

Yingli, L.

Q. Yang, Z. Huaiwu, L. Yingli, and W. Qiye, “Effect of post-annealing on the magnetic properties of Bi:YIG film by RF magnetron sputtering on Si substrates,” IEEE Trans. Magn. 43(9), 3652–3655 (2007).
[Crossref]

Yip, P.

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Y.-Q. Li, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn. 38(3), 1564–1567 (2002).
[Crossref]

Yu, H. Y.

Zaharchuk, G.

T. Suzuki, G. Zaharchuk, G. Gorman, F. Sequeda, and P. Labun, “Magnetic and magneto-optical properties and crystallization kinetics of rapid-thermally crystallized Bi-substituted garnet films,” IEEE Trans. Magn. 26(5), 1927–1929 (1990).
[Crossref]

Zhang, H.-W.

Q.-H. Yang, H.-W. Zhang, Q.-Y. Wen, and Y.-L. Liu, “Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method,” J. Appl. Phys. 108(7), 073901 (2010).
[Crossref]

Zhang, S.-Y.

M. Huang and S.-Y. Zhang, “Growth and characterization of cerium-substituted yttrium iron garnet single crystals for magneto-optical applications,” Appl. Phys., A Mater. Sci. Process. 74(2), 177–180 (2002).
[Crossref]

Appl. Phys. Lett. (3)

R. E. Nahory, M. A. Pollack, W. D. Johnston, and R. L. Barns, “Band gap versus composition and demonstration of Vegard's law for In1-xGaxAsyP1-y lattice matched to InP,” Appl. Phys. Lett. 33(7), 659 (1978).
[Crossref]

S. Sung, X. Qi, and B. J. H. Stadler, “Integrating yttrium iron garnet onto nongarnet substrates with faster deposition rates and high reliability,” Appl. Phys. Lett. 87(12), 121111 (2005).
[Crossref]

T. Shintaku, A. Tate, and S. Mino, S. “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett. 71(12), 1640 (1997).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

M. Huang and S.-Y. Zhang, “Growth and characterization of cerium-substituted yttrium iron garnet single crystals for magneto-optical applications,” Appl. Phys., A Mater. Sci. Process. 74(2), 177–180 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Mizumoto, R. Takei, and Y. Shoji, “Waveguide optical isolators for integrated optics,” IEEE J. Quantum Electron. 48(2), 252–260 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Levy, “The on-chip integration of magnetooptic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron. 8(6), 1300–1306 (2002).
[Crossref]

IEEE Trans. Magn. (3)

B. Stadler, K. Vaccaro, P. Yip, J. Lorenzo, Y.-Q. Li, and M. Cherif, “Integration of magneto-optical garnet films by metal-organic chemical vapor deposition,” IEEE Trans. Magn. 38(3), 1564–1567 (2002).
[Crossref]

T. Suzuki, G. Zaharchuk, G. Gorman, F. Sequeda, and P. Labun, “Magnetic and magneto-optical properties and crystallization kinetics of rapid-thermally crystallized Bi-substituted garnet films,” IEEE Trans. Magn. 26(5), 1927–1929 (1990).
[Crossref]

Q. Yang, Z. Huaiwu, L. Yingli, and W. Qiye, “Effect of post-annealing on the magnetic properties of Bi:YIG film by RF magnetron sputtering on Si substrates,” IEEE Trans. Magn. 43(9), 3652–3655 (2007).
[Crossref]

J. Appl. Phys. (5)

T. Goto, Y. Eto, K. Kobayashi, Y. Haga, M. Inoue, and C. A. Ross, “Vacuum annealed cerium-substituted yttrium iron garnet films on non-garnet substrates for integrated optical circuits,” J. Appl. Phys. 113(17), 17A939 (2013).
[Crossref]

E. Popova, N. Keller, F. Gendron, M. Guyot, M.-C. Brianso, Y. Dumond, and M. Tessier, “Structure and magnetic properties of yttrium–iron–garnet thin films prepared by laser deposition,” J. Appl. Phys. 90(3), 1422 (2001).
[Crossref]

M. Gomi, T. Tanida, and M. Abe, “rf sputtering of highly Bi-substituted garnet films on glass substrates for magneto-optic memory,” J. Appl. Phys. 57(8), 3888 (1985).
[Crossref]

Q.-H. Yang, H.-W. Zhang, Q.-Y. Wen, and Y.-L. Liu, “Effects of off-stoichiometry and density on the magnetic and magneto-optical properties of yttrium iron garnet films by magnetron sputtering method,” J. Appl. Phys. 108(7), 073901 (2010).
[Crossref]

T. Suzuki, “Magnetic and magnetooptic properties of rapid thermally crystallized garnet films (invited),” J. Appl. Phys. 69(8), 4756 (1991).
[Crossref]

J. Cryst. Growth (1)

S. Leitenmeier, T. Korner, J. Griesbauer, M. Herbort, A. Heinrich, and B. Stritzker, “Studies on the growth of epitaxial bismuth-substituted iron garnet on gadolinium gallium garnet single crystals by pulsed laser deposition,” J. Cryst. Growth 310(24), 5392–5401 (2008).
[Crossref]

J. Phys. D Appl. Phys. (2)

M. Vasiliev, M. Nur-E-Alam, K. Alameh, P. Premchander, Y. T. Lee, V. A. Kotov, and Y. P. Lee, “Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content,” J. Phys. D Appl. Phys. 44(7), 075002 (2011).

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Mino, A. Tate, T. Uno, T. Shintaku, and A. Shibukawa, “Properties of Ce-substituted yttrium iron garnet film containing indium prepared by RF-sputtering,” Jpn. J. Appl. Phys. 32(7B), L994–L996 (1993).
[Crossref]

Light Sci. Appl. (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light Sci. Appl. 1(3), e1 (2012).

Nat. Photon. (1)

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photon. 5(12), 758–762 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. (1)

M. A. Gilleo and S. Geller, “Magnetic and crystallographic properties of substituted yttrium-iron garnet, 3Y2O3·xM2O3·(5-x)Fe2O3,” Phys. Rev. 110(1), 73–78 (1958).
[Crossref]

Phys. Rev. A (1)

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008).
[Crossref]

Proc. IEEE (1)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[Crossref]

Proc. SPIE (2)

L. Bi, J. Hu, L. Kimerling, and C. A. Ross, “Fabrication and characterization of As2S3/Y3Fe5O12 and Y3Fe5O12/SOI strip-loaded waveguides for integrated optical isolator applications,” Proc. SPIE 7604, 760406 (2010).
[Crossref]

L. Bi, J. Hu, G. F. Dionne, L. Kimerling, and C. A. Ross, “Monolithic integration of chalcogenide glass/iron garnet waveguides and resonators for on-chip nonreciprocal photonic devices,” Proc. SPIE 7941, 794105 (2011).
[Crossref]

Sens. Actuators A Phys. (1)

B. Sepúlveda, G. Armelles, and L. M. Lechuga, “Magneto-optical phase modulation in integrated Mach-Zehnder interferometric sensors,” Sens. Actuators A Phys. 134(2), 339–347 (2007).
[Crossref]

Solid State Commun. (1)

T. Soma, J. Satoh, and H. Matsuo, “Thermal expansion coefficient of GaAs and InP,” Solid State Commun. 42(12), 889–892 (1982).
[Crossref]

Thin Solid Films (2)

P. Paroli, “Magneto-optical devices based on garnet films,” Thin Solid Films 114(1–2), 187–219 (1984).
[Crossref]

M. Huang and Z.-C. Xu, “Liquid phase epitaxy growth of bismuth-substituted yttrium iron garnet thin films for magneto-optical applications,” Thin Solid Films 450(2), 324–328 (2004).
[Crossref]

Other (4)

R. Eason, Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials, 1st ed. (Wiley-Interscience, 2006).

L. Bi, “Magneto-optical oxide thin films and integrated nonreciprocal photonic devices,” PhD Thesis, Massachusetts Institute of Technology (2011).

G. Dionne, Magnetic Oxides (Springer, 2009).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

XRD patterns of Ce:YIG (160 nm)/YIG (40 nm)/Si3N4/Si films grown at substrate temperatures of 500°C, 560°C, and 640°C when YIG was deposited at (a) 2 Hz pulse rate and (b) 10 Hz pulse rate. Dashed lines indicate the 2θ positions of the corresponding peaks of YIG. The peaks at 2θ = 38° and 2θ = 44° correspond to Y2O3 (024) and Y2O3 (015), respectively.

Fig. 2
Fig. 2

TEM and AFM scan of the surface topography of Ce:YIG (160 nm)/YIG (40 nm)/Si3N4/Si films in which the YIG was grown at a substrate temperature of 640°C and at 2 Hz pulse rate. Grain sizes are around 8 μm in diameter, and rms roughness is 2.7 nm. (a) TEM image of Ce:YIG/YIG/Si3N4 layers (scale bar: 50 nm). high resolution TEM image of the interfaces between (b) silicon nitride and YIG, labelled 1, (c) YIG and Ce:YIG, labelled 2, (d) Ce:YIG and Au, labelled 3. Scale bars for (b) – (d): 5 nm, (e) AFM surface profile over 10 µm x 10 µm area.

Fig. 3
Fig. 3

STEM-EDX elemental mappings for Fe, O, Ce, Y, N, Au ions. The scale bar (shown below TEM image) is 600 nm. Cerium has not diffused into YIG or nitride layers, but there is oxygen interdiffusion in the top surface of the nitride.

Fig. 4
Fig. 4

Room temperature hysteresis loops of Ce:YIG/YIG/Si3N4/Si with magnetic field applied (a,b) in plane, (c,d) perpendicular to the film plane. Growth temperatures and PLD pulse repetition rates for the YIG layer for each film are shown in the legend. All Ce:YIG layers had the same deposition conditions, 640°C and 10 Hz.

Fig. 5
Fig. 5

Temperature dependence of magnetic properties of Ce:YIG film grown on YIG grown at 500°C and at 2 Hz. (a) Temperature dependence of saturation magnetization when the film is cooled under 10 kOe in plane bias field. (b) In plane magnetic hysteresis loops of the same film at 50, 200 and 292K. Inset shows the remanent magnetization and coercivities at 50, 200 and 292K.

Fig. 6
Fig. 6

(a) Faraday rotation of Ce:YIG (160 nm)/YIG (40 nm)/Si3N4/Si films grown at 640°C show around −2100 °cm−1 total Faraday rotation. Since YIG has opposite sign of Faraday rotation ( + 100 ° cm−1, measured but not shown here), the Ce:YIG layer has about −2650 ± 150 ° cm−1 Faraday rotation. The solid line shows smoothed data. All Faraday rotation loops were measured at 1550 nm wavelength. Backsides of Si substrates were not polished, which reduced the overall transmission of the samples. (b) Near-infrared transmission spectra of the Ce:YIG/YIG films grown at different YIG substrate temperatures. The fringes in the transmission spectra occur due to Fresnel reflections between the top and bottom surfaces of the films.

Metrics