Abstract

We theoretically investigate the coherent interaction between two orthogonal travelling-wave modes in a microdonut resonator symmetrically coupled to two bus waveguides. An analytical model has been developed to describe this structure using transfer matrix method. The simulation reveals that the two-mode microdonut can exhibit either a flat-top response or all-pass transmission, governed by the resonance spacing. Then, we implement analytical simulations to characterize the device and analyze the influence of coupling efficiencies and propagation losses of two resonant modes on behavior. Consequently, finite difference time domain simulations have been performed. The numerical results validate our theoretical analysis, and optical buffering effect is demonstrated in a pulse propagation simulation, when the two resonances are aligned. In addition, we show that the device function can be switched between flat-top filtering and all-pass filtering by tuning the local refractive index in a microdonut. Hence, this structure is promising for on-chip optical filtering and buffering applications.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator

Qingzhong Huang, Zhan Shu, Ge Song, Juguang Chen, Jinsong Xia, and Jinzhong Yu
Opt. Express 22(3) 3219-3227 (2014)

Experimental demonstration of a microdisk resonator filter/buffer utilizing two-mode interference

Qingzhong Huang, Juguang Chen, Ge Song, Kun Jie, Zhenzheng Wang, Yi Wang, Jinsong Xia, and Jinzhong Yu
Opt. Lett. 39(23) 6553-6556 (2014)

Electromagnetically induced transparency and absorption in a compact silicon ring-bus-ring-bus system

Zhenzheng Wang, Qi Lu, Yi Wang, Jinsong Xia, and Qingzhong Huang
Opt. Express 25(13) 14368-14377 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
    [Crossref] [PubMed]
  2. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's Waves),” J. Opt. Soc. Am. 31(3), 213 (1941).
    [Crossref]
  3. Y. Shuai, D. Zhao, Z. Tian, J.-H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
    [PubMed]
  4. Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
    [Crossref]
  5. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
    [Crossref] [PubMed]
  6. X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
    [Crossref] [PubMed]
  7. J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
    [Crossref]
  8. P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103(9), 091104 (2013).
    [Crossref]
  9. L.-L. Lin, Z.-Y. Li, and B. Lin, “Engineering waveguide-cavity resonant side coupling in a dynamically tunable ultracompact photonic crystal filter,” Phys. Rev. B 72(16), 165330 (2005).
    [Crossref]
  10. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
    [Crossref]
  11. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
    [Crossref] [PubMed]
  12. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
    [Crossref] [PubMed]
  13. L. Zhang, M. Song, T. Wu, L. Zou, R. G. Beausoleil, and A. E. Willner, “Embedded ring resonators for microphotonic applications,” Opt. Lett. 33(17), 1978–1980 (2008).
    [Crossref] [PubMed]
  14. T. Y. L. Ang and N. Q. Ngo, “Enhanced coupled-resonator-induced transparency and optical Fano resonance via intracavity backscattering,” J. Opt. Soc. Am. B 29(5), 1094–1103 (2012).
    [Crossref]
  15. Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
    [Crossref]
  16. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
    [Crossref]
  17. W. Suh and S. Fan, “Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics,” Opt. Lett. 28(19), 1763–1765 (2003).
    [Crossref] [PubMed]
  18. W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905–4907 (2004).
    [Crossref]
  19. Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066616 (2003).
    [Crossref] [PubMed]
  20. S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15(11), 2154–2165 (1997).
    [Crossref]
  21. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high Q silicon traveling-wave microresonators,” Opt. Express 18(19), 19541–19557 (2010).
    [Crossref] [PubMed]
  22. H. Rokhsari and K. J. Vahala, “Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics,” Phys. Rev. Lett. 92(25), 253905 (2004).
    [Crossref] [PubMed]
  23. D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16(1), 334–339 (2008).
    [Crossref] [PubMed]
  24. X. Du, S. Vincent, and T. Lu, “Full-vectorial whispering-gallery-mode cavity analysis,” Opt. Express 21(19), 22012–22022 (2013).
    [Crossref] [PubMed]
  25. Q. Huang, Z. Shu, G. Song, J. Chen, J. Xia, and J. Yu, “Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator,” Opt. Express 22(3), 3219–3227 (2014).
    [Crossref] [PubMed]
  26. Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Low-loss microdisk-based delay lines for narrowband optical filters,” IEEE Photon. Technol. Lett. 24(15), 1276–1278 (2012).
    [Crossref]
  27. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
    [Crossref] [PubMed]
  28. M. T. Wade and M. A. Popović, “Efficient wavelength multiplexers based on asymmetric response filters,” Opt. Express 21(9), 10903–10916 (2013).
    [Crossref] [PubMed]
  29. P. Chamorro-Posada, R. Gómez-Alcalá, and F. J. Fraile-Peláez, “Study of Optimal All-Pass Microring Resonator Delay Lines With a Genetic Algorithm,” J. Lightwave Technol. 32(8), 1477–1481 (2014).
    [Crossref]
  30. L. Yosef Mario and M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two-ring system,” Opt. Express 16(3), 1796–1807 (2008).
    [Crossref] [PubMed]

2014 (2)

2013 (5)

M. T. Wade and M. A. Popović, “Efficient wavelength multiplexers based on asymmetric response filters,” Opt. Express 21(9), 10903–10916 (2013).
[Crossref] [PubMed]

X. Du, S. Vincent, and T. Lu, “Full-vectorial whispering-gallery-mode cavity analysis,” Opt. Express 21(19), 22012–22022 (2013).
[Crossref] [PubMed]

Y. Shuai, D. Zhao, Z. Tian, J.-H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
[PubMed]

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103(9), 091104 (2013).
[Crossref]

2012 (2)

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Low-loss microdisk-based delay lines for narrowband optical filters,” IEEE Photon. Technol. Lett. 24(15), 1276–1278 (2012).
[Crossref]

T. Y. L. Ang and N. Q. Ngo, “Enhanced coupled-resonator-induced transparency and optical Fano resonance via intracavity backscattering,” J. Opt. Soc. Am. B 29(5), 1094–1103 (2012).
[Crossref]

2010 (2)

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high Q silicon traveling-wave microresonators,” Opt. Express 18(19), 19541–19557 (2010).
[Crossref] [PubMed]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

2009 (3)

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (1)

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

2006 (1)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

2005 (1)

L.-L. Lin, Z.-Y. Li, and B. Lin, “Engineering waveguide-cavity resonant side coupling in a dynamically tunable ultracompact photonic crystal filter,” Phys. Rev. B 72(16), 165330 (2005).
[Crossref]

2004 (5)

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

H. Rokhsari and K. J. Vahala, “Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics,” Phys. Rev. Lett. 92(25), 253905 (2004).
[Crossref] [PubMed]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905–4907 (2004).
[Crossref]

2003 (3)

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066616 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

W. Suh and S. Fan, “Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics,” Opt. Lett. 28(19), 1763–1765 (2003).
[Crossref] [PubMed]

1997 (1)

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15(11), 2154–2165 (1997).
[Crossref]

1941 (1)

Adibi, A.

Alipour, P.

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Low-loss microdisk-based delay lines for narrowband optical filters,” IEEE Photon. Technol. Lett. 24(15), 1276–1278 (2012).
[Crossref]

Ang, T. Y. L.

Atabaki, A. H.

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Low-loss microdisk-based delay lines for narrowband optical filters,” IEEE Photon. Technol. Lett. 24(15), 1276–1278 (2012).
[Crossref]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
[Crossref] [PubMed]

Beausoleil, R. G.

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

Boyd, R. W.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

Cassan, E.

Chadha, A. S.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Chamorro-Posada, P.

Chang, H.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Chen, J.

Chin, M. K.

Du, X.

Eftekhar, A. A.

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Low-loss microdisk-based delay lines for narrowband optical filters,” IEEE Photon. Technol. Lett. 24(15), 1276–1278 (2012).
[Crossref]

Fan, S.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Y. Shuai, D. Zhao, Z. Tian, J.-H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
[PubMed]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905–4907 (2004).
[Crossref]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066616 (2003).
[Crossref] [PubMed]

W. Suh and S. Fan, “Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics,” Opt. Lett. 28(19), 1763–1765 (2003).
[Crossref] [PubMed]

Fano, U.

Fédéli, J. M.

Fejer, M. M.

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

Fraile-Peláez, F. J.

Fuller, K. A.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Ge, F.

P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103(9), 091104 (2013).
[Crossref]

Gómez-Alcalá, R.

Hagness, S. C.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15(11), 2154–2165 (1997).
[Crossref]

Harris, J. S.

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

He, L.

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

Ho, S. T.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15(11), 2154–2165 (1997).
[Crossref]

Hosseini, E. S.

Hu, T.

P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103(9), 091104 (2013).
[Crossref]

Huang, Q.

Huo, Y.

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

Jiang, X.

P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103(9), 091104 (2013).
[Crossref]

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Kwong, D. L.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Laval, S.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

Li, Q.

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Low-loss microdisk-based delay lines for narrowband optical filters,” IEEE Photon. Technol. Lett. 24(15), 1276–1278 (2012).
[Crossref]

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high Q silicon traveling-wave microresonators,” Opt. Express 18(19), 19541–19557 (2010).
[Crossref] [PubMed]

Li, Z.-Y.

L.-L. Lin, Z.-Y. Li, and B. Lin, “Engineering waveguide-cavity resonant side coupling in a dynamically tunable ultracompact photonic crystal filter,” Phys. Rev. B 72(16), 165330 (2005).
[Crossref]

Lin, B.

L.-L. Lin, Z.-Y. Li, and B. Lin, “Engineering waveguide-cavity resonant side coupling in a dynamically tunable ultracompact photonic crystal filter,” Phys. Rev. B 72(16), 165330 (2005).
[Crossref]

Lin, L.-L.

L.-L. Lin, Z.-Y. Li, and B. Lin, “Engineering waveguide-cavity resonant side coupling in a dynamically tunable ultracompact photonic crystal filter,” Phys. Rev. B 72(16), 165330 (2005).
[Crossref]

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Lu, T.

Lyan, P.

Ma, Z.

Y. Shuai, D. Zhao, Z. Tian, J.-H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
[PubMed]

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Marris-Morini, D.

Ngo, N. Q.

Pan, J.

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

Plant, D. V.

Popovic, M. A.

Povinelli, M. L.

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Qiu, H.

P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103(9), 091104 (2013).
[Crossref]

Rafizadeh, D.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15(11), 2154–2165 (1997).
[Crossref]

Rokhsari, H.

H. Rokhsari and K. J. Vahala, “Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics,” Phys. Rev. Lett. 92(25), 253905 (2004).
[Crossref] [PubMed]

Rosenberger, A. T.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Sandhu, S.

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Seo, J.-H.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Y. Shuai, D. Zhao, Z. Tian, J.-H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
[PubMed]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Shu, Z.

Shuai, Y.

Y. Shuai, D. Zhao, Z. Tian, J.-H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
[PubMed]

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Smith, D. D.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Soltani, M.

Song, G.

Song, M.

Stuhrmann, N.

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905–4907 (2004).
[Crossref]

W. Suh and S. Fan, “Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics,” Opt. Lett. 28(19), 1763–1765 (2003).
[Crossref] [PubMed]

Taflove, A.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15(11), 2154–2165 (1997).
[Crossref]

Tian, Z.

Tomita, M.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Totsuka, K.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Vahala, K. J.

H. Rokhsari and K. J. Vahala, “Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics,” Phys. Rev. Lett. 92(25), 253905 (2004).
[Crossref] [PubMed]

Vincent, S.

Vivien, L.

Wade, M. T.

Wang, Z.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066616 (2003).
[Crossref] [PubMed]

Willner, A. E.

Wong, C. W.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Wu, T.

Xia, J.

Xiao, Y.-F.

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Yang, H.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Yang, J.

P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103(9), 091104 (2013).
[Crossref]

Yang, L.

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

Yang, X.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Yanik, M. F.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Yegnanarayanan, S.

Yosef Mario, L.

Yu, H.

P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103(9), 091104 (2013).
[Crossref]

Yu, J.

Yu, M.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Yu, P.

P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103(9), 091104 (2013).
[Crossref]

Zhang, L.

Zhao, D.

Y. Shuai, D. Zhao, Z. Tian, J.-H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
[PubMed]

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Zhou, W.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Y. Shuai, D. Zhao, Z. Tian, J.-H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
[PubMed]

Zhu, J.

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

Zou, L.

Appl. Phys. Lett. (5)

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

J. Pan, Y. Huo, S. Sandhu, N. Stuhrmann, M. L. Povinelli, J. S. Harris, M. M. Fejer, and S. Fan, “Tuning the coherent interaction in an on-chip photonic-crystal waveguide-resonator system,” Appl. Phys. Lett. 97(10), 101102 (2010).
[Crossref]

P. Yu, T. Hu, H. Qiu, F. Ge, H. Yu, X. Jiang, and J. Yang, “Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities,” Appl. Phys. Lett. 103(9), 091104 (2013).
[Crossref]

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905–4907 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multi-mode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Q. Li, A. A. Eftekhar, P. Alipour, A. H. Atabaki, S. Yegnanarayanan, and A. Adibi, “Low-loss microdisk-based delay lines for narrowband optical filters,” IEEE Photon. Technol. Lett. 24(15), 1276–1278 (2012).
[Crossref]

J. Lightwave Technol. (2)

P. Chamorro-Posada, R. Gómez-Alcalá, and F. J. Fraile-Peláez, “Study of Optimal All-Pass Microring Resonator Delay Lines With a Genetic Algorithm,” J. Lightwave Technol. 32(8), 1477–1481 (2014).
[Crossref]

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, “FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol. 15(11), 2154–2165 (1997).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (8)

L. Yosef Mario and M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two-ring system,” Opt. Express 16(3), 1796–1807 (2008).
[Crossref] [PubMed]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009).
[Crossref] [PubMed]

M. T. Wade and M. A. Popović, “Efficient wavelength multiplexers based on asymmetric response filters,” Opt. Express 21(9), 10903–10916 (2013).
[Crossref] [PubMed]

D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16(1), 334–339 (2008).
[Crossref] [PubMed]

X. Du, S. Vincent, and T. Lu, “Full-vectorial whispering-gallery-mode cavity analysis,” Opt. Express 21(19), 22012–22022 (2013).
[Crossref] [PubMed]

Q. Huang, Z. Shu, G. Song, J. Chen, J. Xia, and J. Yu, “Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator,” Opt. Express 22(3), 3219–3227 (2014).
[Crossref] [PubMed]

Y. Shuai, D. Zhao, Z. Tian, J.-H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
[PubMed]

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high Q silicon traveling-wave microresonators,” Opt. Express 18(19), 19541–19557 (2010).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Phys. Rev. B (1)

L.-L. Lin, Z.-Y. Li, and B. Lin, “Engineering waveguide-cavity resonant side coupling in a dynamically tunable ultracompact photonic crystal filter,” Phys. Rev. B 72(16), 165330 (2005).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 066616 (2003).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

H. Rokhsari and K. J. Vahala, “Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics,” Phys. Rev. Lett. 92(25), 253905 (2004).
[Crossref] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Schematic of a two-mode microdonut resonator symmetrically coupled with two bus waveguides. (b) General schematic of the interference between two coupling-out fields in the drop channel as the resonances of WGM1 and WGM2 are aligned or appropriately detuned.
Fig. 2
Fig. 2 (a) Amplitude/power spectra of Dr1, Dr2, St and Sd, and (b) phase spectra of Dr1, Dr2 and St for the phase spacing Δψ/π = 0.08. (c) Amplitude/power spectra of Dr1, Dr2, St and Sd, and (d) phase spectra of Dr1, Dr2 and St for Δψ/π = 0. (e) Power spectra in the through and drop channels, and (f) time delay spectra in the through channel for Δψ/π ranging from 0 to 0.220.
Fig. 3
Fig. 3 The power spectra in the (a) drop and (b) through channels as a function of phase detuning under various coupling efficiencies. (c) IL, out-of-band rejection (black line), and ERthr (blue line) of the passband vs. k12 and k22. (d) BW1dB, BW3dB, and shape factor of the passband vs. k12 and k22.
Fig. 4
Fig. 4 The power spectra at the (a) drop and (b) through ports as a function of phase detuning under various k22, and (c) IL and out-of-band rejection of the passband vs. k22, when keeping k12 = 0.10. The power spectra at the (d) drop and (e) through ports as a function of phase detuning under various α22, and (f) IL, BW1dB, and BW3dB of the passband vs. α22, when keeping α12 = 0.999.
Fig. 5
Fig. 5 The (a) power and (b) time delay spectra in the through channel as a function of phase detuning under various coupling efficiencies. (c) IL and maximum time delay vs. k12 and k22. (d) BWdel and DBP vs. k12 and k22.
Fig. 6
Fig. 6 The (a) power and (b) time delay spectra in the through channel as a function of phase detuning under various k22, and (c) IL and maximum time delay vs. k22, when keeping k12 = 0.10. The (d) power and (e) time delay spectra as a function of phase detuning under various α22, and (f) IL and maximum time delay vs. k22, when keeping α12 = 0.999.
Fig. 7
Fig. 7 The power transmissions simulated by FDTD methods for (a) Ri = 3.50 μm, W = 0.50 μm, (b) Ri = 3.55 μm, W = 0.50 μm, (c) Ri = 3.55 μm, W = 0.47 μm, and (d) Ri = 3.60 μm, W = 0.50 μm. The blue and red lines represent the drop and through channels, respectively.
Fig. 8
Fig. 8 The power transmissions for (a) Ri = 3.50 μm, W = 0.50 μm, (b) Ri = 3.55 μm, W = 0.47 μm, and (c) Ri = 3.60 μm, W = 0.50 μm. In (a), (b) and (c), the open circles and solid black lines represent the FDTD and analytical simulations, respectively. (d) The field distributions in two-bus coupled microdonut resonator corresponding to positions A, B, C, and D in the transmission spectra.
Fig. 9
Fig. 9 (a) Temporal pulse shape detected by the monitor positioned at the output port of a straight waveguide without a microdonut coupled. (b) Temporal pulse shape detected by the monitor positioned at the output port of a straight waveguide coupled with a microdonut. T denotes the time, and c is the light speed in vacuum. Insets of (a) and (b): the field distributions in the microdonut resonator corresponding to cT1 and cT2.
Fig. 10
Fig. 10 The power spectra in the (a) through and (b) drop channels under various Δn. Inset: the schematic of a microdonut with a local refractive index change, where Ri = 3.60 μm, Rd = 4.00 μm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[ b 0 b 1 b 2 ] = [ t 0 j k 1 j k 2 j k 1 t 1 k c j k 2 k c t 2 ] [ a 0 a 1 a 2 ]
{ a 1 = b 1 α 1 e j φ 1 t 1 b 2 ( α 1 α 2 e j φ 1 e j φ 2 ) 1 / 2 ( k c ) a 2 = b 2 α 2 e j φ 2 t 2 b 1 ( α 1 α 2 e j φ 1 e j φ 2 ) 1 / 2 ( k c )
{ a 1 = b 1 α 1 e j φ 1 t 1 + b 2 ( α 1 α 2 e j φ 1 e j φ 2 ) 1 / 2 ( k c ) a 2 = b 2 α 2 e j φ 2 t 2 + b 1 ( α 1 α 2 e j φ 1 e j φ 2 ) 1 / 2 ( k c )
{ S t = b 0 a 0 = t 0 j k 1 a 1 a 0 j k 2 a 2 a 0 S d = d 0 a 0 = j k 1 ( α 1 e j φ 1 ) 1 / 2 b 1 a 0 j k 2 ( α 2 e j φ 2 ) 1 / 2 b 2 a 0
τ = λ 2 2 π c d Φ d λ

Metrics