Abstract

We report terahertz surface plasmon resonance (SPR) sensing based on prism-coupling to the spoof surface plasmon polariton (SSPP) mode existing on periodically grooved metal films. It was demonstrated that, except for the fundamental mode of the SSPP, there was also a higher mode SSPP wave when the depth of groove was larger. Both fundamental and high-order modes of SSPP could be used for terahertz sensing. We compared the performance of different modes of SSPP on the sensing sensitivity using both reflection amplitude and phase-jump information. The results indicated that the gap distance between the prism base and the metal film had a significant influence on the reflectivity of SPR sensing by affecting the coupling efficiency of an evanescent wave to an SSPP wave; also, high-order mode SSPP-based sensing had a high sensitivity of up to 2.27 THz/RIU, which nearly doubled the sensitivity of the fundamental mode. The application of high-mode SSPP has enormous potential for ultra-sensitive SPR sensing in the terahertz regime.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-order modes of spoof surface plasmonic wave transmission on thin metal film structure

Xiaoyong Liu, Yijun Feng, Bo Zhu, Junming Zhao, and Tian Jiang
Opt. Express 21(25) 31155-31165 (2013)

Terahertz surface plasmon polaritons on periodically corrugated metal surfaces

Linfang Shen, Xudong Chen, and Tzong-Jer Yang
Opt. Express 16(5) 3326-3333 (2008)

Switching terahertz wave with grating-coupled Kretschmann configuration

Li Jiu-sheng
Opt. Express 25(16) 19422-19428 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Hornauer, H. Kapitza, and H. Raether, “The dispersion relation of surface plasmons on rough surfaces,” J. Phys. D Appl. Phys. 7(9), L100 (1974).
    [Crossref]
  2. H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).
  3. S. A. Maier, Plasmonics: Fundamentals and Applications: Fundamentals and Applications (Springer, 2007).
  4. R. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” London Edinburgh Dublin Philos. Mag. J. Sci. 4(21), 396–402 (1902).
    [Crossref]
  5. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light (Surface plasma waves excitation by light and decay into photons applied to nonradiative modes),” Z. Naturforsch Teil A 23, 2135 (1968).
  6. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Angew. Phys. 216(4), 398–410 (1968).
  7. R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
    [Crossref]
  8. K. S. Phillips and Q. J. Cheng, “Surface plasmon resonance,” in Molecular Biomethods Handbook (Springer, 2008).
  9. G. Gauglitz and G. Proll, “Strategies for label-free optical detection,” in Biosensing for the 21st Century (Springer, 2008).
  10. R. Georgiadis, K. Peterlinz, and A. Peterson, “Quantitative measurements and modeling of kinetics in nucleic acid monolayer films using SPR spectroscopy,” J. Am. Chem. Soc. 122(13), 3166–3173 (2000).
    [Crossref]
  11. J. M. McDonnell, “Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition,” Curr. Opin. Chem. Biol. 5(5), 572–577 (2001).
    [Crossref] [PubMed]
  12. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [Crossref]
  13. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
    [Crossref]
  14. T. R. Globus, D. L. Woolard, T. Khromova, T. W. Crowe, M. Bykhovskaia, B. L. Gelmont, J. Hesler, and A. C. Samuels, “THz-spectroscopy of biological molecules,” J. Biol. Phys. 29(2–3), 89–100 (2003).
    [Crossref] [PubMed]
  15. M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4–5), 310–313 (2002).
    [Crossref] [PubMed]
  16. H. Barlow and A. Cullen, “Surface waves,” Proc. IEE Part III: Radio Commun. Eng. 100(68), 329–341 (1953).
  17. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  18. F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
    [Crossref]
  19. C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [Crossref]
  20. A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” in SPIE NanoScience + Engineering (International Society for Optics and Photonics, 2010), p. 77572R.
  21. R. F. Aroca, D. J. Ross, and C. Domingo, “Surface-enhanced infrared spectroscopy,” Appl. Spectrosc. 58(11), 324A–338A (2004).
    [Crossref] [PubMed]
  22. M. Osawa, “Surface-enhanced infrared absorption,” in Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001).
  23. F. Miyamaru, M. W. Takeda, T. Suzuki, and C. Otani, “Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals,” Opt. Express 15(22), 14804–14809 (2007).
    [Crossref] [PubMed]
  24. M. Golosovsky, V. Lirtsman, V. Yashunsky, D. Davidov, and B. Aroeti, “Midinfrared surface-plasmon resonance: A novel biophysical tool for studying living cells,” J. Appl. Phys. 105(10), 102036 (2009).
    [Crossref]
  25. B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
    [Crossref]
  26. T. Jiang, L. Shen, X. Zhang, and L.-X. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. M 8, 91–102 (2009).
    [Crossref]
  27. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1119 (1983).
    [Crossref] [PubMed]
  28. K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
    [Crossref]
  29. H. Hirori, M. Nagai, and K. Tanaka, “Destructive interference effect on surface plasmon resonance in terahertz attenuated total reflection,” Opt. Express 13(26), 10801–10814 (2005).
    [Crossref] [PubMed]
  30. A. OttoE. Burstein and F. Demartina, eds., “The surface polariton response in attenuated total reflection,” in Polaritons: Proceedings of the the First Taormina Research Conference on the Structure of Matter, E. Burstein and F. Demartina, eds. (Pentagon, New York, 1974), pp. 117–121.
  31. B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
    [Crossref]
  32. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
    [Crossref] [PubMed]
  33. B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, “Lattice resonances in antenna arrays for liquid sensing in the terahertz regime,” Opt. Express 19(15), 14653–14661 (2011).
    [Crossref] [PubMed]
  34. C.-Y. Chen, I.-W. Un, N.-H. Tai, and T.-J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2009).
    [Crossref] [PubMed]

2013 (1)

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

2012 (1)

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

2011 (1)

2009 (3)

T. Jiang, L. Shen, X. Zhang, and L.-X. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. M 8, 91–102 (2009).
[Crossref]

C.-Y. Chen, I.-W. Un, N.-H. Tai, and T.-J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2009).
[Crossref] [PubMed]

M. Golosovsky, V. Lirtsman, V. Yashunsky, D. Davidov, and B. Aroeti, “Midinfrared surface-plasmon resonance: A novel biophysical tool for studying living cells,” J. Appl. Phys. 105(10), 102036 (2009).
[Crossref]

2008 (1)

C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

2007 (3)

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[Crossref]

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
[Crossref]

F. Miyamaru, M. W. Takeda, T. Suzuki, and C. Otani, “Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals,” Opt. Express 15(22), 14804–14809 (2007).
[Crossref] [PubMed]

2005 (4)

H. Hirori, M. Nagai, and K. Tanaka, “Destructive interference effect on surface plasmon resonance in terahertz attenuated total reflection,” Opt. Express 13(26), 10801–10814 (2005).
[Crossref] [PubMed]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

2004 (2)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

R. F. Aroca, D. J. Ross, and C. Domingo, “Surface-enhanced infrared spectroscopy,” Appl. Spectrosc. 58(11), 324A–338A (2004).
[Crossref] [PubMed]

2003 (1)

T. R. Globus, D. L. Woolard, T. Khromova, T. W. Crowe, M. Bykhovskaia, B. L. Gelmont, J. Hesler, and A. C. Samuels, “THz-spectroscopy of biological molecules,” J. Biol. Phys. 29(2–3), 89–100 (2003).
[Crossref] [PubMed]

2002 (1)

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4–5), 310–313 (2002).
[Crossref] [PubMed]

2001 (1)

J. M. McDonnell, “Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition,” Curr. Opin. Chem. Biol. 5(5), 572–577 (2001).
[Crossref] [PubMed]

2000 (2)

R. Georgiadis, K. Peterlinz, and A. Peterson, “Quantitative measurements and modeling of kinetics in nucleic acid monolayer films using SPR spectroscopy,” J. Am. Chem. Soc. 122(13), 3166–3173 (2000).
[Crossref]

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[Crossref]

1983 (1)

1974 (1)

D. Hornauer, H. Kapitza, and H. Raether, “The dispersion relation of surface plasmons on rough surfaces,” J. Phys. D Appl. Phys. 7(9), L100 (1974).
[Crossref]

1968 (2)

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light (Surface plasma waves excitation by light and decay into photons applied to nonradiative modes),” Z. Naturforsch Teil A 23, 2135 (1968).

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Angew. Phys. 216(4), 398–410 (1968).

1953 (1)

H. Barlow and A. Cullen, “Surface waves,” Proc. IEE Part III: Radio Commun. Eng. 100(68), 329–341 (1953).

1902 (1)

R. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” London Edinburgh Dublin Philos. Mag. J. Sci. 4(21), 396–402 (1902).
[Crossref]

Alexander, R. W.

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Aroca, R. F.

Aroeti, B.

M. Golosovsky, V. Lirtsman, V. Yashunsky, D. Davidov, and B. Aroeti, “Midinfrared surface-plasmon resonance: A novel biophysical tool for studying living cells,” J. Appl. Phys. 105(10), 102036 (2009).
[Crossref]

Arwin, H.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[Crossref]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Barlow, H.

H. Barlow and A. Cullen, “Surface waves,” Proc. IEE Part III: Radio Commun. Eng. 100(68), 329–341 (1953).

Beigang, R.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Breese, M. B.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Bykhovskaia, M.

T. R. Globus, D. L. Woolard, T. Khromova, T. W. Crowe, M. Bykhovskaia, B. L. Gelmont, J. Hesler, and A. C. Samuels, “THz-spectroscopy of biological molecules,” J. Biol. Phys. 29(2–3), 89–100 (2003).
[Crossref] [PubMed]

Chang, S.-H.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Chen, C.-Y.

Chen, Z. C.

Crowe, T. W.

T. R. Globus, D. L. Woolard, T. Khromova, T. W. Crowe, M. Bykhovskaia, B. L. Gelmont, J. Hesler, and A. C. Samuels, “THz-spectroscopy of biological molecules,” J. Biol. Phys. 29(2–3), 89–100 (2003).
[Crossref] [PubMed]

Cullen, A.

H. Barlow and A. Cullen, “Surface waves,” Proc. IEE Part III: Radio Commun. Eng. 100(68), 329–341 (1953).

Davidov, D.

M. Golosovsky, V. Lirtsman, V. Yashunsky, D. Davidov, and B. Aroeti, “Midinfrared surface-plasmon resonance: A novel biophysical tool for studying living cells,” J. Appl. Phys. 105(10), 102036 (2009).
[Crossref]

Domingo, C.

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Fernández-Domínguez, A.

C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Fernández-Domínguez, A. I.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Fischer, B.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4–5), 310–313 (2002).
[Crossref] [PubMed]

Garcia-Vidal, F.

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

García-Vidal, F.

C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Gelmont, B. L.

T. R. Globus, D. L. Woolard, T. Khromova, T. W. Crowe, M. Bykhovskaia, B. L. Gelmont, J. Hesler, and A. C. Samuels, “THz-spectroscopy of biological molecules,” J. Biol. Phys. 29(2–3), 89–100 (2003).
[Crossref] [PubMed]

Georgiadis, R.

R. Georgiadis, K. Peterlinz, and A. Peterson, “Quantitative measurements and modeling of kinetics in nucleic acid monolayer films using SPR spectroscopy,” J. Am. Chem. Soc. 122(13), 3166–3173 (2000).
[Crossref]

Giannini, V.

Globus, T. R.

T. R. Globus, D. L. Woolard, T. Khromova, T. W. Crowe, M. Bykhovskaia, B. L. Gelmont, J. Hesler, and A. C. Samuels, “THz-spectroscopy of biological molecules,” J. Biol. Phys. 29(2–3), 89–100 (2003).
[Crossref] [PubMed]

Golosovsky, M.

M. Golosovsky, V. Lirtsman, V. Yashunsky, D. Davidov, and B. Aroeti, “Midinfrared surface-plasmon resonance: A novel biophysical tool for studying living cells,” J. Appl. Phys. 105(10), 102036 (2009).
[Crossref]

Hanham, S. M.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, “Lattice resonances in antenna arrays for liquid sensing in the terahertz regime,” Opt. Express 19(15), 14653–14661 (2011).
[Crossref] [PubMed]

Helm, H.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4–5), 310–313 (2002).
[Crossref] [PubMed]

Hesler, J.

T. R. Globus, D. L. Woolard, T. Khromova, T. W. Crowe, M. Bykhovskaia, B. L. Gelmont, J. Hesler, and A. C. Samuels, “THz-spectroscopy of biological molecules,” J. Biol. Phys. 29(2–3), 89–100 (2003).
[Crossref] [PubMed]

Hirori, H.

Homola, J.

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
[Crossref]

Hong, M.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Hong, M. H.

Hornauer, D.

D. Hornauer, H. Kapitza, and H. Raether, “The dispersion relation of surface plasmons on rough surfaces,” J. Phys. D Appl. Phys. 7(9), L100 (1974).
[Crossref]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Jiang, T.

T. Jiang, L. Shen, X. Zhang, and L.-X. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. M 8, 91–102 (2009).
[Crossref]

Johansen, K.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[Crossref]

Kapitza, H.

D. Hornauer, H. Kapitza, and H. Raether, “The dispersion relation of surface plasmons on rough surfaces,” J. Phys. D Appl. Phys. 7(9), L100 (1974).
[Crossref]

Khromova, T.

T. R. Globus, D. L. Woolard, T. Khromova, T. W. Crowe, M. Bykhovskaia, B. L. Gelmont, J. Hesler, and A. C. Samuels, “THz-spectroscopy of biological molecules,” J. Biol. Phys. 29(2–3), 89–100 (2003).
[Crossref] [PubMed]

Klein, N.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, “Lattice resonances in antenna arrays for liquid sensing in the terahertz regime,” Opt. Express 19(15), 14653–14661 (2011).
[Crossref] [PubMed]

Kleine-Ostmann, T.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[Crossref]

Koch, M.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[Crossref]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light (Surface plasma waves excitation by light and decay into photons applied to nonradiative modes),” Z. Naturforsch Teil A 23, 2135 (1968).

Krumbholz, N.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[Crossref]

Kurner, T.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[Crossref]

Liedberg, B.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[Crossref]

Liew, Y. F.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, “Lattice resonances in antenna arrays for liquid sensing in the terahertz regime,” Opt. Express 19(15), 14653–14661 (2011).
[Crossref] [PubMed]

Lirtsman, V.

M. Golosovsky, V. Lirtsman, V. Yashunsky, D. Davidov, and B. Aroeti, “Midinfrared surface-plasmon resonance: A novel biophysical tool for studying living cells,” J. Appl. Phys. 105(10), 102036 (2009).
[Crossref]

Long, L. L.

Lundström, I.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[Crossref]

Maier, S.

C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Maier, S. A.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, “Lattice resonances in antenna arrays for liquid sensing in the terahertz regime,” Opt. Express 19(15), 14653–14661 (2011).
[Crossref] [PubMed]

Martin-Moreno, L.

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Martín-Moreno, L.

C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

McDonnell, J. M.

J. M. McDonnell, “Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition,” Curr. Opin. Chem. Biol. 5(5), 572–577 (2001).
[Crossref] [PubMed]

Mittleman, D.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[Crossref]

Miyamaru, F.

Nagai, M.

Neu, J.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Ng, B.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

B. Ng, S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. F. Liew, N. Klein, M. H. Hong, and S. A. Maier, “Lattice resonances in antenna arrays for liquid sensing in the terahertz regime,” Opt. Express 19(15), 14653–14661 (2011).
[Crossref] [PubMed]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Ordal, M. A.

Otani, C.

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Angew. Phys. 216(4), 398–410 (1968).

Pendry, J.

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Peterlinz, K.

R. Georgiadis, K. Peterlinz, and A. Peterson, “Quantitative measurements and modeling of kinetics in nucleic acid monolayer films using SPR spectroscopy,” J. Am. Chem. Soc. 122(13), 3166–3173 (2000).
[Crossref]

Peterson, A.

R. Georgiadis, K. Peterlinz, and A. Peterson, “Quantitative measurements and modeling of kinetics in nucleic acid monolayer films using SPR spectroscopy,” J. Am. Chem. Soc. 122(13), 3166–3173 (2000).
[Crossref]

Piesiewicz, R.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[Crossref]

Plochocka, P.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4–5), 310–313 (2002).
[Crossref] [PubMed]

Raether, H.

D. Hornauer, H. Kapitza, and H. Raether, “The dispersion relation of surface plasmons on rough surfaces,” J. Phys. D Appl. Phys. 7(9), L100 (1974).
[Crossref]

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light (Surface plasma waves excitation by light and decay into photons applied to nonradiative modes),” Z. Naturforsch Teil A 23, 2135 (1968).

Rahm, M.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Ran, L.-X.

T. Jiang, L. Shen, X. Zhang, and L.-X. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. M 8, 91–102 (2009).
[Crossref]

Reinhard, B.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Ross, D. J.

Samuels, A. C.

T. R. Globus, D. L. Woolard, T. Khromova, T. W. Crowe, M. Bykhovskaia, B. L. Gelmont, J. Hesler, and A. C. Samuels, “THz-spectroscopy of biological molecules,” J. Biol. Phys. 29(2–3), 89–100 (2003).
[Crossref] [PubMed]

Schatz, G. C.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Schmitt, K. M.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Schoebel, J.

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Shen, L.

T. Jiang, L. Shen, X. Zhang, and L.-X. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. M 8, 91–102 (2009).
[Crossref]

Sherry, L. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Slavík, R.

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
[Crossref]

Suzuki, T.

Tai, N.-H.

Takeda, M. W.

Tanaka, K.

Tang, M.

Uhd Jepsen, P.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4–5), 310–313 (2002).
[Crossref] [PubMed]

Un, I.-W.

Van Duyne, R. P.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Walther, M.

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4–5), 310–313 (2002).
[Crossref] [PubMed]

Ward, C. A.

Wiley, B. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Wollrab, V.

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Wood, R.

R. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” London Edinburgh Dublin Philos. Mag. J. Sci. 4(21), 396–402 (1902).
[Crossref]

Woolard, D. L.

T. R. Globus, D. L. Woolard, T. Khromova, T. W. Crowe, M. Bykhovskaia, B. L. Gelmont, J. Hesler, and A. C. Samuels, “THz-spectroscopy of biological molecules,” J. Biol. Phys. 29(2–3), 89–100 (2003).
[Crossref] [PubMed]

Wu, J.

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Xia, Y.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Yashunsky, V.

M. Golosovsky, V. Lirtsman, V. Yashunsky, D. Davidov, and B. Aroeti, “Midinfrared surface-plasmon resonance: A novel biophysical tool for studying living cells,” J. Appl. Phys. 105(10), 102036 (2009).
[Crossref]

Yen, T.-J.

Zhang, X.

T. Jiang, L. Shen, X. Zhang, and L.-X. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. M 8, 91–102 (2009).
[Crossref]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Adv. Opt. Mater. (1)

B. Ng, J. Wu, S. M. Hanham, A. I. Fernández-Domínguez, N. Klein, Y. F. Liew, M. B. Breese, M. Hong, and S. A. Maier, “Spoof plasmon surfaces: a novel platform for THz sensing,” Adv. Opt. Mater. 1(8), 543–548 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, and M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100(22), 221101 (2012).
[Crossref]

Appl. Spectrosc. (1)

Biopolymers (1)

M. Walther, P. Plochocka, B. Fischer, H. Helm, and P. Uhd Jepsen, “Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy,” Biopolymers 67(4–5), 310–313 (2002).
[Crossref] [PubMed]

Curr. Opin. Chem. Biol. (1)

J. M. McDonnell, “Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition,” Curr. Opin. Chem. Biol. 5(5), 572–577 (2001).
[Crossref] [PubMed]

IEEE Antennas Propag. Mag. (1)

R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antennas Propag. Mag. 49(6), 24–39 (2007).
[Crossref]

J. Am. Chem. Soc. (1)

R. Georgiadis, K. Peterlinz, and A. Peterson, “Quantitative measurements and modeling of kinetics in nucleic acid monolayer films using SPR spectroscopy,” J. Am. Chem. Soc. 122(13), 3166–3173 (2000).
[Crossref]

J. Appl. Phys. (1)

M. Golosovsky, V. Lirtsman, V. Yashunsky, D. Davidov, and B. Aroeti, “Midinfrared surface-plasmon resonance: A novel biophysical tool for studying living cells,” J. Appl. Phys. 105(10), 102036 (2009).
[Crossref]

J. Biol. Phys. (1)

T. R. Globus, D. L. Woolard, T. Khromova, T. W. Crowe, M. Bykhovskaia, B. L. Gelmont, J. Hesler, and A. C. Samuels, “THz-spectroscopy of biological molecules,” J. Biol. Phys. 29(2–3), 89–100 (2003).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

F. Garcia-Vidal, L. Martin-Moreno, and J. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[Crossref]

J. Phys. D Appl. Phys. (1)

D. Hornauer, H. Kapitza, and H. Raether, “The dispersion relation of surface plasmons on rough surfaces,” J. Phys. D Appl. Phys. 7(9), L100 (1974).
[Crossref]

London Edinburgh Dublin Philos. Mag. J. Sci. (1)

R. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” London Edinburgh Dublin Philos. Mag. J. Sci. 4(21), 396–402 (1902).
[Crossref]

Nano Lett. (1)

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref] [PubMed]

Nat. Photonics (1)

C. R. Williams, S. R. Andrews, S. Maier, A. Fernández-Domínguez, L. Martín-Moreno, and F. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[Crossref]

Opt. Express (4)

Proc. IEE Part III: Radio Commun. Eng. (1)

H. Barlow and A. Cullen, “Surface waves,” Proc. IEE Part III: Radio Commun. Eng. 100(68), 329–341 (1953).

Prog. Electromagn. Res. M (1)

T. Jiang, L. Shen, X. Zhang, and L.-X. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. M 8, 91–102 (2009).
[Crossref]

Rev. Sci. Instrum. (1)

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[Crossref]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Sens. Actuators B Chem. (1)

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123(1), 10–12 (2007).
[Crossref]

Z. Angew. Phys. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Angew. Phys. 216(4), 398–410 (1968).

Z. Naturforsch Teil A (1)

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light (Surface plasma waves excitation by light and decay into photons applied to nonradiative modes),” Z. Naturforsch Teil A 23, 2135 (1968).

Other (7)

H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).

S. A. Maier, Plasmonics: Fundamentals and Applications: Fundamentals and Applications (Springer, 2007).

K. S. Phillips and Q. J. Cheng, “Surface plasmon resonance,” in Molecular Biomethods Handbook (Springer, 2008).

G. Gauglitz and G. Proll, “Strategies for label-free optical detection,” in Biosensing for the 21st Century (Springer, 2008).

A. Rusina, M. Durach, and M. I. Stockman, “Theory of spoof plasmons in real metals,” in SPIE NanoScience + Engineering (International Society for Optics and Photonics, 2010), p. 77572R.

M. Osawa, “Surface-enhanced infrared absorption,” in Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001).

A. OttoE. Burstein and F. Demartina, eds., “The surface polariton response in attenuated total reflection,” in Polaritons: Proceedings of the the First Taormina Research Conference on the Structure of Matter, E. Burstein and F. Demartina, eds. (Pentagon, New York, 1974), pp. 117–121.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Otto geometry of the surface plasmon excitation in the attenuated total reflection regime using a high-refractive-index prism and a periodically grooved metal film. Grooves are of width w, depth h, and periodicity p. g is the distance of the gap between the prism base and the surface of the metal film. k 0 , k p are the wavevectors in free space and in the prism, respectively; k s p p is the wave vector of the surface plasmon wave. θ e x t is the external angle with respect to the normal line of the prism facet, and θ int is the incident angle at the base of the prism. The resonance reflectivity approaches zero, and the off-resonance reflectivity approaches unity.
Fig. 2
Fig. 2 Dispersion relation of the SSPP of periodic grooves with p = 60 µm, w = 20 µm, and h = 100 µm. The blue solid lines are calculated from Eq. (3), and the red lines with triangle symbols are obtained using COMSOL software. Obviously, there are two branches that correspond to the fundamental and high modes of SSPP. The dashed dot line is the dispersion relation of the light in vacuum, and the dashed straight line is the dispersion relation of the parallel wavevector k / / of horizontal incidence. Theoretically resonance will occur at the intersections A and B. The insets show the electric field distributions for different modes of SSPP at the edge of first Brillouin zone, k s p p = π / p (left for the fundamental mode, and right for the high mode). The dielectric function of the surrounding medium is set be one in the calculation.
Fig. 3
Fig. 3 Reflectivity at gaps of g = 100 µm and 400 µm. Two dips ( f res 1 0 .49THz , f res 2 1 .91THz ) are observed in the reflection spectrum, which correspond to surface plasmon resonance of the fundamental and high modes. Insets (a) and (b) are the time-average energy density distribution at f r e s 1 f r e s 2 , respectively, for g = 100 µm, and inset (c) is average energy density distribution at f r e s 1 for g = 400 µm. The most right inset is the simulation model, showing a unit cell of the periodic groove. The metal film is set as Au, as described by the Drude model.
Fig. 4
Fig. 4 Simulated reflectivity spectra of different mode SPRs for different gap distances: (a) for the fundamental mode SPR at n d = 1.0 ; (b) for the high-order mode SPR at n d = 1.0 ; (c) and (d) are for fundamental mode and high mode SPR of n d = 1.1 . The dips correspond to surface plasmon resonances. The deeper the dip, the more efficient the evanescent wave coupling into the spoof SPP.
Fig. 5
Fig. 5 Reflectivity and phase change spectra for different dielectric media with various refractive indices n d for different mode SSPP sensing at the optimal gap. (a) Reflectivity for different n d ; (b) phase change Δ φ ; (c) absolute gradient of Δ φ , Δ φ = | d ( Δ φ ) / d f | . The left part is for the fundamental mode SSPR sensing, and the right part is for high mode SSPR sensing. Note the phase in (b) are extended to show a monotonous change.
Fig. 6
Fig. 6 Resonance frequencies versus refractive indices. The dashed and solid lines are the linear regression fits of the resonance frequency corresponding to a sensitivity of 1.28THz/RIU and 2.27THz/RIU for the fundamental mode and the high mode SSPP-based sensing, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f s p 1 = 1. 76 1.28 n d
k s p p = k / / = 2 π λ 0 n p sin ( θ int )
k s p p = ( ε d k 0 2 + ( w p ) 2 k d 2 tan 2 ( k d h ) ) 1 / 2
k d = k 0 ε d ( 1 + l s ( i + 1 ) w ) 1 / 2

Metrics