Abstract

We present an experimental realization of a flexible quantum channel where the Hilbert space dimensionality can be controlled electronically. Using electro-optical modulators (EOM) and narrow-band optical filters, quantum information is encoded and decoded in the temporal degrees of freedom of photons from a long-coherence-time single-photon source. Our results demonstrate the feasibility of a generic scheme for encoding and transmitting multidimensional quantum information over the existing fiber-optical telecommunications infrastructure.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multidimensional quantum information based on single-photon temporal wavepackets

Alex Hayat, Xingxing Xing, Amir Feizpour, and Aephraim M. Steinberg
Opt. Express 20(28) 29174-29184 (2012)

Experimental detection of polarization-frequency quantum correlations in a photonic quantum channel by local operations

Jian-Shun Tang, Yi-Tao Wang, Geng Chen, Yang Zou, Chuan-Feng Li, Guang-Can Guo, Ying Yu, Mi-Feng Li, Guo-Wei Zha, Hai-Qiao Ni, Zhi-Chuan Niu, Manuel Gessner, and Heinz-Peter Breuer
Optica 2(12) 1014-1018 (2015)

Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion

J. Nunn, L. J. Wright, C. Söller, L. Zhang, I. A. Walmsley, and B. J. Smith
Opt. Express 21(13) 15959-15973 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
    [Crossref] [PubMed]
  2. T. Vértesi, S. Pironio, and N. Brunner, “Closing the Detection Loophole in Bell Experiments Using Qudits,” Phys. Rev. Lett. 104(6), 060401 (2010).
    [Crossref] [PubMed]
  3. R. Lapkiewicz, P. Li, C. Schaeff, N. K. Langford, S. Ramelow, M. Wieśniak, and A. Zeilinger, “Experimental non-classicality of an indivisible quantum system,” Nature 474(7352), 490–493 (2011).
    [Crossref] [PubMed]
  4. H. Bechmann-Pasquinucci and A. Peres, “Quantum Cryptography with 3-State Systems,” Phys. Rev. Lett. 85(15), 3313–3316 (2000).
    [Crossref] [PubMed]
  5. J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008).
    [Crossref]
  6. J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64(21), 2495–2498 (1990).
    [Crossref] [PubMed]
  7. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989).
    [Crossref] [PubMed]
  8. Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65(3), 321–324 (1990).
    [Crossref] [PubMed]
  9. P. G. Kwiat, W. A. Vareka, C. K. Hong, H. Nathel, and R. Y. Chiao, “Correlated two-photon interference in a dual-beam Michelson interferometer,” Phys. Rev. A 41(5), 2910–2913 (1990).
    [Crossref] [PubMed]
  10. P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47(4), R2472–R2475 (1993).
    [Crossref] [PubMed]
  11. H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, “Creating high dimensional time-bin entanglement using mode-locked lasers,” Quant. Inf. Comp. 2, 425–433 (2002).
  12. D. Stucki, H. Zbinden, and N. Gisin, “A Fabry-Perot-like two-photon interferometer for high-dimensional time-bin entanglement,” J. Mod. Opt. 52(18), 2637–2648 (2005).
    [Crossref]
  13. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3(10), 692–695 (2007).
    [Crossref]
  14. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
    [Crossref]
  15. R. T. Thew, A. Acin, H. Zbinden, and N. Gisin, “Bell-Type Test of Energy-Time Entangled Qutrits,” Phys. Rev. Lett. 93(1), 010503 (2004).
    [Crossref]
  16. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [Crossref] [PubMed]
  17. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
    [Crossref]
  18. A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
    [Crossref]
  19. P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits, qutrits and ququads accurately prepared and delivered on demand,” New J. Phys. 15(5), 053007 (2013).
    [Crossref]
  20. L. Olislager, E. Woodhead, K. P. Huy, J. Merolla, P. Emplit, and S. Massar, “Creating and manipulating entangled optical qubits in the frequency domain,” Phys. Rev. A 89(5), 052323 (2014).
    [Crossref]
  21. L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. P. Huy, and J. Merolla, “Implementing two-photon interference in the frequency domain with electro-optic phase modulators,” New J. Phys. 14(4), 043015 (2012).
    [Crossref]
  22. J. Capmany and C. R. Fernandez-Pousa, “Conditional Frequency-Domain Beamsplitters Using Phase Modulators,” IEEE Photonics J. 3(5), 954–967 (2011).
    [Crossref]
  23. M. Bloch, S. W. McLaughlin, J. M. Merolla, and F. Patois, “Frequency-coded quantum key distribution,” Opt. Lett. 32(3), 301–303 (2007).
    [Crossref] [PubMed]
  24. J. M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, H. Porte, and W. T. Rhodes, “Phase-modulation transmission system for quantum cryptography,” Opt. Lett. 24(2), 104–106 (1999).
    [Crossref] [PubMed]
  25. A. Hayat, X. Xing, A. Feizpour, and A. M. Steinberg, “Multidimensional quantum information based on single-photon temporal wavepackets,” Opt. Express 20(28), 29174–29184 (2012).
    [Crossref] [PubMed]
  26. F. Wolfgramm, X. Xing, A. Cerè, A. Predojević, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16(22), 18145–18151 (2008).
    [Crossref] [PubMed]
  27. E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
    [Crossref]
  28. A. Bhattacharyya, “On a measure of divergence between two statistical populations defined by their probability distributions,” Bulletin of the Calcutta Mathematical Society 35, 99–109 (1943).

2014 (1)

L. Olislager, E. Woodhead, K. P. Huy, J. Merolla, P. Emplit, and S. Massar, “Creating and manipulating entangled optical qubits in the frequency domain,” Phys. Rev. A 89(5), 052323 (2014).
[Crossref]

2013 (1)

P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits, qutrits and ququads accurately prepared and delivered on demand,” New J. Phys. 15(5), 053007 (2013).
[Crossref]

2012 (2)

L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. P. Huy, and J. Merolla, “Implementing two-photon interference in the frequency domain with electro-optic phase modulators,” New J. Phys. 14(4), 043015 (2012).
[Crossref]

A. Hayat, X. Xing, A. Feizpour, and A. M. Steinberg, “Multidimensional quantum information based on single-photon temporal wavepackets,” Opt. Express 20(28), 29174–29184 (2012).
[Crossref] [PubMed]

2011 (3)

J. Capmany and C. R. Fernandez-Pousa, “Conditional Frequency-Domain Beamsplitters Using Phase Modulators,” IEEE Photonics J. 3(5), 954–967 (2011).
[Crossref]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

R. Lapkiewicz, P. Li, C. Schaeff, N. K. Langford, S. Ramelow, M. Wieśniak, and A. Zeilinger, “Experimental non-classicality of an indivisible quantum system,” Nature 474(7352), 490–493 (2011).
[Crossref] [PubMed]

2010 (1)

T. Vértesi, S. Pironio, and N. Brunner, “Closing the Detection Loophole in Bell Experiments Using Qudits,” Phys. Rev. Lett. 104(6), 060401 (2010).
[Crossref] [PubMed]

2008 (2)

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008).
[Crossref]

F. Wolfgramm, X. Xing, A. Cerè, A. Predojević, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16(22), 18145–18151 (2008).
[Crossref] [PubMed]

2007 (3)

M. Bloch, S. W. McLaughlin, J. M. Merolla, and F. Patois, “Frequency-coded quantum key distribution,” Opt. Lett. 32(3), 301–303 (2007).
[Crossref] [PubMed]

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3(10), 692–695 (2007).
[Crossref]

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

2005 (2)

D. Stucki, H. Zbinden, and N. Gisin, “A Fabry-Perot-like two-photon interferometer for high-dimensional time-bin entanglement,” J. Mod. Opt. 52(18), 2637–2648 (2005).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

2004 (1)

R. T. Thew, A. Acin, H. Zbinden, and N. Gisin, “Bell-Type Test of Energy-Time Entangled Qutrits,” Phys. Rev. Lett. 93(1), 010503 (2004).
[Crossref]

2002 (1)

H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, “Creating high dimensional time-bin entanglement using mode-locked lasers,” Quant. Inf. Comp. 2, 425–433 (2002).

2001 (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

2000 (1)

H. Bechmann-Pasquinucci and A. Peres, “Quantum Cryptography with 3-State Systems,” Phys. Rev. Lett. 85(15), 3313–3316 (2000).
[Crossref] [PubMed]

1999 (2)

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

J. M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, H. Porte, and W. T. Rhodes, “Phase-modulation transmission system for quantum cryptography,” Opt. Lett. 24(2), 104–106 (1999).
[Crossref] [PubMed]

1993 (1)

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47(4), R2472–R2475 (1993).
[Crossref] [PubMed]

1990 (3)

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64(21), 2495–2498 (1990).
[Crossref] [PubMed]

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65(3), 321–324 (1990).
[Crossref] [PubMed]

P. G. Kwiat, W. A. Vareka, C. K. Hong, H. Nathel, and R. Y. Chiao, “Correlated two-photon interference in a dual-beam Michelson interferometer,” Phys. Rev. A 41(5), 2910–2913 (1990).
[Crossref] [PubMed]

1989 (1)

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989).
[Crossref] [PubMed]

1943 (1)

A. Bhattacharyya, “On a measure of divergence between two statistical populations defined by their probability distributions,” Bulletin of the Calcutta Mathematical Society 35, 99–109 (1943).

Acin, A.

R. T. Thew, A. Acin, H. Zbinden, and N. Gisin, “Bell-Type Test of Energy-Time Entangled Qutrits,” Phys. Rev. Lett. 93(1), 010503 (2004).
[Crossref]

Andersson, E.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Barreiro, J. T.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

Barter, O.

P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits, qutrits and ququads accurately prepared and delivered on demand,” New J. Phys. 15(5), 053007 (2013).
[Crossref]

Bechmann-Pasquinucci, H.

H. Bechmann-Pasquinucci and A. Peres, “Quantum Cryptography with 3-State Systems,” Phys. Rev. Lett. 85(15), 3313–3316 (2000).
[Crossref] [PubMed]

Beveratos, A.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3(10), 692–695 (2007).
[Crossref]

Bhattacharyya, A.

A. Bhattacharyya, “On a measure of divergence between two statistical populations defined by their probability distributions,” Bulletin of the Calcutta Mathematical Society 35, 99–109 (1943).

Black, E. D.

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Bloch, M.

Brendel, J.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Brunner, N.

T. Vértesi, S. Pironio, and N. Brunner, “Closing the Detection Loophole in Bell Experiments Using Qudits,” Phys. Rev. Lett. 104(6), 060401 (2010).
[Crossref] [PubMed]

Buller, G. S.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Capmany, J.

J. Capmany and C. R. Fernandez-Pousa, “Conditional Frequency-Domain Beamsplitters Using Phase Modulators,” IEEE Photonics J. 3(5), 954–967 (2011).
[Crossref]

Cerè, A.

Chiao, R. Y.

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47(4), R2472–R2475 (1993).
[Crossref] [PubMed]

P. G. Kwiat, W. A. Vareka, C. K. Hong, H. Nathel, and R. Y. Chiao, “Correlated two-photon interference in a dual-beam Michelson interferometer,” Phys. Rev. A 41(5), 2910–2913 (1990).
[Crossref] [PubMed]

Cussey, J.

L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. P. Huy, and J. Merolla, “Implementing two-photon interference in the frequency domain with electro-optic phase modulators,” New J. Phys. 14(4), 043015 (2012).
[Crossref]

Dada, A. C.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

de Riedmatten, H.

H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, “Creating high dimensional time-bin entanglement using mode-locked lasers,” Quant. Inf. Comp. 2, 425–433 (2002).

Dilley, J.

P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits, qutrits and ququads accurately prepared and delivered on demand,” New J. Phys. 15(5), 053007 (2013).
[Crossref]

Emplit, P.

L. Olislager, E. Woodhead, K. P. Huy, J. Merolla, P. Emplit, and S. Massar, “Creating and manipulating entangled optical qubits in the frequency domain,” Phys. Rev. A 89(5), 052323 (2014).
[Crossref]

L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. P. Huy, and J. Merolla, “Implementing two-photon interference in the frequency domain with electro-optic phase modulators,” New J. Phys. 14(4), 043015 (2012).
[Crossref]

Feizpour, A.

Fernandez-Pousa, C. R.

J. Capmany and C. R. Fernandez-Pousa, “Conditional Frequency-Domain Beamsplitters Using Phase Modulators,” IEEE Photonics J. 3(5), 954–967 (2011).
[Crossref]

Franson, J. D.

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989).
[Crossref] [PubMed]

Furfaro, L.

L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. P. Huy, and J. Merolla, “Implementing two-photon interference in the frequency domain with electro-optic phase modulators,” New J. Phys. 14(4), 043015 (2012).
[Crossref]

Gisin, N.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3(10), 692–695 (2007).
[Crossref]

D. Stucki, H. Zbinden, and N. Gisin, “A Fabry-Perot-like two-photon interferometer for high-dimensional time-bin entanglement,” J. Mod. Opt. 52(18), 2637–2648 (2005).
[Crossref]

R. T. Thew, A. Acin, H. Zbinden, and N. Gisin, “Bell-Type Test of Energy-Time Entangled Qutrits,” Phys. Rev. Lett. 93(1), 010503 (2004).
[Crossref]

H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, “Creating high dimensional time-bin entanglement using mode-locked lasers,” Quant. Inf. Comp. 2, 425–433 (2002).

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Goedgebuer, J. P.

Halder, M.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3(10), 692–695 (2007).
[Crossref]

Hayat, A.

Holleczek, A.

P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits, qutrits and ququads accurately prepared and delivered on demand,” New J. Phys. 15(5), 053007 (2013).
[Crossref]

Hong, C. K.

P. G. Kwiat, W. A. Vareka, C. K. Hong, H. Nathel, and R. Y. Chiao, “Correlated two-photon interference in a dual-beam Michelson interferometer,” Phys. Rev. A 41(5), 2910–2913 (1990).
[Crossref] [PubMed]

Huy, K. P.

L. Olislager, E. Woodhead, K. P. Huy, J. Merolla, P. Emplit, and S. Massar, “Creating and manipulating entangled optical qubits in the frequency domain,” Phys. Rev. A 89(5), 052323 (2014).
[Crossref]

L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. P. Huy, and J. Merolla, “Implementing two-photon interference in the frequency domain with electro-optic phase modulators,” New J. Phys. 14(4), 043015 (2012).
[Crossref]

Kuhn, A.

P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits, qutrits and ququads accurately prepared and delivered on demand,” New J. Phys. 15(5), 053007 (2013).
[Crossref]

Kwiat, P. G.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47(4), R2472–R2475 (1993).
[Crossref] [PubMed]

P. G. Kwiat, W. A. Vareka, C. K. Hong, H. Nathel, and R. Y. Chiao, “Correlated two-photon interference in a dual-beam Michelson interferometer,” Phys. Rev. A 41(5), 2910–2913 (1990).
[Crossref] [PubMed]

Langford, N. K.

R. Lapkiewicz, P. Li, C. Schaeff, N. K. Langford, S. Ramelow, M. Wieśniak, and A. Zeilinger, “Experimental non-classicality of an indivisible quantum system,” Nature 474(7352), 490–493 (2011).
[Crossref] [PubMed]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

Lapkiewicz, R.

R. Lapkiewicz, P. Li, C. Schaeff, N. K. Langford, S. Ramelow, M. Wieśniak, and A. Zeilinger, “Experimental non-classicality of an indivisible quantum system,” Nature 474(7352), 490–493 (2011).
[Crossref] [PubMed]

Leach, J.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Li, P.

R. Lapkiewicz, P. Li, C. Schaeff, N. K. Langford, S. Ramelow, M. Wieśniak, and A. Zeilinger, “Experimental non-classicality of an indivisible quantum system,” Nature 474(7352), 490–493 (2011).
[Crossref] [PubMed]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Mandel, L.

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65(3), 321–324 (1990).
[Crossref] [PubMed]

Marcikic, I.

H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, “Creating high dimensional time-bin entanglement using mode-locked lasers,” Quant. Inf. Comp. 2, 425–433 (2002).

Massar, S.

L. Olislager, E. Woodhead, K. P. Huy, J. Merolla, P. Emplit, and S. Massar, “Creating and manipulating entangled optical qubits in the frequency domain,” Phys. Rev. A 89(5), 052323 (2014).
[Crossref]

L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. P. Huy, and J. Merolla, “Implementing two-photon interference in the frequency domain with electro-optic phase modulators,” New J. Phys. 14(4), 043015 (2012).
[Crossref]

Mazurenko, Y.

Mbodji, I.

L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. P. Huy, and J. Merolla, “Implementing two-photon interference in the frequency domain with electro-optic phase modulators,” New J. Phys. 14(4), 043015 (2012).
[Crossref]

McLaughlin, S. W.

Merolla, J.

L. Olislager, E. Woodhead, K. P. Huy, J. Merolla, P. Emplit, and S. Massar, “Creating and manipulating entangled optical qubits in the frequency domain,” Phys. Rev. A 89(5), 052323 (2014).
[Crossref]

L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. P. Huy, and J. Merolla, “Implementing two-photon interference in the frequency domain with electro-optic phase modulators,” New J. Phys. 14(4), 043015 (2012).
[Crossref]

Merolla, J. M.

Mérolla, J. M.

Mitchell, M. W.

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Nathel, H.

P. G. Kwiat, W. A. Vareka, C. K. Hong, H. Nathel, and R. Y. Chiao, “Correlated two-photon interference in a dual-beam Michelson interferometer,” Phys. Rev. A 41(5), 2910–2913 (1990).
[Crossref] [PubMed]

Nisbet-Jones, P. B. R.

P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits, qutrits and ququads accurately prepared and delivered on demand,” New J. Phys. 15(5), 053007 (2013).
[Crossref]

Olislager, L.

L. Olislager, E. Woodhead, K. P. Huy, J. Merolla, P. Emplit, and S. Massar, “Creating and manipulating entangled optical qubits in the frequency domain,” Phys. Rev. A 89(5), 052323 (2014).
[Crossref]

L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. P. Huy, and J. Merolla, “Implementing two-photon interference in the frequency domain with electro-optic phase modulators,” New J. Phys. 14(4), 043015 (2012).
[Crossref]

Ou, Z. Y.

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65(3), 321–324 (1990).
[Crossref] [PubMed]

Padgett, M. J.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Patois, F.

Peres, A.

H. Bechmann-Pasquinucci and A. Peres, “Quantum Cryptography with 3-State Systems,” Phys. Rev. Lett. 85(15), 3313–3316 (2000).
[Crossref] [PubMed]

Peters, N. A.

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

Pironio, S.

T. Vértesi, S. Pironio, and N. Brunner, “Closing the Detection Loophole in Bell Experiments Using Qudits,” Phys. Rev. Lett. 104(6), 060401 (2010).
[Crossref] [PubMed]

Porte, H.

Predojevic, A.

Ramelow, S.

R. Lapkiewicz, P. Li, C. Schaeff, N. K. Langford, S. Ramelow, M. Wieśniak, and A. Zeilinger, “Experimental non-classicality of an indivisible quantum system,” Nature 474(7352), 490–493 (2011).
[Crossref] [PubMed]

Rarity, J. G.

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64(21), 2495–2498 (1990).
[Crossref] [PubMed]

Rhodes, W. T.

Scarani, V.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3(10), 692–695 (2007).
[Crossref]

Schaeff, C.

R. Lapkiewicz, P. Li, C. Schaeff, N. K. Langford, S. Ramelow, M. Wieśniak, and A. Zeilinger, “Experimental non-classicality of an indivisible quantum system,” Nature 474(7352), 490–493 (2011).
[Crossref] [PubMed]

Simon, C.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3(10), 692–695 (2007).
[Crossref]

Steinberg, A. M.

Stucki, D.

D. Stucki, H. Zbinden, and N. Gisin, “A Fabry-Perot-like two-photon interferometer for high-dimensional time-bin entanglement,” J. Mod. Opt. 52(18), 2637–2648 (2005).
[Crossref]

Tapster, P. R.

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64(21), 2495–2498 (1990).
[Crossref] [PubMed]

Thew, R. T.

R. T. Thew, A. Acin, H. Zbinden, and N. Gisin, “Bell-Type Test of Energy-Time Entangled Qutrits,” Phys. Rev. Lett. 93(1), 010503 (2004).
[Crossref]

Tittel, W.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Vareka, W. A.

P. G. Kwiat, W. A. Vareka, C. K. Hong, H. Nathel, and R. Y. Chiao, “Correlated two-photon interference in a dual-beam Michelson interferometer,” Phys. Rev. A 41(5), 2910–2913 (1990).
[Crossref] [PubMed]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Vértesi, T.

T. Vértesi, S. Pironio, and N. Brunner, “Closing the Detection Loophole in Bell Experiments Using Qudits,” Phys. Rev. Lett. 104(6), 060401 (2010).
[Crossref] [PubMed]

Wang, L. J.

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65(3), 321–324 (1990).
[Crossref] [PubMed]

Wei, T. C.

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008).
[Crossref]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Wiesniak, M.

R. Lapkiewicz, P. Li, C. Schaeff, N. K. Langford, S. Ramelow, M. Wieśniak, and A. Zeilinger, “Experimental non-classicality of an indivisible quantum system,” Nature 474(7352), 490–493 (2011).
[Crossref] [PubMed]

Wolfgramm, F.

Woodhead, E.

L. Olislager, E. Woodhead, K. P. Huy, J. Merolla, P. Emplit, and S. Massar, “Creating and manipulating entangled optical qubits in the frequency domain,” Phys. Rev. A 89(5), 052323 (2014).
[Crossref]

L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. P. Huy, and J. Merolla, “Implementing two-photon interference in the frequency domain with electro-optic phase modulators,” New J. Phys. 14(4), 043015 (2012).
[Crossref]

Xing, X.

Zbinden, H.

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3(10), 692–695 (2007).
[Crossref]

D. Stucki, H. Zbinden, and N. Gisin, “A Fabry-Perot-like two-photon interferometer for high-dimensional time-bin entanglement,” J. Mod. Opt. 52(18), 2637–2648 (2005).
[Crossref]

R. T. Thew, A. Acin, H. Zbinden, and N. Gisin, “Bell-Type Test of Energy-Time Entangled Qutrits,” Phys. Rev. Lett. 93(1), 010503 (2004).
[Crossref]

H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, “Creating high dimensional time-bin entanglement using mode-locked lasers,” Quant. Inf. Comp. 2, 425–433 (2002).

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Zeilinger, A.

R. Lapkiewicz, P. Li, C. Schaeff, N. K. Langford, S. Ramelow, M. Wieśniak, and A. Zeilinger, “Experimental non-classicality of an indivisible quantum system,” Nature 474(7352), 490–493 (2011).
[Crossref] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Zou, X. Y.

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65(3), 321–324 (1990).
[Crossref] [PubMed]

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Bulletin of the Calcutta Mathematical Society (1)

A. Bhattacharyya, “On a measure of divergence between two statistical populations defined by their probability distributions,” Bulletin of the Calcutta Mathematical Society 35, 99–109 (1943).

IEEE Photonics J. (1)

J. Capmany and C. R. Fernandez-Pousa, “Conditional Frequency-Domain Beamsplitters Using Phase Modulators,” IEEE Photonics J. 3(5), 954–967 (2011).
[Crossref]

J. Mod. Opt. (1)

D. Stucki, H. Zbinden, and N. Gisin, “A Fabry-Perot-like two-photon interferometer for high-dimensional time-bin entanglement,” J. Mod. Opt. 52(18), 2637–2648 (2005).
[Crossref]

Nat. Phys. (4)

M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3(10), 692–695 (2007).
[Crossref]

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008).
[Crossref]

Nature (2)

R. Lapkiewicz, P. Li, C. Schaeff, N. K. Langford, S. Ramelow, M. Wieśniak, and A. Zeilinger, “Experimental non-classicality of an indivisible quantum system,” Nature 474(7352), 490–493 (2011).
[Crossref] [PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

New J. Phys. (2)

L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. P. Huy, and J. Merolla, “Implementing two-photon interference in the frequency domain with electro-optic phase modulators,” New J. Phys. 14(4), 043015 (2012).
[Crossref]

P. B. R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, and A. Kuhn, “Photonic qubits, qutrits and ququads accurately prepared and delivered on demand,” New J. Phys. 15(5), 053007 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (3)

P. G. Kwiat, W. A. Vareka, C. K. Hong, H. Nathel, and R. Y. Chiao, “Correlated two-photon interference in a dual-beam Michelson interferometer,” Phys. Rev. A 41(5), 2910–2913 (1990).
[Crossref] [PubMed]

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47(4), R2472–R2475 (1993).
[Crossref] [PubMed]

L. Olislager, E. Woodhead, K. P. Huy, J. Merolla, P. Emplit, and S. Massar, “Creating and manipulating entangled optical qubits in the frequency domain,” Phys. Rev. A 89(5), 052323 (2014).
[Crossref]

Phys. Rev. Lett. (8)

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

R. T. Thew, A. Acin, H. Zbinden, and N. Gisin, “Bell-Type Test of Energy-Time Entangled Qutrits,” Phys. Rev. Lett. 93(1), 010503 (2004).
[Crossref]

H. Bechmann-Pasquinucci and A. Peres, “Quantum Cryptography with 3-State Systems,” Phys. Rev. Lett. 85(15), 3313–3316 (2000).
[Crossref] [PubMed]

J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of Hyperentangled Photon Pairs,” Phys. Rev. Lett. 95(26), 260501 (2005).
[Crossref] [PubMed]

T. Vértesi, S. Pironio, and N. Brunner, “Closing the Detection Loophole in Bell Experiments Using Qudits,” Phys. Rev. Lett. 104(6), 060401 (2010).
[Crossref] [PubMed]

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64(21), 2495–2498 (1990).
[Crossref] [PubMed]

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989).
[Crossref] [PubMed]

Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, “Observation of nonlocal interference in separated photon channels,” Phys. Rev. Lett. 65(3), 321–324 (1990).
[Crossref] [PubMed]

Quant. Inf. Comp. (1)

H. de Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, “Creating high dimensional time-bin entanglement using mode-locked lasers,” Quant. Inf. Comp. 2, 425–433 (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The photon pairs were generated within a PPKTP crystal in a Type-II down-conversion cavity where a KTP crystal was used to compensate the birefringence of the cavity. The idler photon was then sent to a cavity for frequency filtering, which projects the signal photon to a narrow band. The signal photon is then sent through the quantum channel (3 meters of single-mode optical fiber) for symbol encoding, transmission, and decoding with EOMs and a detection cavity. After the cavities, the signal and idler are then sent to SPCMs for subsequent coincidence measurement. FPC: fiber polarization controller, SPCM: single photon counting module, PD: photodiode, OC: optical chopper, AWG: arbitrary waveform generator, TDC: time to digital converter.

Fig. 2
Fig. 2

Characterization of the measurement system using classical pulses. The frequency spectrum (as a function of frequency shifts to the carrier frequency) after transmitting a | 0 symbol and having the receiver carry out measurements for each of the five states, as discussed in the text.

Fig. 3
Fig. 3

State projection probability measurements. Visualization of the relative coincidence counts. The variation of height across the diagonal is from losses due to the bandwidth limitation of the electronics. The near-zero height of coincidence counts between | S + and | S basis shows good phase coherence of the encoding. Two ( 3 × 3 and 2 × 2 ) diagonal blocks can be seen clearly for the vectors drawn from the two different bases.

Fig. 4
Fig. 4

Measurement and simulation of the coherence in the superposition state. Coincidence rate (left axis) as a function of phase difference between transmitter and receiver EOMs, relative to the peak value R Δ θ = 180 with its axis to the left, and predicted projection probabilities (right axis, no free parameters). The red dashed line indicates the classical detection probability of incoherent mixture of the computational basis vectors | 0 , | 1 and | 2 with the same weight as in | S + and | S .

Tables (2)

Tables Icon

Table 1 Phase Profiles Written on EOM for State Preparation and Projection*

Tables Icon

Table 2 Normalized Coincidence Rates between the Trigger Photon and Encoded Photon for Each Combination of Encoding and Decoding Basis*

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

| ψ k = d ω f k ~ ( ω ) a ω | 0
p ¯ k j T 0 2 τ filter | d τ f j * ( t ) f k ( t ) | 2 = T 0 2 τ filter | Ψ j | Ψ k | 2
| ψ k = d ω f ˜ k ( ω Δ ) a ω | 0 .
{ | 0 = | ω p - Δ | 1 = | ω p | 2 = | ω p + Δ
| S θ J 1 ( β ) e i θ | ω p Δ + J 0 ( β ) | ω p + J 1 ( β ) e i θ | ω p + Δ
| S + J 1 ( β + ) e i θ + | ω p Δ + J 0 ( β + ) | ω p + J 1 ( β + ) e i θ + | ω p + Δ , | S J 1 ( β ) e i θ | ω p Δ + J 0 ( β ) | ω p + J 1 ( β ) e i θ | ω p + Δ

Metrics