Abstract

In this paper, we analyze near-field vector components of a metallic circular disk array (MCDA) plasmonic optical antenna and their contribution to quantum dot infrared photodetector (QDIP) enhancement. The near-field vector components of the MCDA optical antenna and their distribution in the QD active region are simulated. The near-field overlap integral with the QD active region is calculated at different wavelengths and compared with the QDIP enhancement spectrum. The x-component (Ex) of the near-field vector shows a larger intensity overlap integral and stronger correlation with the QDIP enhancement than Ez and thus is determined to be the major near-field component to the QDIP enhancement.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum efficiency of plasmonic-coupled quantum dot infrared photodetectors for single- color detection: the upper limit of plasmonic enhancement

S. C. Lee, J.-H. Kang, Q. Park, S. Krishna, and S. R. J. Brueck
Opt. Express 28(5) 7618-7633 (2020)

Quantum dot infrared photodetector enhanced by surface plasma wave excitation

S. C. Lee, S. Krishna, and S. R. J. Brueck
Opt. Express 17(25) 23160-23168 (2009)

Comparison of two-dimensional arrays of gold disks and holes for plasmonic enhancement of Ge/Si quantum dot mid-infrared photodetectors

A. I. Yakimov, V. V. Kirienko, and A. V. Dvurechenskii
Opt. Mater. Express 8(11) 3479-3484 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  2. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Advances in Optics and Photonics 1(3), 438–483 (2009).
    [Crossref]
  3. L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [Crossref] [PubMed]
  4. A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Physics-Uspekhi 56(6), 539–564 (2013).
    [Crossref]
  5. T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical Microscopy via Spectral Modifications of a Nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
    [Crossref] [PubMed]
  6. V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use In Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
    [Crossref] [PubMed]
  7. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [Crossref] [PubMed]
  8. M. K. Hossain, Y. Kitahama, G. G. Huang, X. Han, and Y. Ozaki, “Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods,” Anal. Bioanal. Chem. 394(7), 1747–1760 (2009).
    [Crossref] [PubMed]
  9. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  10. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
    [Crossref]
  11. J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
    [Crossref] [PubMed]
  12. K. Kneipp and H. Kneipp, “SERS signals at the anti Stokes side of the excitation laser in extremely high local optical fields of silver and gold nanoclusters,” Faraday Discuss. 132, 27–33, discussion 85–94 (2006).
    [Crossref] [PubMed]
  13. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  14. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [Crossref] [PubMed]
  15. E. T. Yu, D. Derkacs, P. Matheu, and D. M. Schaadt, “Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices,” Proc. SPIE 7033, 70331V (2008).
  16. M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
    [Crossref] [PubMed]
  17. G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
    [Crossref]
  18. F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
    [Crossref]
  19. R. Loudon, “The Qunatum Theory of Light,” Oxford University Press (1983).
  20. B. Niesen, B. P. Rand, P. Van Dorpe, H. Shen, B. Maes, J. Genoe, and P. Heremans, “Excitation of multiple dipole surface plasmon resonances in spherical silver nanoparticles,” Opt. Express 18(18), 19032–19038 (2010).
    [Crossref] [PubMed]
  21. J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94(7), 071103 (2009).
    [Crossref]
  22. G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(10), 105005 (2013).
    [Crossref]
  23. P. Vasinajindakaw, J. Vaillancourt, G. Gu, and X. Lu, “Surface plasmonic enhanced polarimetric longwave infrared photodetection with band pass spectral filtering,” Semicond. Sci. Technol. 27(6), 065005 (2012).
    [Crossref]

2013 (2)

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Physics-Uspekhi 56(6), 539–564 (2013).
[Crossref]

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(10), 105005 (2013).
[Crossref]

2012 (1)

P. Vasinajindakaw, J. Vaillancourt, G. Gu, and X. Lu, “Surface plasmonic enhanced polarimetric longwave infrared photodetection with band pass spectral filtering,” Semicond. Sci. Technol. 27(6), 065005 (2012).
[Crossref]

2011 (2)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use In Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

2010 (3)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[Crossref] [PubMed]

B. Niesen, B. P. Rand, P. Van Dorpe, H. Shen, B. Maes, J. Genoe, and P. Heremans, “Excitation of multiple dipole surface plasmon resonances in spherical silver nanoparticles,” Opt. Express 18(18), 19032–19038 (2010).
[Crossref] [PubMed]

2009 (4)

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94(7), 071103 (2009).
[Crossref]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

M. K. Hossain, Y. Kitahama, G. G. Huang, X. Han, and Y. Ozaki, “Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods,” Anal. Bioanal. Chem. 394(7), 1747–1760 (2009).
[Crossref] [PubMed]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Advances in Optics and Photonics 1(3), 438–483 (2009).
[Crossref]

2008 (2)

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

E. T. Yu, D. Derkacs, P. Matheu, and D. M. Schaadt, “Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices,” Proc. SPIE 7033, 70331V (2008).

2007 (2)

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

2006 (3)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[Crossref] [PubMed]

K. Kneipp and H. Kneipp, “SERS signals at the anti Stokes side of the excitation laser in extremely high local optical fields of silver and gold nanoclusters,” Faraday Discuss. 132, 27–33, discussion 85–94 (2006).
[Crossref] [PubMed]

2005 (2)

F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[Crossref]

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical Microscopy via Spectral Modifications of a Nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[Crossref] [PubMed]

2004 (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Aizpurua, J.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[Crossref] [PubMed]

Alkorta, J.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[Crossref] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Belov, P. A.

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Physics-Uspekhi 56(6), 539–564 (2013).
[Crossref]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Advances in Optics and Photonics 1(3), 438–483 (2009).
[Crossref]

Boreman, G. D.

F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[Crossref]

Burger, S.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical Microscopy via Spectral Modifications of a Nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[Crossref] [PubMed]

Catchpole, K. R.

Denisyuk, A. I.

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Physics-Uspekhi 56(6), 539–564 (2013).
[Crossref]

Derkacs, D.

E. T. Yu, D. Derkacs, P. Matheu, and D. M. Schaadt, “Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices,” Proc. SPIE 7033, 70331V (2008).

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Advances in Optics and Photonics 1(3), 438–483 (2009).
[Crossref]

Driskell, J. D.

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[Crossref] [PubMed]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use In Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Garcia-Etxarri, A.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[Crossref] [PubMed]

Genoe, J.

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use In Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

González, F. J.

F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[Crossref]

Gu, G.

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(10), 105005 (2013).
[Crossref]

P. Vasinajindakaw, J. Vaillancourt, G. Gu, and X. Lu, “Surface plasmonic enhanced polarimetric longwave infrared photodetection with band pass spectral filtering,” Semicond. Sci. Technol. 27(6), 065005 (2012).
[Crossref]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical Microscopy via Spectral Modifications of a Nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[Crossref] [PubMed]

Han, X.

M. K. Hossain, Y. Kitahama, G. G. Huang, X. Han, and Y. Ozaki, “Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods,” Anal. Bioanal. Chem. 394(7), 1747–1760 (2009).
[Crossref] [PubMed]

Heck, S. C.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use In Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Henkel, C.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical Microscopy via Spectral Modifications of a Nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[Crossref] [PubMed]

Heremans, P.

Hillenbrand, R.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[Crossref] [PubMed]

Hossain, M. K.

M. K. Hossain, Y. Kitahama, G. G. Huang, X. Han, and Y. Ozaki, “Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods,” Anal. Bioanal. Chem. 394(7), 1747–1760 (2009).
[Crossref] [PubMed]

Huang, G. G.

M. K. Hossain, Y. Kitahama, G. G. Huang, X. Han, and Y. Ozaki, “Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods,” Anal. Bioanal. Chem. 394(7), 1747–1760 (2009).
[Crossref] [PubMed]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Kalkbrenner, T.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical Microscopy via Spectral Modifications of a Nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[Crossref] [PubMed]

Khurgin, J. B.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94(7), 071103 (2009).
[Crossref]

Kitahama, Y.

M. K. Hossain, Y. Kitahama, G. G. Huang, X. Han, and Y. Ozaki, “Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods,” Anal. Bioanal. Chem. 394(7), 1747–1760 (2009).
[Crossref] [PubMed]

Kivshar, Y. S.

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Physics-Uspekhi 56(6), 539–564 (2013).
[Crossref]

Kneipp, H.

K. Kneipp and H. Kneipp, “SERS signals at the anti Stokes side of the excitation laser in extremely high local optical fields of silver and gold nanoclusters,” Faraday Discuss. 132, 27–33, discussion 85–94 (2006).
[Crossref] [PubMed]

Kneipp, K.

K. Kneipp and H. Kneipp, “SERS signals at the anti Stokes side of the excitation laser in extremely high local optical fields of silver and gold nanoclusters,” Faraday Discuss. 132, 27–33, discussion 85–94 (2006).
[Crossref] [PubMed]

Krasnok, A. E.

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Physics-Uspekhi 56(6), 539–564 (2013).
[Crossref]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Lipert, R. J.

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[Crossref] [PubMed]

Lu, X.

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(10), 105005 (2013).
[Crossref]

P. Vasinajindakaw, J. Vaillancourt, G. Gu, and X. Lu, “Surface plasmonic enhanced polarimetric longwave infrared photodetection with band pass spectral filtering,” Semicond. Sci. Technol. 27(6), 065005 (2012).
[Crossref]

Maes, B.

Maier, S. A.

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use In Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Maksymov, I. S.

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Physics-Uspekhi 56(6), 539–564 (2013).
[Crossref]

Matheu, P.

E. T. Yu, D. Derkacs, P. Matheu, and D. M. Schaadt, “Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices,” Proc. SPIE 7033, 70331V (2008).

Miroshnichenko, A. E.

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Physics-Uspekhi 56(6), 539–564 (2013).
[Crossref]

Niesen, B.

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Advances in Optics and Photonics 1(3), 438–483 (2009).
[Crossref]

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Ozaki, Y.

M. K. Hossain, Y. Kitahama, G. G. Huang, X. Han, and Y. Ozaki, “Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods,” Anal. Bioanal. Chem. 394(7), 1747–1760 (2009).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

Porter, M. D.

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[Crossref] [PubMed]

Rand, B. P.

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical Microscopy via Spectral Modifications of a Nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[Crossref] [PubMed]

Schaadt, D. M.

E. T. Yu, D. Derkacs, P. Matheu, and D. M. Schaadt, “Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices,” Proc. SPIE 7033, 70331V (2008).

Schädle, A.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical Microscopy via Spectral Modifications of a Nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[Crossref] [PubMed]

Schnell, M.

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[Crossref] [PubMed]

Shen, H.

Simovski, C. R.

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Physics-Uspekhi 56(6), 539–564 (2013).
[Crossref]

Soref, R. A.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94(7), 071103 (2009).
[Crossref]

Sun, G.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94(7), 071103 (2009).
[Crossref]

Vaillancourt, J.

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(10), 105005 (2013).
[Crossref]

P. Vasinajindakaw, J. Vaillancourt, G. Gu, and X. Lu, “Surface plasmonic enhanced polarimetric longwave infrared photodetection with band pass spectral filtering,” Semicond. Sci. Technol. 27(6), 065005 (2012).
[Crossref]

Van Dorpe, P.

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Vasinajindakaw, P.

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(10), 105005 (2013).
[Crossref]

P. Vasinajindakaw, J. Vaillancourt, G. Gu, and X. Lu, “Surface plasmonic enhanced polarimetric longwave infrared photodetection with band pass spectral filtering,” Semicond. Sci. Technol. 27(6), 065005 (2012).
[Crossref]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Yu, E. T.

E. T. Yu, D. Derkacs, P. Matheu, and D. M. Schaadt, “Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices,” Proc. SPIE 7033, 70331V (2008).

Adv. Mater. (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Advances in Optics and Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Advances in Optics and Photonics 1(3), 438–483 (2009).
[Crossref]

Anal. Bioanal. Chem. (1)

M. K. Hossain, Y. Kitahama, G. G. Huang, X. Han, and Y. Ozaki, “Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods,” Anal. Bioanal. Chem. 394(7), 1747–1760 (2009).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94(7), 071103 (2009).
[Crossref]

Chem. Rev. (1)

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use In Controlling the Radiative Properties of Nanoemitters,” Chem. Rev. 111(6), 3888–3912 (2011).
[Crossref] [PubMed]

Faraday Discuss. (1)

K. Kneipp and H. Kneipp, “SERS signals at the anti Stokes side of the excitation laser in extremely high local optical fields of silver and gold nanoclusters,” Faraday Discuss. 132, 27–33, discussion 85–94 (2006).
[Crossref] [PubMed]

Infrared Phys. Technol. (1)

F. J. González and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[Crossref]

J. Phys. Chem. B (1)

J. D. Driskell, R. J. Lipert, and M. D. Porter, “Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering,” J. Phys. Chem. B 110(35), 17444–17451 (2006).
[Crossref] [PubMed]

Nano Lett. (1)

M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, “Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps,” Nano Lett. 10(9), 3524–3528 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Opt. Express (2)

Phys. Rev. Lett. (3)

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical Microscopy via Spectral Modifications of a Nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[Crossref] [PubMed]

L. Novotny, “Effective Wavelength Scaling for Optical Antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[Crossref] [PubMed]

Physics-Uspekhi (1)

A. E. Krasnok, I. S. Maksymov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, C. R. Simovski, and Y. S. Kivshar, “Optical nanoantennas,” Physics-Uspekhi 56(6), 539–564 (2013).
[Crossref]

Proc. SPIE (1)

E. T. Yu, D. Derkacs, P. Matheu, and D. M. Schaadt, “Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices,” Proc. SPIE 7033, 70331V (2008).

Semicond. Sci. Technol. (2)

G. Gu, J. Vaillancourt, P. Vasinajindakaw, and X. Lu, “Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement,” Semicond. Sci. Technol. 28(10), 105005 (2013).
[Crossref]

P. Vasinajindakaw, J. Vaillancourt, G. Gu, and X. Lu, “Surface plasmonic enhanced polarimetric longwave infrared photodetection with band pass spectral filtering,” Semicond. Sci. Technol. 27(6), 065005 (2012).
[Crossref]

Other (1)

R. Loudon, “The Qunatum Theory of Light,” Oxford University Press (1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic structure of the MCDA optical antenna. It is a 2D square lattice with a period of 2.3 µm. The diameter of the metal circular disks is 1.15 µm and the thickness of the metal layer is 30 nm.
Fig. 2
Fig. 2 Simulated E vectors at an x-polarized excitation plane-wave IR light with the wavelength of 7.3 µm: (a) x-z cross section at the y = 0 cut-plane (the center of the circular disk); (b) top view of Ez; (c) top view of Ex. LSPR is excited at this resonant wavelength.
Fig. 3
Fig. 3 Simulated near-field Ex and Ez distributions at various excitation wavelengths. Ex is primarily at the edge of the circular disk, whereas Ex is under the circular disk. Ez has a larger overlap with the QD layers than Ex at the y = 0 µm cut-plane.
Fig. 4
Fig. 4 Simulated near-field Ex and Ez distributions at the y = 1 µm cut-plane. Ex shows a strong overlap with the QD regions at the excitation wavelength of 7.6 µm.
Fig. 5
Fig. 5 QDIP with the MCDA optical antenna array: (a) microscopic picture; (b) close-up SEM view; (c) schematic structure of the QDIP.
Fig. 6
Fig. 6 Measured photocurrent spectra of the QDIPs with MCDA optical antenna compared to the reference QDIP. he MCDA optical antenna gives high photocurrent enhancement.
Fig. 7
Fig. 7 (a) photocurrent enhancement ratio spectrum of the QDIP with the MCDA optical antenna array; (b) integrated intensities of the near field vector components over the QD active region. V | E x | 2 d V is larger than V | E z | 2 d V . V | E x | 2 d V more closely resemble the photocurrent enhancement ratio spectrum, indicating that Ex plays a major role in the QDIP enhancement.

Metrics