Abstract

Non-contact surface mapping at a distance is interesting in diverse applications including industrial metrology, manufacturing, forensics, and artifact documentation and preservation. Frequency modulated continuous wave (FMCW) laser detection and ranging (LADAR) is a promising approach since it offers shot-noise limited precision/accuracy, high resolution and high sensitivity. We demonstrate a scanning imaging system based on a frequency-comb calibrated FMCW LADAR and real-time digital signal processing. This system can obtain three-dimensional images of a diffusely scattering surface at stand-off distances up to 10.5 m with sub-micrometer accuracy and with a precision below 10 µm, limited by fundamental speckle noise. Because of its shot-noise limited sensitivity, this comb-calibrated FMCW LADAR has a large dynamic range, which enables precise mapping of scenes with vastly differing reflectivities such as metal, dirt or vegetation. The current system is implemented with fiber-optic components, but the basic system architecture is compatible with future optically integrated, on-chip systems.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements

Esther Baumann, Fabrizio R. Giorgetta, Ian Coddington, Laura C. Sinclair, Kevin Knabe, William C. Swann, and Nathan R. Newbury
Opt. Lett. 38(12) 2026-2028 (2013)

Speckle phase noise in coherent laser ranging: fundamental precision limitations

Esther Baumann, Jean-Daniel Deschênes, Fabrizio R. Giorgetta, William C. Swann, Ian Coddington, and Nathan R. Newbury
Opt. Lett. 39(16) 4776-4779 (2014)

Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar

Zeb W. Barber, Wm. Randall Babbitt, Brant Kaylor, Randy R. Reibel, and Peter A. Roos
Appl. Opt. 49(2) 213-219 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
    [Crossref]
  2. P. A. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber, and W. R. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett. 34(23), 3692–3694 (2009).
    [Crossref] [PubMed]
  3. Z. W. Barber, W. R. Babbitt, B. Kaylor, R. R. Reibel, and P. A. Roos, “Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar,” Appl. Opt. 49(2), 213–219 (2010).
    [Crossref] [PubMed]
  4. E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
    [Crossref] [PubMed]
  5. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [Crossref]
  6. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  7. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
    [Crossref] [PubMed]
  8. M. U. Piracha, D. Nguyen, I. Ozdur, and P. J. Delfyett, “Simultaneous ranging and velocimetry of fast moving targets using oppositely chirped pulses from a mode-locked laser,” Opt. Express 19(12), 11213–11219 (2011).
    [Crossref] [PubMed]
  9. S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
    [Crossref] [PubMed]
  10. T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
    [Crossref] [PubMed]
  11. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [Crossref] [PubMed]
  12. K. Minoshima, K. Arai, and H. Inaba, “High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs,” Opt. Express 19(27), 26095–26105 (2011).
    [Crossref] [PubMed]
  13. E. Baumann, J.-D. Deschênes, F. R. Giorgetta, W. C. Swann, I. Coddington, and N. R. Newbury, “Speckle phase noise in coherent laser ranging: fundamental precision limitations,” Opt. Lett. 39(16), 4776–4779 (2014).
    [Crossref] [PubMed]
  14. M. R. Bennett, D. Huddart, and S. Gonzalez, “Preservation and Analysis of Three-Dimensional Footwear Evidence in Soils: The Application of Optical Laser Scanning,” in Criminal and Environmental Soil Forensics, K. Ritz, L. Dawson, and D. Miller, eds. (Springer Netherlands, 2009), pp. 445–461.
  15. D. A. Komar, S. Davy-Jow, and S. J. Decker, “The Use of a 3-D Laser Scanner to Document Ephemeral Evidence at Crime Scenes and Postmortem Examinations,” J. Forensic Sci. 57(1), 188–191 (2012).
    [Crossref] [PubMed]
  16. U. Buck, N. Albertini, S. Naether, and M. J. Thali, “3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning,” Forensic Sci. Int. 171(2-3), 157–164 (2007).
    [Crossref] [PubMed]
  17. A. Cabral, M. Abreu, and J. M. Rebordao, “Dual-frequency sweeping interferometry for absolute metrology of long distances,” Opt. Eng. 49(8), 085601 (2010).
    [Crossref]
  18. X. Wu, H. Wei, H. Zhang, L. Ren, Y. Li, and J. Zhang, “Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb,” Appl. Opt. 52(10), 2042–2048 (2013).
    [Crossref] [PubMed]
  19. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
    [Crossref] [PubMed]
  20. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
    [Crossref] [PubMed]
  21. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
    [Crossref] [PubMed]
  22. S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999).
    [Crossref] [PubMed]
  23. K. Harding, Handbook of Optical Dimensional Metrology (CRC Press, 2013).
  24. S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt. 44(35), 7621–7629 (2005).
    [Crossref] [PubMed]
  25. S. Crouch and Z. W. Barber, “Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques,” Opt. Express 20(22), 24237–24246 (2012).
    [Crossref] [PubMed]
  26. M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
    [Crossref]
  27. M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express 20(9), 9736–9741 (2012).
    [Crossref] [PubMed]
  28. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
    [Crossref]
  29. C. Weimann, M. Lauermann, T. Fehrenbach, R. Palmer, F. Hoeller, W. Freude, and C. G. Koos, “Silicon Photonic Integrated Circuit for Fast Distance Measurement with Frequency Combs,” in CLEO, OSA Technical Digest (Optical Society of America, 2014), p. STh4O.3.
  30. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009).
    [Crossref] [PubMed]
  31. J. A. Stone, A. Stejskal, and L. Howard, “Absolute interferometry with a 670-nm external cavity diode laser,” Appl. Opt. 38(28), 5981–5994 (1999).
    [Crossref] [PubMed]
  32. Z. W. Barber, F. R. Giorgetta, P. A. Roos, I. Coddington, J. R. Dahl, R. R. Reibel, N. Greenfield, and N. R. Newbury, “Characterization of an actively linearized ultrabroadband chirped laser with a fiber-laser optical frequency comb,” Opt. Lett. 36(7), 1152–1154 (2011).
    [Crossref] [PubMed]
  33. F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
    [Crossref]
  34. P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
    [Crossref]
  35. I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms with 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron. 18(1), 228–238 (2012).
    [Crossref]
  36. D. Anthon, J. D. Berger, J. Drake, S. Dutta, A. Fennema, J. D. Grade, S. Hrinya, F. Ilkov, H. Jerman, D. King, H. Lee, A. Tselikov, and K. Yasumura, “External cavity diode lasers tuned with silicon MEMS,” in Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002 (2002), pp. 97–98.
  37. U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
    [Crossref]
  38. J. C. Dainty, Laser Speckle and Related Phenomena, Topics in Applied Physics (Springer, 1984), Vol. 9.
  39. A. Belmonte, “Statistical model for fading return signals in coherent lidars,” Appl. Opt. 49(35), 6737–6748 (2010).
    [Crossref] [PubMed]
  40. D. Letalick, I. Renhorn, O. Steinvall, and J. H. Shapiro, “Noise sources in laser radar systems,” Appl. Opt. 28(13), 2657–2665 (1989).
    [Crossref] [PubMed]
  41. Z. W. Barber, J. R. Dahl, T. L. Sharpe, and B. I. Erkmen, “Shot noise statistics and information theory of sensitivity limits in frequency-modulated continuous-wave ladar,” J. Opt. Soc. Am. A 30(7), 1335–1341 (2013).
    [Crossref] [PubMed]
  42. S. Donati, G. Martini, and T. Tambosso, “Speckle Pattern Errors in Self-Mixing Interferometry,” IEEE J. Quantum Electron. 49(9), 798–806 (2013).
    [Crossref]
  43. S. Donati and G. Martini, “Systematic and random errors in self-mixing measurements: effect of the developing speckle statistics,” Appl. Opt. 53(22), 4873–4880 (2014).
    [Crossref] [PubMed]
  44. P. Pavliček and J. Soubusta, “Theoretical Measurement Uncertainty of White-Light Interferometry on Rough Surfaces,” Appl. Opt. 42(10), 1809–1813 (2003).
    [Crossref] [PubMed]
  45. B. W. Krause, B. G. Tiemann, and P. Gatt, “Motion compensated frequency modulated continuous wave 3D coherent imaging ladar with scannerless architecture,” Appl. Opt. 51(36), 8745–8761 (2012).
    [Crossref] [PubMed]
  46. G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photon. 4(4), 441–471 (2012).
    [Crossref]

2014 (3)

2013 (5)

2012 (7)

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

D. A. Komar, S. Davy-Jow, and S. J. Decker, “The Use of a 3-D Laser Scanner to Document Ephemeral Evidence at Crime Scenes and Postmortem Examinations,” J. Forensic Sci. 57(1), 188–191 (2012).
[Crossref] [PubMed]

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms with 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron. 18(1), 228–238 (2012).
[Crossref]

M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express 20(9), 9736–9741 (2012).
[Crossref] [PubMed]

S. Crouch and Z. W. Barber, “Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques,” Opt. Express 20(22), 24237–24246 (2012).
[Crossref] [PubMed]

B. W. Krause, B. G. Tiemann, and P. Gatt, “Motion compensated frequency modulated continuous wave 3D coherent imaging ladar with scannerless architecture,” Appl. Opt. 51(36), 8745–8761 (2012).
[Crossref] [PubMed]

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photon. 4(4), 441–471 (2012).
[Crossref]

2011 (5)

2010 (5)

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Z. W. Barber, W. R. Babbitt, B. Kaylor, R. R. Reibel, and P. A. Roos, “Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar,” Appl. Opt. 49(2), 213–219 (2010).
[Crossref] [PubMed]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[Crossref]

A. Belmonte, “Statistical model for fading return signals in coherent lidars,” Appl. Opt. 49(35), 6737–6748 (2010).
[Crossref] [PubMed]

A. Cabral, M. Abreu, and J. M. Rebordao, “Dual-frequency sweeping interferometry for absolute metrology of long distances,” Opt. Eng. 49(8), 085601 (2010).
[Crossref]

2009 (4)

N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009).
[Crossref] [PubMed]

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

P. A. Roos, R. R. Reibel, T. Berg, B. Kaylor, Z. W. Barber, and W. R. Babbitt, “Ultrabroadband optical chirp linearization for precision metrology applications,” Opt. Lett. 34(23), 3692–3694 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (1)

U. Buck, N. Albertini, S. Naether, and M. J. Thali, “3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning,” Forensic Sci. Int. 171(2-3), 157–164 (2007).
[Crossref] [PubMed]

2005 (1)

2003 (1)

2001 (1)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

2000 (1)

1999 (2)

1994 (1)

1993 (1)

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[Crossref]

1989 (1)

Abreu, M.

A. Cabral, M. Abreu, and J. M. Rebordao, “Dual-frequency sweeping interferometry for absolute metrology of long distances,” Opt. Eng. 49(8), 085601 (2010).
[Crossref]

Albertini, N.

U. Buck, N. Albertini, S. Naether, and M. J. Thali, “3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning,” Forensic Sci. Int. 171(2-3), 157–164 (2007).
[Crossref] [PubMed]

Amann, M.-C.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Arai, K.

Arcizet, O.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Babbitt, W. R.

Barber, Z. W.

Baumann, E.

E. Baumann, J.-D. Deschênes, F. R. Giorgetta, W. C. Swann, I. Coddington, and N. R. Newbury, “Speckle phase noise in coherent laser ranging: fundamental precision limitations,” Opt. Lett. 39(16), 4776–4779 (2014).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
[Crossref] [PubMed]

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms with 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron. 18(1), 228–238 (2012).
[Crossref]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[Crossref]

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
[Crossref]

Beck, S. M.

Belmonte, A.

Berg, T.

Berkovic, G.

Bhardwaj, A.

Bhattacharya, N.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

Bloch, E.

Bosch, T.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
[Crossref]

Brinkmeyer, E.

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[Crossref]

Buck, J. R.

Buck, U.

U. Buck, N. Albertini, S. Naether, and M. J. Thali, “3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning,” Forensic Sci. Int. 171(2-3), 157–164 (2007).
[Crossref] [PubMed]

Buell, W. F.

Cable, A. E.

Cabral, A.

A. Cabral, M. Abreu, and J. M. Rebordao, “Dual-frequency sweeping interferometry for absolute metrology of long distances,” Opt. Eng. 49(8), 085601 (2010).
[Crossref]

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Coddington, I.

E. Baumann, J.-D. Deschênes, F. R. Giorgetta, W. C. Swann, I. Coddington, and N. R. Newbury, “Speckle phase noise in coherent laser ranging: fundamental precision limitations,” Opt. Lett. 39(16), 4776–4779 (2014).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
[Crossref] [PubMed]

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms with 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron. 18(1), 228–238 (2012).
[Crossref]

T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[Crossref] [PubMed]

Z. W. Barber, F. R. Giorgetta, P. A. Roos, I. Coddington, J. R. Dahl, R. R. Reibel, N. Greenfield, and N. R. Newbury, “Characterization of an actively linearized ultrabroadband chirped laser with a fiber-laser optical frequency comb,” Opt. Lett. 36(7), 1152–1154 (2011).
[Crossref] [PubMed]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Coldren, L. A.

Crouch, S.

Cui, M.

Dahl, J. R.

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
[Crossref]

Davy-Jow, S.

D. A. Komar, S. Davy-Jow, and S. J. Decker, “The Use of a 3-D Laser Scanner to Document Ephemeral Evidence at Crime Scenes and Postmortem Examinations,” J. Forensic Sci. 57(1), 188–191 (2012).
[Crossref] [PubMed]

Decker, S. J.

D. A. Komar, S. Davy-Jow, and S. J. Decker, “The Use of a 3-D Laser Scanner to Document Ephemeral Evidence at Crime Scenes and Postmortem Examinations,” J. Forensic Sci. 57(1), 188–191 (2012).
[Crossref] [PubMed]

Del’Haye, P.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Delfyett, P. J.

Deschênes, J.-D.

Dickinson, R. P.

Donati, S.

S. Donati and G. Martini, “Systematic and random errors in self-mixing measurements: effect of the developing speckle statistics,” Appl. Opt. 53(22), 4873–4880 (2014).
[Crossref] [PubMed]

S. Donati, G. Martini, and T. Tambosso, “Speckle Pattern Errors in Self-Mixing Interferometry,” IEEE J. Quantum Electron. 49(9), 798–806 (2013).
[Crossref]

Erkmen, B. I.

Fujimoto, J. G.

Gatt, P.

Giorgetta, F. R.

Glombitza, U.

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[Crossref]

Gorodetsky, M. L.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Greenfield, N.

Griffith, Z.

Grulkowski, I.

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
[Crossref]

Holzwarth, R.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Howard, L.

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Inaba, H.

Jayaraman, V.

Jiang, J.

Johansson, L. A.

Jüptner, W.

Kaylor, B.

Kim, S.-W.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Kim, Y.-J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Kippenberg, T. J.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

Knabe, K.

Kok, G. J. P.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Komar, D. A.

D. A. Komar, S. Davy-Jow, and S. J. Decker, “The Use of a 3-D Laser Scanner to Document Ephemeral Evidence at Crime Scenes and Postmortem Examinations,” J. Forensic Sci. 57(1), 188–191 (2012).
[Crossref] [PubMed]

Kozlowski, D. A.

Krause, B. W.

Le Floch, S.

Lee, J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, K.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, S.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lescure, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Letalick, D.

Lévêque, S.

Leyva, V.

Li, Y.

Liu, J. J.

Liu, T.-A.

Lu, M.

Marechal, N. J.

Martini, G.

S. Donati and G. Martini, “Systematic and random errors in self-mixing measurements: effect of the developing speckle statistics,” Appl. Opt. 53(22), 4873–4880 (2014).
[Crossref] [PubMed]

S. Donati, G. Martini, and T. Tambosso, “Speckle Pattern Errors in Self-Mixing Interferometry,” IEEE J. Quantum Electron. 49(9), 798–806 (2013).
[Crossref]

Matsumoto, H.

Minoshima, K.

Myllyla, R.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Naether, S.

U. Buck, N. Albertini, S. Naether, and M. J. Thali, “3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning,” Forensic Sci. Int. 171(2-3), 157–164 (2007).
[Crossref] [PubMed]

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N. R.

E. Baumann, J.-D. Deschênes, F. R. Giorgetta, W. C. Swann, I. Coddington, and N. R. Newbury, “Speckle phase noise in coherent laser ranging: fundamental precision limitations,” Opt. Lett. 39(16), 4776–4779 (2014).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
[Crossref] [PubMed]

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms with 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron. 18(1), 228–238 (2012).
[Crossref]

T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[Crossref] [PubMed]

Z. W. Barber, F. R. Giorgetta, P. A. Roos, I. Coddington, J. R. Dahl, R. R. Reibel, N. Greenfield, and N. R. Newbury, “Characterization of an actively linearized ultrabroadband chirped laser with a fiber-laser optical frequency comb,” Opt. Lett. 36(7), 1152–1154 (2011).
[Crossref] [PubMed]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Nguyen, D.

Ozdur, I.

Park, H.

Pavlicek, P.

Pedrini, G.

Persijn, S. T.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Piracha, M. U.

Potsaid, B.

Rakuljic, G.

Rebordao, J. M.

A. Cabral, M. Abreu, and J. M. Rebordao, “Dual-frequency sweeping interferometry for absolute metrology of long distances,” Opt. Eng. 49(8), 085601 (2010).
[Crossref]

Reibel, R. R.

Ren, L.

Renhorn, I.

Rioux, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

Rodwell, M. J.

Roos, P. A.

Salvadé, Y.

Santoyo, F. M.

Satyan, N.

Schedin, S.

Schnars, U.

Schuhler, N.

Shafir, E.

Shapiro, J. H.

Sharpe, T. L.

Sinclair, L. C.

Sivananthan, A.

Soubusta, J.

Spencer, D. T.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
[Crossref]

Steinvall, O.

Stejskal, A.

Stone, J. A.

Swann, W. C.

E. Baumann, J.-D. Deschênes, F. R. Giorgetta, W. C. Swann, I. Coddington, and N. R. Newbury, “Speckle phase noise in coherent laser ranging: fundamental precision limitations,” Opt. Lett. 39(16), 4776–4779 (2014).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, I. Coddington, L. C. Sinclair, K. Knabe, W. C. Swann, and N. R. Newbury, “Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements,” Opt. Lett. 38(12), 2026–2028 (2013).
[Crossref] [PubMed]

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms with 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron. 18(1), 228–238 (2012).
[Crossref]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Tambosso, T.

S. Donati, G. Martini, and T. Tambosso, “Speckle Pattern Errors in Self-Mixing Interferometry,” IEEE J. Quantum Electron. 49(9), 798–806 (2013).
[Crossref]

Thali, M. J.

U. Buck, N. Albertini, S. Naether, and M. J. Thali, “3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning,” Forensic Sci. Int. 171(2-3), 157–164 (2007).
[Crossref] [PubMed]

Tiemann, B. G.

Tiziani, H. J.

Urbach, H. P.

van den Berg, S. A.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

Vasilyev, A.

Wei, H.

Wright, T. J.

Wu, X.

Yariv, A.

Zeitouny, M. G.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

Zhang, H.

Zhang, J.

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (13)

A. Belmonte, “Statistical model for fading return signals in coherent lidars,” Appl. Opt. 49(35), 6737–6748 (2010).
[Crossref] [PubMed]

D. Letalick, I. Renhorn, O. Steinvall, and J. H. Shapiro, “Noise sources in laser radar systems,” Appl. Opt. 28(13), 2657–2665 (1989).
[Crossref] [PubMed]

S. Donati and G. Martini, “Systematic and random errors in self-mixing measurements: effect of the developing speckle statistics,” Appl. Opt. 53(22), 4873–4880 (2014).
[Crossref] [PubMed]

P. Pavliček and J. Soubusta, “Theoretical Measurement Uncertainty of White-Light Interferometry on Rough Surfaces,” Appl. Opt. 42(10), 1809–1813 (2003).
[Crossref] [PubMed]

B. W. Krause, B. G. Tiemann, and P. Gatt, “Motion compensated frequency modulated continuous wave 3D coherent imaging ladar with scannerless architecture,” Appl. Opt. 51(36), 8745–8761 (2012).
[Crossref] [PubMed]

Z. W. Barber, W. R. Babbitt, B. Kaylor, R. R. Reibel, and P. A. Roos, “Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar,” Appl. Opt. 49(2), 213–219 (2010).
[Crossref] [PubMed]

K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
[Crossref] [PubMed]

X. Wu, H. Wei, H. Zhang, L. Ren, Y. Li, and J. Zhang, “Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb,” Appl. Opt. 52(10), 2042–2048 (2013).
[Crossref] [PubMed]

Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
[Crossref] [PubMed]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
[Crossref] [PubMed]

S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999).
[Crossref] [PubMed]

S. M. Beck, J. R. Buck, W. F. Buell, R. P. Dickinson, D. A. Kozlowski, N. J. Marechal, and T. J. Wright, “Synthetic-aperture imaging laser radar: laboratory demonstration and signal processing,” Appl. Opt. 44(35), 7621–7629 (2005).
[Crossref] [PubMed]

J. A. Stone, A. Stejskal, and L. Howard, “Absolute interferometry with a 670-nm external cavity diode laser,” Appl. Opt. 38(28), 5981–5994 (1999).
[Crossref] [PubMed]

Forensic Sci. Int. (1)

U. Buck, N. Albertini, S. Naether, and M. J. Thali, “3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning,” Forensic Sci. Int. 171(2-3), 157–164 (2007).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

S. Donati, G. Martini, and T. Tambosso, “Speckle Pattern Errors in Self-Mixing Interferometry,” IEEE J. Quantum Electron. 49(9), 798–806 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing Fast Arbitrary CW Waveforms with 1500 THz/s Instantaneous Chirps,” IEEE J. Sel. Top. Quantum Electron. 18(1), 228–238 (2012).
[Crossref]

J. Forensic Sci. (1)

D. A. Komar, S. Davy-Jow, and S. J. Decker, “The Use of a 3-D Laser Scanner to Document Ephemeral Evidence at Crime Scenes and Postmortem Examinations,” J. Forensic Sci. 57(1), 188–191 (2012).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11(8), 1377–1384 (1993).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Photon. Rev. (1)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E. Bowers, “Ultra-low loss waveguide platform and its integration with silicon photonics,” Laser Photon. Rev. 8(5), 667–686 (2014).
[Crossref]

Nat. Photonics (5)

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high-resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4(12), 853–857 (2010).
[Crossref]

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics 3(9), 529–533 (2009).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Opt. Eng. (2)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[Crossref]

A. Cabral, M. Abreu, and J. M. Rebordao, “Dual-frequency sweeping interferometry for absolute metrology of long distances,” Opt. Eng. 49(8), 085601 (2010).
[Crossref]

Opt. Express (7)

T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[Crossref] [PubMed]

K. Minoshima, K. Arai, and H. Inaba, “High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs,” Opt. Express 19(27), 26095–26105 (2011).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

M. U. Piracha, D. Nguyen, I. Ozdur, and P. J. Delfyett, “Simultaneous ranging and velocimetry of fast moving targets using oppositely chirped pulses from a mode-locked laser,” Opt. Express 19(12), 11213–11219 (2011).
[Crossref] [PubMed]

M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, “Highly integrated optical heterodyne phase-locked loop with phase/frequency detection,” Opt. Express 20(9), 9736–9741 (2012).
[Crossref] [PubMed]

S. Crouch and Z. W. Barber, “Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques,” Opt. Express 20(22), 24237–24246 (2012).
[Crossref] [PubMed]

N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, and A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17(18), 15991–15999 (2009).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-Wavelength Interferometry with Thousands of Lasers for Absolute Distance Measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Other (5)

M. R. Bennett, D. Huddart, and S. Gonzalez, “Preservation and Analysis of Three-Dimensional Footwear Evidence in Soils: The Application of Optical Laser Scanning,” in Criminal and Environmental Soil Forensics, K. Ritz, L. Dawson, and D. Miller, eds. (Springer Netherlands, 2009), pp. 445–461.

C. Weimann, M. Lauermann, T. Fehrenbach, R. Palmer, F. Hoeller, W. Freude, and C. G. Koos, “Silicon Photonic Integrated Circuit for Fast Distance Measurement with Frequency Combs,” in CLEO, OSA Technical Digest (Optical Society of America, 2014), p. STh4O.3.

D. Anthon, J. D. Berger, J. Drake, S. Dutta, A. Fennema, J. D. Grade, S. Hrinya, F. Ilkov, H. Jerman, D. King, H. Lee, A. Tselikov, and K. Yasumura, “External cavity diode lasers tuned with silicon MEMS,” in Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002 (2002), pp. 97–98.

K. Harding, Handbook of Optical Dimensional Metrology (CRC Press, 2013).

J. C. Dainty, Laser Speckle and Related Phenomena, Topics in Applied Physics (Springer, 1984), Vol. 9.

Supplementary Material (1)

» Media 1: MP4 (4135 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Photograph of a footprint in dirt, acquired at close range. (b) Calibrated 3D surface image of the same footprint in dirt acquired at z0 = 10.568 m stand-off. This image contains 1.12 Mpixels.

Fig. 2
Fig. 2

(a) Photograph of the tread of the shoe used in Fig. 1. (b) Calibrated 3D image of the shoe tread revealing the crests and valleys of the rubber sole, along with the worn mark of a bike pedal, acquired at z0 = 10.587 m standoff. The 3D nature of the data is best observed in a movie (see Media 1).

Fig. 3
Fig. 3

(a) Overview of the FMCW LADAR setup used for 3D imaging. The light from a frequency-swept laser is split into a measurement and a local reference path. Objects (here a flower) are scanned with a fast steering mirror (FSM). Simultaneously a small portion of the swept laser’s output is heterodyned against a mode-locked laser (free running comb) and detected in phase and quadrature (I/Q) to extract the instantaneous frequency used to calibrate the frequency sweep rate. (b) Block diagram of the data processing, which is implemented on a field-programmable gate array (FPGA). AGC: automatic gain control. After extracting the radial range, it is converted (together with the FSM angle readings) to Cartesian coordinates, resulting in a 3D point cloud. (c) Linearized ‘range spectrum’ as discussed in the text. One specific range measurement is extracted as the center of mass of the peak, here just below 4 m. Some spurious reflections are visible just below 7.5 m; they originate among others from the circulator used to couple the light in and out into the free-space section. The inset shows the FPGA output, consisting of 8 points across the range peak, with a spacing of ~ΔR = 150 µm. The black trace shows a distorted range spectrum obtained assuming flaser is a pure sine wave.

Fig. 4
Fig. 4

Instantaneous modulation frequency of swept laser, green measurement, dashed-black pure sine-wave. The update rate is 0.5 ms and the shaded area corresponds to 1 sweep, hence one range-measurement. Top: difference between the sine-modulation and measured frequency.

Fig. 5
Fig. 5

(a) Photograph of a flat granite surface and flat cast iron lapping plate, placed at a stand-off of z0 = 10.539 m. (b) Schematic of lateral scanning pattern. The black dots indicate the spot position, and are smaller than the actual spot size to clearly show the scanning pattern. The red dot indicates the spot size, illustrating the beam overlap for each pixel as described in the text. For visual clarity, a 15 pixel horizontal scan is depicted (the presented images are based on 2500 × 400 pixel scans). (c) 3D surface image of the cast iron lapping plate (dashed box in panel (a)) without removal of geometric factors. (d) Same as (c) after calibration of the geometrical factors, revealing a flat surface as expected. (The surface profile of the granite surface is discussed later in Fig. 11.) (e) Histogram of the range measurements on the lapping plate, for a 1D scan consisting of 1 million points along the lateral x-axis after removing a small tilt (blue trace) and all points (as seen in (d)) covering 742,000 points, after removing a tilt in x and y (green trace). Also shown are the analytical solutions expected due to speckle-induced phase noise (black dashed lines), as discussed in Section 3.2.

Fig. 6
Fig. 6

Precision as a function of return power while ranging to a single point on a brushed metal plate at a stand-off of 10.5 m. Each point is reported as the standard deviation of 28 measurements taken within 14 ms (filled circles). The measured SNR of the range beat (black line, right axis) can be as good as 75.5 dB at high return power (see also Fig. 3(c)).

Fig. 7
Fig. 7

Uncertainty (Allan deviation) of a 2.5 hour long measurement (2 × 107 points, 0.5 ms per point) ranging to a single point on a brushed Aluminum surface placed at 10.5 m stand-off distance.

Fig. 8
Fig. 8

(a) Photograph of an Al-step block with the NIST logo imprinted and a quarter located on the lower left corner. (b) False colored, 3D surface image of the step block, along with a quarter on the bottom left, measured by our FMCW LADAR system at a stand-off of z0 = 4.760 m. (c) The average of 30 cross-sections in the x-direction from the FMCW LADAR image (green trace) is compared to an average of 12 measurement points taken with a CMM (blue crosses). The inset shows an expanded view of the first 3 steps; note that the second step size is only ~30 µm. The difference (error) between the LADAR and the CMM (red crosses) has a standard deviation below 2 µm.

Fig. 9
Fig. 9

(a) Photo of a motorbike (Ducati 1975) piston head. (b) False colored, calibrated, 1 Mpixel 3D image measured at a stand-off of z0 = 10.587 m. (c) A cross section in y (blue trace), shows the smoothly varying surface. A piecewise fit of the cross section to a polynomial gives the residual (green trace) that show increased spread for regions of slanted surfaces. This additional spread follows the expected values due to the true range depth of the surface within the beam spot (red trace).

Fig. 10
Fig. 10

Top of piston head from Fig. 9 revealing the imprinted numbers. This reduced area consists of a 1 Mpixel point cloud, as measured at z0 = 3.701 m stand-off. The overall curvature of the piston head is also evident.

Fig. 11
Fig. 11

(a) Calibrated false colored 3D surface image of a flat granite plate (see photo in Fig. 5(a)) at a stand-off of z0 = 10.476 m. (b) Histogram of the granite showing the optical penetration into the plate (blue) along with a fit to the expected distribution of Eq. (3). for a flat surface with roughness σz~12 µm (black) and a second, double-exponential fit (red) that captures the penetration into the plate.

Fig. 12
Fig. 12

(a) Photograph of cactus taken at a close-in range. (b) Calibrated 3D surface image acquired at z0 = 10.587 meters standoff covering a volume of ~(120 mm)3. (c) Individual branch of the cactus, measured at 4 m standoff, revealing the spikes of ~75 µm diameter.

Tables (1)

Tables Icon

Table 1 Precision of each sample point, evaluated at 10-m standoff distances.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V L A D A R ( t ) cos [ φ ( t ) φ ( t Δ t o b j ) ] cos [ Δ t o b j d φ ( t Δ t o b j / 2 ) d t ] = cos [ 2 π Δ t o b j f l a s e r ( t Δ t o b j / 2 ) ]
F ( R ) = B / 2 B / 2 V L A D A R ( f l a s e r ) e j 4 π f l a s e r c 1 R d f l a s e r
P T ( δ z ) = k σ z 2 2 ( σ z 2 + δ z 2 ) 3 / 2 for | δ z | < Δ R /2 P T ( δ z ) = 0 for | δ z | > Δ R /2
δ z 2 σ z 2 { ln ( Δ R / σ z ) 1 } for Δ R / σ z 1

Metrics